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Atomistic-model study of temperature-dependent domain walls in the neodymium
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We studied the properties of domain walls (DWs) of the Neodymium magnet, Nd2Fe14B. Applying an
atomistic model, in which the magnetic moments of all atoms and exchange interactions were determined
by a first-principles calculation (Korringa-Kohn-Rostoker Green’s function method), we performed a Monte
Carlo simulation for two types of DW, i.e., moving along the a axis and along the c axis, which are classified
into a Bloch-type wall and a Neel-type wall, respectively. We found that the shapes of the DWs of both types are
described well by those derived from the continuum model used in micromagnetics. We show that the estimated
DW widths are very close to the experimentally evaluated ones. Furthermore, we discovered that the width of the
latter type is smaller than that of the former type. We also investigated the temperature dependence of the DW
width and found that at higher temperatures it becomes larger and the magnitude of the magnetization becomes
smaller, which agrees with experimental observations.
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I. INTRODUCTION

Neodymium magnets [1,2] Nd-Fe-B (Fig. 1), which have
high coercive force, are the strongest permanent magnets.
They have drawn much attention, especially for their wide
commercial usage to electric motors, electronic devices,
generators with high efficiency, etc. Intensive studies towards
realization of stronger coercive force at higher temperatures
are being performed [3,4].

However, the origin of its strong coercive force has not
been clarified. To capture it, the mechanisms of nucleation
and depinning are key issues [5–8]. The property of magnetic
domain walls (DWs), accompanied by nucleation, depinning,
or defect, is an important ingredient to be studied.

The DW width is expressed as δW = π
√

A
K1

in the

continuum model analysis [6], where A is the exchange
stiffness constant and K1 is the magnetocrystalline anisotropy.
Temperature dependence of K1 for Nd2Fe14B has been
reported, based on analysis of magnetization curves along
the hard direction [6,9–13]. K1 has a maximum at around
250 K and reduces with increasing (decreasing) temperature.
It becomes negative below the spin reorientation temperature
Tr = 133–150 K in the bulk [10,12,14–17]. The higher-order
term, K2 rapidly fades away above around 200 K with

increasing temperature, and the equation δW = π
√

A
K1

is valid

at temperatures T � 200 K.
Empirical evaluation of A is not trivial, but Ono et al.

evaluated A = 6.6 ± 0.3 pJ/m [18] from spin-wave dispersion
curves obtained by neutron-scattering measurements [19,20],
assuming K1 = 4.5MJ/m3 at room temperature. Other (in-
direct) methods have given A = 7.3–12.5 pJ/m [6,21]. The
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DW width evaluated from these values of A and K1 is around
3.6–5.4 nm at room temperature.

Direct observations of the DW have been performed using
electron microscopy, and the width has been estimated to
be 1–10 nm in the analysis of Lorentz images and electron
holography (9 and 10 nm) [22], energy filtered Fresnel
images (2 ± 1 nm) [23], and coherent electron shadow images
(4 ± 2 nm) [24].

On the other hand, so far the properties of magnetic
DWs of the Neodymium magnet including the temperature
dependence of the DW width have not been studied from the
atomistic theoretical viewpoint. In the present paper, we study
the properties of DWs of Nd2Fe14B with an atomistic-model
approach.

Atomistic model studies for other materials, e.g., FePt have
been performed [25–28] and various quantitative properties
of magnetization process, DWs, etc. have been clarified. Very
recently the temperature dependence of magnetic properties
of Nd2Fe14B has been studied with an atomistic Hamil-
tonian, and relevant bulk properties were given, including
the successful reproduction of the reorientation transition
[29]. In the atomistic model, the parameters for all atoms
and exchange interactions were obtained by a first-principles
calculation based on the Korringa-Kohn-Rostoker (KKR)
Green’s function method. For the anisotropy terms, the values
of Di in Eq. (1) for Fe atoms (six kinds) estimated in a
first-principles study [30] were adopted, and experimentally
determined Am

l in Eq. (1) for Nd atoms (2 kinds) [31] were
used with 〈rl〉 estimated in Ref. [32] because the estimation of
Am

l by first-principles calculations has not been established.
In the present work, we study the properties of DWs of

Nd2Fe14B by a Monte Carlo simulation using the atomic
model with the same parameters. The DW nature depends
on its moving direction and the two types are investigated:
moving along the a axis (type I) and along the c axis (type
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FIG. 1. Unit cell of Nd2Fe14B magnet, which consists of
68 atoms. Red, blue, and yellow balls denote Nd, Fe, and B atoms,
respectively.

II) [Figs. 2(a) and 2(b)]. In the former the plane of the spin
rotation is perpendicular to the a axis and we call it Bloch-type
wall, while in the latter it includes the c axis and the way of
ration is like a Neel wall, and thus we call it Neel-type wall. We
find that the shape of DWs obtained by the MC simulation is
well fitted by the function derived from the continuum model,
and we successfully estimate δW in the atomistic model. It
is worth noting that the results in this microscopic study
are surprisingly close to the above-mentioned experimental
results. We also find a difference in the width between the
two types. We demonstrate the increase of the DW width
with increasing temperature for both types of DWs, which
is consistent with the temperature dependence of K1 in the
experiments.

The rest of the paper is organized as follows. In Sec. II,
the model and method are presented. In Sec. III A, the bulk
property is shown. In Sec. III B the properties of DW at 300 K
are studied and the temperature dependence of the DW width

(a)

(b)
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FIG. 2. (a) DW moving along the a axis (type I, Bloch-type wall);
(b) DW moving along the c axis (type II, Neel-type wall).

is given in Sec. III C. Section IV is devoted to discussion and
summary.

II. MODEL AND METHOD

The Nd2Fe14B magnet is built up with the tetragonal unit
cells (Fig. 1). The experimental values [33] of lattice constants
in the a, b, and c axes are da = 8.80 Å, db = 8.80 Å, and dc =
12.19 Å, respectively. For the magnet we adopt an atomistic
Hamiltonian,

H = −
∑
i<j

2Jij si · sj −
Fe∑
i

Di

(
sz
i

)2

+
Nd∑
i

∑
l,m

�l,iA
m
l,i〈rl〉i Ôm

l,i , (1)

where the first term is the Heisenberg exchange couplings
between the ith site and j th site (Nd, Fe, B atoms), Di denotes
the magnetic anisotropy constant of Fe atoms, and the last
term is the magnetic anisotropy energy of Nd atoms. Here
�l,i, Am

l,i , 〈rl〉i , and Ôm
l,i are the Stevens factor, the coefficient

of the spherical harmonics of the crystalline electric field, the
average of rl over the radial wave function, and the Stevens
operator, respectively, at site i for Nd atoms. The summation as
to l runs l = 2,4,6 and, for simplicity, only diagonal operators
m = 0 are taken into account. The magnetic moment (Si) of
each Nd atom is given by the summation of the moment (si)
of the valence (5d and 6s) electrons and that (J i) of the 4f

electrons: Si = si + J i .
Here Ji = gTJμB, where gT = 8/11 is Landé g factor and

J = 9/2 is the magnitude of the total angular momentum and
the directions of si and J i are antiparallel. It should be noted
that d electrons of the Fe atom and 4f electrons of the Nd
atom do not interact and only si contributes to the exchange
interaction. For Fe and B atoms, we give Si the same meaning
as si ; i.e., Si = si .

We adopt the highly accurate parameter values [29] for the
magnetic moments of all atoms and the magnetic interactions,
(Jij ), obtained by a first-principles computation based on the
KKR Green’s function method [34]. Since the method does
not use any finite basis set, it is free from the serious drawback
which originates from using a finite basis set when constructing
Green’s functions. In addition, the method is an all-electron
approach, which guarantees the high reliability [35]. We use
the exchange interactions within the range of r = 3.52 Å, in
which dominant short-range interactions are included. The
values for the anisotropy terms are taken from Refs. [30–32],
as mentioned in Sec. I.

In this work we use systems of Na × Nb × Nc unit cells
with open boundary conditions, where Na, Nb, and Nc are the
number of unit cells in the a, b, and c axes, respectively. For
types I and II, Na = 32, Nb = 5, Nc = 5 and Na = 5, Nb =
5, Nc = 32 are set, respectively. Each unit cell is referred to
by its coordinate (ia,ib,ic).

To realize a DW in each system, the following conditions
are imposed: the up-spin state and the down-spin state are fixed
at the left-edge cells and the right-edge cells, respectively. In
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FIG. 3. Temperature dependence of M̃z (closed circles) and M̃xy

(open triangles) in the bulk.

type I (II) the left-edge cells are the cells at ia = 1 (ic = 1),
and the right-edge cells are the cells at ia = 32 (ic = 32).

III. RESULTS

A. Bulk properties

First we simulate the magnetization in the uniform bulk
system (Na = 32, Nb = 5, Nc = 5) with periodic boundary
conditions for reference. In Fig. 3 we plot the temperature
dependence of the bulk magnetization M̃z = 1

N

∑
i〈|Sz

i |〉 and

M̃xy = 〈
√

( 1
N

∑
i S

x
i )2 + ( 1

N

∑
i S

y

i )2〉. Here the summation
runs over all the sites and N is the number of total sites and
〈· · · 〉 denotes thermal average. To obtain the MC data, 400 000
Monte Carlo steps (MCS) were applied for the measurement
after the equilibration process of 400 000 MCS. We find that
the spin reorientation transition occurs around Tr = 150 K, at
which M̃z has a maximum value. It is close to the experimental
values Tr = 133–150 K and agrees with the previous work
[29]. The feature of the bulk property shows the validity of our
modeling [37].

B. Domain wall

Now, we investigate the domain-wall properties. Our strat-
egy to obtain the domain-wall profile is as follows. To study
position-dependent magnetization along the a axis and the c

axis, we define the z component of the local magnetization,

Mz(x) = 1

Nx

∑
j

Sz
j , (2)

where x/da = ia for type I and x/dc = ic for type II. Here site
index j runs over the spins in the unit cells at ia for type I
and at ic for type II. Nx is the number of the sites in the unit
cells at ia and ic for types I and II, respectively. In the same
manner the x component Mx(x) and the y component My(x)
are defined. We also define the amplitude of xy components

FIG. 4. (a) Mz along the a axis (type I) at 300 K. The unit of the
vertical axis is μB/atom. (b) Mxy along the a axis (type I) at 300 K.
(c) Mz along the c axis (type II) at 300 K. (d) Mxy along the c axis
(type II) at 300 K. The analytical functions mz(x) and my(x) are given
by black lines in (a) and (b) [(c) and (d)], respectively. Here symbols
denote Mz(x) [Mxy] at different MCS.

as

Mxy(x) =
√

Mx(x)2 + My(x)2. (3)

We take snapshots of {Mz(x)} at given MCS in the equilibrium
state. Then the snapshots are fitted by a position-dependent
function mz(x) = m(T ) cos θ (x), in which θ (x) is the rotation
angle of the spin at x and m(T ) is the spin length at temperature
T . Applying the relation cos θ (x) = − tanh ( x

δ0
), which holds

in the continuum model [6], we have

mz(x) = −m(T ) tanh

(
x

δ0

)
, (4)

my(x) = m(T ) cosh−1

(
x

δ0

)
, (5)

and mx(x) = 0. Here δ0 is the wall parameter: δ0 ≡
√

A
K1

and

the width of the DW is given by δW = π ( dx
dθ

)
θ=π/2

= πδ0dX

(X = a or c).
We fit mz(x) [Eq. (4)] to the data of snapshots of (2) obtained

by the MC method. Here we take δ0 and m(T ) as fitting
parameters, and from the fitted values we have δW . Snapshots
of Mz along the a axis obtained by the MC method at 300 K are
plotted in Fig. 4(a) by symbols. In the MC procedure, snapshots
are taken at every 20 000 MCS after the first 400 000 MCS
used for the equilibration. The position of the DW fluctuates
along the a axis, and thus we shift the center of the DW (x for
Mz = 0) to the origin of the horizontal axis (x = 0).

We find that the MC data are fitted well by the function
(4) with δ0 = 2.308 and m(T ) = 1.734, which is given by a
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FIG. 5. Temperature dependence of Mz along the a axis (type I) (a)–(c) and along the c axis (type II) (d)–(f). (a),(d) 200 K; (b),(e) 400 K;
(c),(f) 600 K. The unit of the vertical axis is μB/atom.

black line. Here δW = πδ0da = 6.38 nm. Experimental δW

at room temperature is 3.6–5.4 nm or 1–10 (see Sec. I), and
our estimation is close to the values.

In the figure we do not see the fixed Mz at the edges to focus
on only the center part. The edge Mz has a full value of the z

component, 2.189 (or −2.189), but Mz decreases (increases)
very rapidly within 1–2 unit cells and reaches a saturated value
m(T ). m(T ) is almost the same as M̃z in the bulk. This indicates
that the fixed magnetizations at the edges do not affect the DW
magnetization.

If DW is Bloch-wall type, my(x) should be the function (5)
and mx(x) = 0 because the profile changes along the x axis.
Since the direction of the magnetic anisotropy is parallel to
the c axis, the z axis of the spin space and the c axis agree.
However, because only exchange interactions (short-range
force) are taken into account as magnetic interactions, the
direction in the xy plane of the spin space is not determined
uniquely; i.e., the x axis and the a axis do not generally
coincide. Then, we regard the transverse component Mxy as
the y component My . Snapshots of Mxy obtained by the MC
method are plotted with symbols in Fig. 4(b).

The function my(x) [Eq. (5)] with the fitted parameters
δ0 = 2.308 and m(T ) = 1.734 is also drawn. We find that
the function fits well at relatively large values of Mxy by the
MC method. Deviation of the MC data from the function is
attributed to the definition of Mxy , i.e., Eq. (3), in which the
squared quantity (�0) is averaged. We conclude that the DW
moving along the a axis is a Bloch wall and the shape is well
fitted by the function obtained by the continuum model.

Next we study DWs moving along the c axis (type II).
Since the direction of Sz is the same as the c axis and the
boundary magnetic moments are parallel to the c axis, the DW
is a Neel-type wall. In this case, the same analysis is applied.

We illustrate snapshots of Mz along the c axis with symbols
in Fig. 4(c) obtained by the MC method at 300 K. These MC
data are well fitted by the function (4) with δ0 = 1.428 and
m(T ) = 1.732 (black line). Thus, the width is δW = πδ0dc =
5.47 nm. It is found that the DW width of type II is smaller
than that of type I, which is also close to the experimentally
estimated values.

Snapshots of Mxy obtained by the MC method are plotted
with symbols in Fig. 4(d). The function (5) is also given with
δ0 = 1.428 and m(T ) = 1.732. The MC data are well fitted to
the function. The way of spin rotation is different from type I,
but the DW shape is similar.

C. Temperature dependence of domain wall

Next we study the temperature dependence of the DW
properties. We investigate 200 K and temperatures higher than
200 K. Temperature dependence of the magnetization profile
along the a axis (type I) is depicted in Figs. 5 at (a) T = 200 K,
(b) T = 400 K, and (c) T = 600 K. We also give function (4)
(black line) with (δ0,m(T )) = (2.050,1.872),(2.572,1.575),
and (2.813,1.211) for Figs. 5(a)–5(c), respectively. Each
function fits well to each MC data. Thus, we have δW = 5.67,
7.11, and 7.78 nm at 200 K, 400 K, and 600 K, respectively.
The DW width becomes larger as the temperature increases,
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FIG. 6. Temperature dependence of δW in type I (blue circles)
and type II (green circles). The up-and-down arrow (Exp. 1) denotes
the range of the experimentally estimated δW at room temperature
from the values of K1 and A, and the down arrow (Exp. 2) denotes
that obtained by electron microscopes at room temperature.

which implies that K1 reduces faster than A with increasing
temperature. This is consistent with experimental observations
and also a theoretical estimation [29,38].

We also investigate the DW profile for type II. We depict
Mz along the c axis with symbols in Figs. 5 at (d) T = 200 K,
(e) T = 400 K, and (f) T = 600 K. We give function (4)
(black line) with (δ0,m(T )) = (1.313,1.880),(1.626,1.571),
and (1.772,1.190) for Figs. 5(d)–5(f), respectively. Each
function fits well to each MC data. DW widths are δW = 5.03,
6.23, and 6.79 nm at 200 K, 400 K, and 600 K, respectively.
We find the growth of the DW width with the temperature as
well as type I. Here the DW widths are smaller than those of
the type I.

The temperature dependence of the amplitude m(T ) agrees
with M̃z in the bulk. We checked that the quantitative properties
of the DW do not change depending on the system sizes, e.g.,
26da × 5db × 5dc, etc.

Figure 6 summarizes the temperature dependence of the
DW width in our simulation and the range of experimental
values at room temperature. The DW widths evaluated by our
approach are very close to the experimentally observed values.

IV. DISCUSSION AND SUMMARY

In this study we first gave a microscopic origin to the
DW nature for Nd2Fe14B, which has been studied from
macroscopic observations so far. The DW of Nd2Fe14B is
well described by the function derived from the continuum
model in types I and II. The DW widths for types I and II are
different. Orientation dependence of DWs has been pointed
out for FePt [25,26], and this property is likely a general
characteristic feature of permanent magnet materials where
the magnetic parameters themselves are anisotropic, not only
the magnetic anisotropy.

FIG. 7. Mz along the a axis (type I) for the model with the dipole-
dipole interaction by the MC method (symbols). The black solid line
denotes the function (4) in the text with δ = 2.57 and m(T ) = 1.57.

The fact that the width for type II is smaller may be
attributed to the lattice structure, in which Nd planes are
perpendicular to the c axis. In the Nd plane the exchange
couplings between neighboring Nd and Fe atoms are small
compared to those between neighboring Fe atoms. Namely,
exchange energies |2Jij sisj | between Fe atoms (r � 3.52 Å)
are 16.22–44.6 meV, while those between Nd and Fe atoms
are 1.60–7.10 meV. Thus, the correlation across the plane
would be smaller.

There have been experimental suggestions [39–41] about
the formation of type I walls in the (quasi-)static multidomain
state of large grains in Nd2Fe14B, but microscopic structures of
DWs are unclear due to technical difficulty. Atomistic-model
studies including dynamical aspects will play an important role
in elucidation of the condition (environment) for the DW type.

We ignored the dipole-dipole interaction for the model.
In the present system sizes, the dipole field applying to each
atom is much smaller [�O(10−3)] than that from the exchange
couplings, and, furthermore, the dipole field from the left of
the domain wall and that from the right cancel. We check
this estimation. We give in Fig. 7 the domain-wall profile Mz

along the a axis (type I) at 400 K by the MC method for the
model (1) with the dipole-dipole interaction. The system size
is 16da × 5db × 5dc. The black solid line denotes the function
(4) with δ0 = 2.572 and m(T ) = 1.575. We find that the MC
data are fitted well by the function. This suggests that the
dipole-dipole interaction in such system sizes is negligible for
the estimation of the domain-wall width. In larger systems,
however, the dipole-dipole interaction may play an important
role in the selection of the type of DW in the nucleation process
and also the motion of the DW. We will study it in the future.

The properties near the Curie point is interesting from the
view point of critical phenomena. For FePt it has been reported
that in the temperature region close to the Curie temperature, a
linear domain wall dominates the magnetization reversal [42].
In the present paper we concentrated on the domain walls in
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a well-ordered state. Study of the possibility of linear DW in
Nd2Fe14B is also interesting from this viewpoint.

The estimation of the DW free energy will be useful because
the temperature dependencies of the free energy and the DW
width give information about the temperature dependencies
of K(T ) and A(T ), as studied in FePt [43]. The structure
of Nd2Fe14B is more complicated than that of FePt, but the
temperature dependence of the DW free energy of Nd2Fe14B
will be a future work.

Coercive force depends on nucleation and domain-wall
depinning. In our previous study [8] for a simple model of
hard magnetic grains contacting via a soft magnet by using
the stochastic Landau-Lifshitz-Gilbert approaches [28,44],
nucleation filed and pinning filed depends on A and K1 and
also dynamical effects including thermal fluctuation at finite

temperatures. The application of this kind of study to the
present atomistic model for Nd2Fe14B may give us important
information about the relation between domain-wall properties
and nucleation and pinning fields in Nd2Fe14B, which will be
studied in the future.

ACKNOWLEDGMENTS

The present work was supported by Grants-in-Aid for Sci-
entific Research C (Grants No. 26400324 and No. 25400391)
from MEXT of Japan, and the Elements Strategy Initiative
Center for Magnetic Materials (ESICMM) under the outsourc-
ing project of MEXT. The authors thank the Supercomputer
Center, the Institute for Solid State Physics, the The University
of Tokyo, for the use of the facilities.

[1] M. Sagawa and S. Hirosawa, J. Mater. Res. 3, 45 (1988).
[2] J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).
[3] H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji,

A. Kato, T. Schrefl, and K. Hono, Accta Mater. 61, 6622 (2013).
[4] T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A.

Hattoric, and K. Hono, Scr. Mater. 81, 48 (2014).
[5] K.-D. Durst and H. Kronmüller, J. Magn. Magn. Mater. 68, 63

(1987).
[6] H. Kronmüllar and M. Fähnle, Micromagnetism and the Mi-

crostructure of Ferromagnetic Solids (Cambridge University
Press, Cambridge, UK, 2003).

[7] A. Sakuma, S. Tanigawa, and M. Tokunaga, J. Magn. Magn.
Mater. 84, 52 (1990).

[8] S. Mohakud, S. Andraus, M. Nishino, A. Sakuma, and S.
Miyashita, Phys. Rev. B 94, 054430 (2016).

[9] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M.
Sagawa, and H. Yamauchi, J. J. Appl. Phys. 24, L803 (1985).

[10] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M.
Sagawa, and H. Yamauchi, J. Appl. Phys. 59, 873 (1986).

[11] A. V. Andreev, A. V. Deryagin, N. V. Kudrevatykh, N. V.
Mushnikov, V. A. Reimer, and S. V. Terent’ev, Sov. Phys. JETP
63, 608 (1986).

[12] O. Yamada, Y. Ohtsu, F. Ono, M. Sagawa, and S. Hirosawa,
J. Magn. Magn. Mater. 70, 322 (1987).

[13] N. V. Mushnikov, P. B. Terent’ev, and E. V. Rosenfel’d,
Phys. Met. Metallogr. 103, 39 (2007).

[14] X. Kou et al., Phys. Rev. B 54, 6421 (1996).
[15] C. Pique et al., J. Magn. Magn. Mater. 154, 71 (1996).
[16] Z. Zhang et al., J. Alloys Compd. 274, 274 (1998).
[17] C. Chacon et al., J. Alloys Compd. 283, 320 (1999).
[18] K. Ono, N. Inami, K. Saito, Y. Takeichi, M. Yano, T. Shoji,

A. Manabe, A. Kato, Y. Kaneko, D. Kawana, T. Yokoo, and
S. Itoh, J. Appl. Phys. 115, 17A714 (2014).

[19] H. M. Mayer, M. Steiner, N. Stiller, H. Weinfurter, B. Darner,
P. A. Lindgrad, K. N. Clausen, S. Hock, and R. Verhoef, J. Magn.
Magn. Mater. 104, 1295 (1992).

[20] H. M. Mayer, M. Steiner, N. Stußer, H. Weinfurter, K. Kakurai,
B. Dorner, P. A. Lindgard, K. N. Clausen, S. Hock, and
W. Rodewald, J. Magn. Magn. Mater. 97, 210 (1991).

[21] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, S.
Hirosawa, and K. Hiraga, in Proceedings of the 4th International

Symposium on Magnetic Anisotropy and Coercivity in Rare
Earth Transition Metal Alloys, edited by K. J. Strnat (University
of Dayton, Dayton, OH, 1985), p. 587.

[22] Y. Zhu and M. R. McCartney, J. Appl. Phys. 84, 3267
(1998).

[23] S. J. Lloyd, J. C. Loudon, and P. A. Midgley, J. Microsc. 207,
118 (2002).

[24] M. Beleggia, M. A. Schofield, Y. Zhu, and G. Pozzi, J. Magn.
Magn. Mater. 310, 2696 (2007).

[25] D. Hinzke, U. Nowak, R. W. Chantrell, and O. N. Mryasov,
Appl. Phys. Lett. 90, 082507 (2007).

[26] D. Hinzke, N. Kazantseva, U. Nowak, O. N. Mryasov, P. Asselin,
and R. W. Chantrell, Phys. Rev. B 77, 094407 (2008).

[27] T. A. Ostler, R. F. L. Evans, R. W. Chantrell, U. Atxitia,
O. Chubykalo-Fesenko, I. Radu, R. Abrudan, F. Radu, A.
Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. Kimel,
Phys. Rev. B 84, 024407 (2011).

[28] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A.
Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202
(2014).

[29] Y. Toga, M. Matsumoto, S. Miyashita, H. Akai, S. Doi,
T. Miyake, and A. Sakuma, Phys. Rev. B 94, 174433
(2016).

[30] Y. Miura, H. Tsuchiura, and T. Yoshioka, J. Appl. Phys. 115,
17A765 (2014).

[31] M. Yamada, H. Kato, H. Yamamoto, and Y. Nakagawa,
Phys. Rev. B 38, 620 (1988).

[32] A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058
(1962).

[33] J. F. Herbst, J. J. Croat, F. E. Pinkerton, and W. B. Yelon,
Phys. Rev. B 29, 4176 (1984).

[34] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A.
Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).

[35] We used the local density approximation (LDA) of the density
functional theory with the parametrization given by Morruzi,
Janak, and Williams [36]. The 4f states rare-earth atoms
were treated as open cores; the self-interaction correction was
exploited for these states. We first performed the self-consistent
LDA calculation using 4 k points within the irreducible wedge
of Brillouin zone. Then the number of k points was increased
up to 32 to calculate Jij ’s for this self-consistent potential.

094429-6

https://doi.org/10.1557/JMR.1988.0045
https://doi.org/10.1557/JMR.1988.0045
https://doi.org/10.1557/JMR.1988.0045
https://doi.org/10.1557/JMR.1988.0045
https://doi.org/10.1103/RevModPhys.63.819
https://doi.org/10.1103/RevModPhys.63.819
https://doi.org/10.1103/RevModPhys.63.819
https://doi.org/10.1103/RevModPhys.63.819
https://doi.org/10.1016/j.actamat.2013.07.049
https://doi.org/10.1016/j.actamat.2013.07.049
https://doi.org/10.1016/j.actamat.2013.07.049
https://doi.org/10.1016/j.actamat.2013.07.049
https://doi.org/10.1016/j.scriptamat.2014.03.002
https://doi.org/10.1016/j.scriptamat.2014.03.002
https://doi.org/10.1016/j.scriptamat.2014.03.002
https://doi.org/10.1016/j.scriptamat.2014.03.002
https://doi.org/10.1016/0304-8853(87)90097-7
https://doi.org/10.1016/0304-8853(87)90097-7
https://doi.org/10.1016/0304-8853(87)90097-7
https://doi.org/10.1016/0304-8853(87)90097-7
https://doi.org/10.1016/0304-8853(90)90162-J
https://doi.org/10.1016/0304-8853(90)90162-J
https://doi.org/10.1016/0304-8853(90)90162-J
https://doi.org/10.1016/0304-8853(90)90162-J
https://doi.org/10.1103/PhysRevB.94.054430
https://doi.org/10.1103/PhysRevB.94.054430
https://doi.org/10.1103/PhysRevB.94.054430
https://doi.org/10.1103/PhysRevB.94.054430
https://doi.org/10.1143/JJAP.24.L803
https://doi.org/10.1143/JJAP.24.L803
https://doi.org/10.1143/JJAP.24.L803
https://doi.org/10.1143/JJAP.24.L803
https://doi.org/10.1063/1.336611
https://doi.org/10.1063/1.336611
https://doi.org/10.1063/1.336611
https://doi.org/10.1063/1.336611
https://doi.org/10.1016/0304-8853(87)90456-2
https://doi.org/10.1016/0304-8853(87)90456-2
https://doi.org/10.1016/0304-8853(87)90456-2
https://doi.org/10.1016/0304-8853(87)90456-2
https://doi.org/10.1134/S0031918X0701005X
https://doi.org/10.1134/S0031918X0701005X
https://doi.org/10.1134/S0031918X0701005X
https://doi.org/10.1134/S0031918X0701005X
https://doi.org/10.1103/PhysRevB.54.6421
https://doi.org/10.1103/PhysRevB.54.6421
https://doi.org/10.1103/PhysRevB.54.6421
https://doi.org/10.1103/PhysRevB.54.6421
https://doi.org/10.1016/0304-8853(95)00571-4
https://doi.org/10.1016/0304-8853(95)00571-4
https://doi.org/10.1016/0304-8853(95)00571-4
https://doi.org/10.1016/0304-8853(95)00571-4
https://doi.org/10.1016/S0925-8388(98)00538-6
https://doi.org/10.1016/S0925-8388(98)00538-6
https://doi.org/10.1016/S0925-8388(98)00538-6
https://doi.org/10.1016/S0925-8388(98)00538-6
https://doi.org/10.1016/S0925-8388(98)00893-7
https://doi.org/10.1016/S0925-8388(98)00893-7
https://doi.org/10.1016/S0925-8388(98)00893-7
https://doi.org/10.1016/S0925-8388(98)00893-7
https://doi.org/10.1063/1.4863380
https://doi.org/10.1063/1.4863380
https://doi.org/10.1063/1.4863380
https://doi.org/10.1063/1.4863380
https://doi.org/10.1016/0304-8853(92)90590-K
https://doi.org/10.1016/0304-8853(92)90590-K
https://doi.org/10.1016/0304-8853(92)90590-K
https://doi.org/10.1016/0304-8853(92)90590-K
https://doi.org/10.1016/0304-8853(91)90183-B
https://doi.org/10.1016/0304-8853(91)90183-B
https://doi.org/10.1016/0304-8853(91)90183-B
https://doi.org/10.1016/0304-8853(91)90183-B
https://doi.org/10.1063/1.368515
https://doi.org/10.1063/1.368515
https://doi.org/10.1063/1.368515
https://doi.org/10.1063/1.368515
https://doi.org/10.1046/j.1365-2818.2002.01048.x
https://doi.org/10.1046/j.1365-2818.2002.01048.x
https://doi.org/10.1046/j.1365-2818.2002.01048.x
https://doi.org/10.1046/j.1365-2818.2002.01048.x
https://doi.org/10.1016/j.jmmm.2006.10.995
https://doi.org/10.1016/j.jmmm.2006.10.995
https://doi.org/10.1016/j.jmmm.2006.10.995
https://doi.org/10.1016/j.jmmm.2006.10.995
https://doi.org/10.1063/1.2696353
https://doi.org/10.1063/1.2696353
https://doi.org/10.1063/1.2696353
https://doi.org/10.1063/1.2696353
https://doi.org/10.1103/PhysRevB.77.094407
https://doi.org/10.1103/PhysRevB.77.094407
https://doi.org/10.1103/PhysRevB.77.094407
https://doi.org/10.1103/PhysRevB.77.094407
https://doi.org/10.1103/PhysRevB.84.024407
https://doi.org/10.1103/PhysRevB.84.024407
https://doi.org/10.1103/PhysRevB.84.024407
https://doi.org/10.1103/PhysRevB.84.024407
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1103/PhysRevB.94.174433
https://doi.org/10.1103/PhysRevB.94.174433
https://doi.org/10.1103/PhysRevB.94.174433
https://doi.org/10.1103/PhysRevB.94.174433
https://doi.org/10.1063/1.4869061
https://doi.org/10.1063/1.4869061
https://doi.org/10.1063/1.4869061
https://doi.org/10.1063/1.4869061
https://doi.org/10.1103/PhysRevB.38.620
https://doi.org/10.1103/PhysRevB.38.620
https://doi.org/10.1103/PhysRevB.38.620
https://doi.org/10.1103/PhysRevB.38.620
https://doi.org/10.1103/PhysRev.127.2058
https://doi.org/10.1103/PhysRev.127.2058
https://doi.org/10.1103/PhysRev.127.2058
https://doi.org/10.1103/PhysRev.127.2058
https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9


ATOMISTIC-MODEL STUDY OF TEMPERATURE- . . . PHYSICAL REVIEW B 95, 094429 (2017)

[36] V. L. Morruzi, J. F. Janak, and A. R. Williams, Calculated
Electronic Properties of Metals (Pergamon, New York, 1978).

[37] The critical temperature (Tc ∼ 800 K) (Fig. 3) is slightly larger
than the experimental values [10,11] Tc ∼ 600–700 K, and the
difference may be due to a small amount of overestimation
of magnetic interactions. If we consider this difference, the
correction of the width evaluated in the present study is at most
12% assuming A ∝ Tc.

[38] R. Sasaki, D. Miura, and A. Sakuma, Appl. Phys. Express 8,
043004 (2015).

[39] H. S. Park, Y.-G. Park, Y. Gao, and D. Shindo, J. Appl. Phys.
97, 033908 (2005).

[40] S. Yamamoto, M. Yonemura, T. Wakita, K. Fukumoto, T.
Nakamura, T. Kinoshita, Y. Watanabe, F. Z. Guo, M. Sato, T.
Terai and T. Kakeshita, Mater. Trans. 49, 2354 (2008).

[41] Y. Murakami, T. Tanigaki, T. T. Sasaki, Y. Takeno, H. S. Park,
T. Matsuda, T. Ohkubo, K. Hono, and D. Shindo, Acta Mater.
71, 370 (2014).

[42] J. Barker, R. F. L. Evans, R. W. Chantrell, D. Hinzke, and
U. Nowak, Appl. Phys. Lett. 97, 192504 (2010).

[43] U. Atxitia, D. Hinzke, O. Chubykalo-Fesenko, U. Nowak, H.
Kachkachi, O. N. Mryasov, R. F. Evans, and R. W. Chantrell,
Phys. Rev. B 82, 134440 (2010).

[44] M. Nishino and S. Miyashita, Phys. Rev. B 91, 134411 (2015).

094429-7

https://doi.org/10.7567/APEX.8.043004
https://doi.org/10.7567/APEX.8.043004
https://doi.org/10.7567/APEX.8.043004
https://doi.org/10.7567/APEX.8.043004
https://doi.org/10.1063/1.1836003
https://doi.org/10.1063/1.1836003
https://doi.org/10.1063/1.1836003
https://doi.org/10.1063/1.1836003
https://doi.org/10.2320/matertrans.MRA2008141
https://doi.org/10.2320/matertrans.MRA2008141
https://doi.org/10.2320/matertrans.MRA2008141
https://doi.org/10.2320/matertrans.MRA2008141
https://doi.org/10.1016/j.actamat.2014.03.013
https://doi.org/10.1016/j.actamat.2014.03.013
https://doi.org/10.1016/j.actamat.2014.03.013
https://doi.org/10.1016/j.actamat.2014.03.013
https://doi.org/10.1063/1.3515928
https://doi.org/10.1063/1.3515928
https://doi.org/10.1063/1.3515928
https://doi.org/10.1063/1.3515928
https://doi.org/10.1103/PhysRevB.82.134440
https://doi.org/10.1103/PhysRevB.82.134440
https://doi.org/10.1103/PhysRevB.82.134440
https://doi.org/10.1103/PhysRevB.82.134440
https://doi.org/10.1103/PhysRevB.91.134411
https://doi.org/10.1103/PhysRevB.91.134411
https://doi.org/10.1103/PhysRevB.91.134411
https://doi.org/10.1103/PhysRevB.91.134411



