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Magnetic-proximity-induced magnetoresistance on topological insulators
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We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on
the surface of three-dimensional topological insulators (TIs) that are capped by a ferromagnetic insulator (FI).
We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex
correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found
to generate an electric conductivity that depends on the magnetization orientation, but its form is very different
from both the anisotropic and the spin Hall MR. The in-plane MR vanishes identically for nonmagnetic disorder,
while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and
planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help
us understand recent transport measurements on TI|FI systems.
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I. INTRODUCTION

The control of electric transport by utilizing the spin angular
momentum has been a central theme in spintronics after the
discovery of the giant and tunnel magnetoresistances, leading
to new functionalities for sensing, logic, and data storage
applications [1]. On the other hand, the anisotropic magne-
toresistance (AMR) in ferromagnets, i.e., the dependence of
electric transport on the relative angle between the current and
magnetization directions, has already been discovered in 1857
by Lord Kelvin [2]. Just like the anomalous Hall effect (AHE),
it is rooted in the spin-orbit coupling (SOC). In the absence
of a general theory, several studies addressed the AMR in a
simple model system, viz., the two-dimensional (2D) electron
gas with Rashba and Dresselhaus SOCs. The applied methods
were the Boltzmann equation [3,4] and the linear-response
Kubo formalism [5,6].

Recently, a so-called spin Hall magnetoresistance (SMR)
has been discovered in bilayers made from heavy normal
metals such as platinum and ferromagnetic insulators (FIs)
such as Y3Fe5O12 (YIG) [7,8]. The SMR can be explained
by the simultaneous action of the spin Hall effect (SHE) [9]
and its inverse that is modulated by the spin transfer torque or
the relative angle of the current-induced spin polarization in
the metal and the magnetization direction of the ferromagnet.
Hence, the SMR is a nonlocal and nonequilibrium magnetic
proximity effect (MPE). Alternative mechanisms for the
SMR have been proposed, i.e., the magnetized normal metal,
typically Pt, by the ferromagnet contact [10] or the Rashba
SOC at the interface [11,12], but theoretical and experimental
support of those models is still scarce. SMR-like phenomena
have been observed for all metallic bilayers as well [13,14],
but the interpretation of the results is easier when the magnet
is an electric insulator since parallel current paths through the
magnet can be excluded. The reported SMR ratios are quite
small (of the order of 10−4), being proportional to the squared
spin Hall angle which is typically less than 10% [9].
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Three-dimensional topological insulators (3D TIs) are
ideally insulating in the bulk while supporting topologically
protected metallic surface states as a consequence of time-
reversal symmetry and band inversion induced by a strong
SOC [15–17]. In the surface of TIs as well as the Rashba-
splitting 2D electron gas (2DEG), the helical band structure
is realized, in which the spin and momentum are locked
and hence the surface currents are spin polarized [18–20].
The interface between a TI (or a Rashba 2DEG [21]) and a
ferromagnet can be a spin source in which the SOC enhances
the magnitude of both charge and spin currents [22–25].
Electric transport properties of bilayers of 3D TIs with
(metallic) ferromagnets have indeed been interpreted in terms
of much larger spin Hall angles [26,27]. Recently, there
have been some experiments with YIG for the spin-charge
conversion [28,29]. TIs are therefore a promising platform to
enhance the SMR.

The SMR interpretation in terms of SHE and inverse SHE
is based on a semiclassical spin diffusion model and does
not hold for 2D materials. Since the transport is confined
now to an atomic monolayer, a MR generated by an induced
proximity exchange potential (or equilibrium MPE) appears
plausible [30–33]. In 3D systems this effective interface
magnetic field is proportional to the imaginary part of the
mixing conductance [34] that for an interface between a FI
and a nonmagnetic metal is relatively small and is usually
disregarded [35]. For graphene on YIG, a proximity potential
of 20 μeV (0.2 T) has been reported [32], which is smaller than
predicted [36]. A much larger proximity potential of 14 meV
(14 T) has been reported for graphene on EuS [33].

Despite the progress in understanding the magnetoresis-
tance (MR) of a magnetized 2DEG with Rashba SOC and the
large attention for the AHE in Zeeman-split TI surface states,
a thorough discussion of the AMR/SMR of the latter appears
to be lacking. We therefore report here a theory of the MR
of a TI|FI bilayer, modeled as a 2D Dirac system with finite
exchange splitting, where the latter is a vector parallel to the
FI magnetization that can be controlled by applied magnetic
fields [31,33]. We calculate the electric dc conductivity in a
magnetized 2D Dirac electron system by the Kubo formalism
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and the linearized Boltzmann equation with random potential
disorder. The equilibrium magnetic proximity effect, i.e.,
the exchange interaction in the surface state induced by an
attached magnet, is found to generate a MR that depends on
the magnetization orientation. However, its form differs from
both AMR and SMR. For in-plane magnetizations the MR
vanishes identically in the TI|FI bilayer, while an out-of-plane
magnetization causes a large MR ratio. Moreover, we do find
an in-plane MR and a planar Hall effect in the presence of
magnetic disorder when aligned with the FI magnetization.
Our calculated results agree well with the MR observations.
We also discuss the current-induced spin polarization and the
role of magnetic impurities.

In Sec. II, we present a model for the surface of TIs with
a finite exchange potential controlled by an FI contact. In
Sec. III, we calculate the electric dc conductivity in magnetized
2D Dirac electrons with randomly distributed nonmagnetic
disorder by the Kubo formalism. In Sec. IV, we address the
same problem by the linearized Boltzmann equation and get
identical results. We also discuss the current-induced spin
polarization. In Sec. V, we address the effect of magnetic
impurities on electric transport and briefly discuss the related
MR experiments on TI. We summarize the results and
conclusions in Sec. VI.

II. TWO-DIMENSIONAL MASSLESS DIRAC MODEL

We consider 2D massless Dirac electrons on the surface of
the TI, exchange-coupled to a homogeneous magnetization of
an attached FI, as shown in Fig. 1. A simple model for the
electronic structure of a TI surface state is the massless Dirac
Hamiltonian [15]. When the TI electrons are in contact with
an FI [30], they experience an exchange interaction that can be
modeled by a constant spin splitting � along the magnetization
direction with unit vector M [37]. Our model Hamiltonian is
hence

Ĥ = −ih̄vF σ̂ · (∇ × ẑ) + �σ̂ · M, (1)

where vF is the Fermi velocity of the Dirac fermions propa-
gating with momentum h̄k measured relative to the � point of
the surface Brillouin zone. For Bi2Te3 the Fermi velocity is
vF = 4.3 × 105 m/s [16]. Here, σ̂ is the Pauli matrix operator
and � the proximity-induced exchange energy. Equation (1)
leads to the energy dispersion

Eks = s

√
(h̄vF kx + �My)2 + (h̄vF ky − �Mx)2 + (�Mz)2,

(2)

where s = ± corresponds to the upper and lower bands.
For an in-plane exchange field we can rewrite Eq. (1) as
Ĥ = vF (−ih̄∇ − eA) · (ẑ × σ̂ ) + �Mzσ̂z. The vector poten-
tial A = −�/(evF )M × ẑ shifts the position of the Dirac point
in the (kx,ky) plane and the electron charge is −e. A uniform
and static A can be removed by the gauge transformation
(kx,ky) → (qx + eAx/h̄,qy + eAy/h̄) and hence does not af-
fect the physical observables. The energy dispersion is then

Eqs = s

√
(h̄vF )2(q2

x + q2
y ) + (�Mz)2 and eigenfunctions can

z

y

x

M

φΜ

θΜ

Ferromagnetic insulator

Jx

2ΔMz

EF

Eks

kx

ky

(a)

(b)

FIG. 1. (a) Bilayer of a three-dimensional topological insulator
and a ferromagnetic insulator. Electric currents flow on the surface
of the TI in proximity to the magnet (shown as the red area). (b)
Schematic energy dispersion of the gapped 2D Dirac Hamiltonian.
The Fermi level is taken to be above the gap.

be written as ψqs = eiq·r|uqs〉, with

|uq+〉 =
(

cos(θ/2)
−ieiφ sin(θ/2)

)
, |uq−〉 =

(
sin(θ/2)

ieiφ cos(θ/2)

)
, (3)

where cos θ = �Mz/|Eqs | and tan φ = qy/qx determine the
polar angle and the azimuth of the spinors on the Bloch sphere.

The electron density of massless Dirac electrons relative to
the neutrality point reads

ne =
∫ E

(0)
F

0
dED0(E) =

(
E

(0)
F

)2

4π (h̄vF )2
, (4)

where D0(E) = ∑
qs δ(Eqs − E) = E/[2π (h̄vF )2] is the den-

sity of states per unit area. E
(0)
F = h̄vF

√
4πne is the Fermi

energy for the gapless dispersion or in-plane magnetization.
When the electron density ne is kept constant under a rotating
magnetization, the Fermi energy of the gapped state reads
EF (Mz) = E

(0)
F

√
1 + ζ 2M2

z , with ζ = �/E
(0)
F .
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III. THE KUBO FORMULA

The MR is accessed in linear current response to an
applied voltage (Ohm’s law). Here we calculate electric dc
conductivity in a magnetized 2D Dirac electron system with
nonmagnetic disorder by the Kubo formalism. We assume
that transport is limited by a randomly distributed disorder
potential,

V̂ (r) = V0

N∑
i=1

δ(r − Ri), (5)

that is weak, and short-range Gaussian correlated
〈V̂ (r1)V̂ (r2)〉imp = nV 2

0 δ(r1 − r2), with impurity concentra-
tion n and (normal) scattering potential V0. In writing the
impurity potentials as 2D δ functions, we implicitly integrated
over the envelope function of the TI surface state thereby
including bulk impurities close to the interface. We focus on
the dc conductivity of Zeeman-split 2D Dirac electrons at zero
temperature expressed in terms of the retarded and advanced
Green functions. This approach has previously been applied to,
e.g., the AHE [38–40] and the AMR [5] for spin-polarized 2D
electrons with Rashba SOC. In the diffusive transport regime,
the Kubo formula for the dc conductivity can be written as

σxν = h̄

2πL2
Tr〈ĵxĜ

RĵνĜ
A〉imp, (6)

where L2 is the system area and ĜR(A)(ε) =
(ε ± i0 − Ĥ − V̂ )

−1
is the retarded (advanced) Green

function in the Pauli spin space. The current operator reads
ĵ = −e(−i/h̄)[r̂,Ĥ ] = −evF ẑ × σ̂ . Here 〈· · · 〉imp indicates
an ensemble average over random realizations of the impurity
potential that we treat in the Born approximation for the
self-energy and the ladder approximation for the current
vertex [5]. The conductivity then reads

σxν ≈ h̄

2πL2
Tr[ĵx〈ĜR〉ĵν〈ĜA〉] + Vertex correction

≡ h̄

2πL2
Tr[ĵx〈ĜR〉Ĵν〈ĜA〉], (7)

where 〈ĜR(A)〉 is the averaged Green function and Ĵν the
corrected current vertex that includes the diffuse scattering
from impurities. The latter vanishes for short-range impurity
scattering in simple electron gases, but can be important in
the presence of impurity scattering, leading for instance to
the dephasing of the intrinsic spin Hall effect in the Rashba
2DEG [41]

A. Self-energy

Here we calculate the averaged Green function by solving
the Dyson equation in the Born approximation as shown in
Fig. 2. Hence, the averaged Green function can be written as

〈ĜR(A)〉 = 〈(z − Ĥ − V̂ )−1〉imp

= Ĝ
R(A)
0 + Ĝ

R(A)
0 �̂R(A)〈ĜR(A)〉, (8)

with z = ε ± i0. The solution to this equation is

〈ĜR(A)〉 = ((
Ĝ

R(A)
0

)−1 − �̂R(A))−1
, (9)

(a)

(b)

= +

=

FIG. 2. (a) Self-energy diagram in the Born approximation.
(b) The current vertex correction is the geometric sum of ladder
diagrams.

with the self-energy being

�̂R(A) = 〈V̂ 〉imp + 〈
V̂ Ĝ

R(A)
0 V̂

〉
imp, (10)

and the constant average 〈V̂ 〉imp is absorbed in the Fermi
energy EF in the following. In terms of the unperturbed Green
function,

Ĝ
R(A)
0 =

∑
qs

(ε − Eqs ± i0)−1|uqs〉〈uqs |, (11)

〈
V̂ Ĝ

R(A)
0 V̂

〉
imp = nV 2

0

∫
d2q

(2π )2
Ĝ

R(A)
0 = ∓i

h̄

4τe
(1 + ξMzσ̂z),

(12)

where 1/τe = nV 2
0

∫ ∞
0 qdqδ(EF − Eq+)/h̄ = 2πnV 2

0 D(EF )
/h̄ = 2πnV 2

0 EF /[h(h̄vF )2] denotes the elastic scattering rate
and ξ = �/EF = ζ/

√
1 + ζ 2M2

z . Equation (12) shows how
the self energy is modulated by the magnetization direction.
Hence, the averaged Green function is

〈ĜR(A)〉 = ε ± i�0 + h̄vF q · (ẑ × σ̂ ) + (�Mz ∓ i�1)σ̂z

(ε − E+
q ± iγ +)(ε − E−

q ± iγ −)
,

(13)

where �0=1/(4τe), �1=�0 cos θ , and γ ±=�0(1± cos2 θ ).

B. Current vertex correction

The vertex function in the Born approximation is repre-
sented by the sum of all ladder diagrams in Fig. 2. The self-
consistent Born approximation of the self-energy is consistent
with the ladder approximation to the vertex correction, while
the first-order Born approximation holds in the limit of weak
disorder. This correspondence has been confirmed for the
AHE [42,43]. Hence, we treat the AMR within the ladder
approximation and the first-order Born approximation, which
leads to an analytical formula for the conductivity that agrees
with the solution of the Boltzmann equation (see below).

The ladder-type vertex-corrected current operator Ĵν in
Fig. 2 obeys the integral (Bethe-Salpeter) equation [42–45]

Ĵν = ĵν + nV 2
0

∫
d2q

(2π )2
〈ĜR〉Ĵν〈ĜA〉. (14)
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By iteration and Eq. (13), the first-order single-impurity vertex
correction reads

Ĵ (1)
ν = nV 2

0

∫
d2q

(2π )2
〈ĜR〉ĵν〈ĜA〉 = −ev(∓Aσ̂ν + Bσ̂ν̄)

(15)

(− for ν = x, ν̄ = y and + for ν = y, ν̄ = x), with

A = 1 − ξ 2M2
z

2
(
1 + ξ 2M2

z

) , B = h̄

EF τe

ξMz

2
(
1 + ξ 2M2

z

) . (16)

Expanding Ĵν = −evF

∑
i cνi σ̂i in Eq. (14) as

Ĵν = evF

(
±σ̂ν̄ − nV 2

0

∑
i

∫
d2q

(2π )2
〈ĜR〉cνi σ̂i〈ĜA〉

)
, (17)

we find in the weak scattering limit(
cνx

cνy

)
= 1

(1 − A)2

(
B 1 − A

−(1 − A) B

)(
δxν

δyν

)
(18)

and cν0 = cνz = 0, where δxν and δyν are the Kronecker δ. For
the limit of h̄/(EF τe) 
 1, the renormalized current vertex
reads (

Ĵx

Ĵy

)
= −evF

(−a b

b a

)(
σ̂y

σ̂x

)
, (19)

with

a = cyx = −cxy = 2
1 + ξ 2M2

z

1 + 3ξ 2M2
z

,

b = cxx = cyy = 2
h̄

EF τe

ξMz

(
1 + ξ 2M2

z

)
(
1 + 3ξ 2M2

z

)2 . (20)

In the gapless limit of ξMz → 0 this reduces to a = 2 and
b = 0.

C. Longitudinal and transverse conductivities

Inserting Eqs. (13) and (19) into Eq. (7), we get

σxx = aσ nv
xx + bσ nv

xy , σxy = −bσ nv
xx + aσ nv

xy . (21)

Here σ nv
xν = h̄ Tr [ĵx〈ĜR〉ĵν〈ĜA〉]/(2πL2) are the longitudinal

and transverse conductivities without vertex correction (“bare
bubbles”):

σ nv
xx = e2

h

EF τe

h̄

1 − ξ 2M2
z

1 + ξ 2M2
z

, σ nv
xy = − e2

2h

2ξMz

1 + ξ 2M2
z

.

(22)

When the gap vanishes with ξMz → 0, the longitudinal and
transverse conductivities reduce to

σ nv
xx = e2

h

EF τe

h̄
(23)

and σ nv
xy = 0. Below we show that σ nv

xx is half of the full
(vertex-corrected) result [Eq. (26)]. This discrepancy reflects
the inherent anisotropy of the scattering of Dirac fermions that
affects the transport and relaxation times even for short-range
correlated scattering. Substituting Eqs. (20) and (22) into

σxx/σ
nv

xx

-σxy/σ
nv

xy

0.0 0.2 0.4 0.6 0.8 1.0
1.0

2.0

3.0

4.0

ξMz

σ/
σn
v

-σxy/σQ

-σnvxy/σQ

σnvxx/σD

σxx/σD

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5
(b)

ξMz

σ xx
(x

y)
/σ

D
(Q
)

FIG. 3. (a) Ratio of the dc conductivities without (σ nv
xα) and with

vertex correction (σxα) as a function of ξMz. (b) The longitudinal
and transverse conductivities without and with vertex correction
as a function of ξMz. σD = (2e2/h)(EF τ e/h̄) is the longitudinal
conductivity of two-dimensional massless Dirac electrons without
magnetic or exchange fields, while σQ = e2/(2h).

Eq. (21), we get

σxx = 2
e2

h

EF τe

h̄

1 − ξ 2M2
z

1 + 3ξ 2M2
z

, (24)

σxy = − e2

2h
ξMz

8
(
1 + ξ 2M2

z

)
(
1 + 3ξ 2M2

z

)2 . (25)

For ξMz → 0,

σxx = 2
e2

h

EF τe

h̄
≡ e2

h

EF τ

2h̄
(26)

and σxy = 0, where τ = 4τe is the transport relaxation
time of massless Dirac electrons. σxx(ξMz = 0) is the lon-
gitudinal conductivity of nonmagnetic 2D massless Dirac
electrons [46,47], which implies that the in-plane exchange
potential has no effect on electron transport as expected
from the gauge-field argument above. We here disregard the
third-order “skew-scattering” term. Otherwise, our σxy(Mz)
agrees with previous results [42,44,48,49]. σxx(Mz) has been
derived in Ref. [49]. Figure 3(a) shows the ratio of the dc
conductivities without and with the ladder-vertex correction
as a function of ξMz, while Fig. 3(b) is a plot of the ξMz

dependence of the conductivities σxν and σ nv
xν . When the

electron density [Eq. (4)] is kept constant for all M, the
longitudinal conductivity becomes

σxx = 2
e2

h

E
(0)
F τ (0)

e

h̄

1

1 + 4ζ 2M2
z

, (27)

where 1/(E(0)
F τ (0)

e ) = 2πnV 2
0 /[h(h̄vF )2] = 1/(EF τe). Hence,

to leading order in (ζMz)2 the MRs for constant density or
Fermi energy are the same.

D. Parameter dependence

Figures 4(a) and 4(b) show the longitudinal conductivity
σxx as a function of angles α, β, and γ of the FI magnetization
in the x-y, y-z, and x-z planes, respectively, while Fig. 4(c)
shows the transverse conductivity σxy for different Fermi
energies EF . The calculated results for σxx = σxx(M2

z ) are very
similar to those computed for magnetically doped TIs [50]. The
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Q
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FIG. 4. Calculated conductivities in the TI|FI bilayer as a function of magnetization angles α, β, and γ [shown in panel (d)] and for different
ratios ξ = J/EF . Panels (a) and (b) show the longitudinal conductivity and panel (c) shows the transverse (Hall) conductivity. Each subplot in
panel (d) shows a different configuration and associated band structure of the surface state. σD and σQ are defined in Fig. 3. The dependence
on the angles β and γ is here the same. The cos β(γ ) function is plotted in panel (c) for reference.

inset in each magnetization rotation in Fig. 4(d) illustrate the
band structure: When the magnetization is in-plane, the bands
are rigidly shifted in the kx,ky plane, which does not affect the
MR. In contrast, an out-of-plane magnetization opens a gap
that suppresses the longitudinal conductivity.

IV. BOLTZMANN TRANSPORT THEORY

A. Transport time

Here we employ the Boltzmann equation to calculate
the electric dc conductivity of a magnetized 2D massless
Dirac electron system with (initially) nonmagnetic disorder
and arrive at results that are identical with those from the
Kubo formalism in the previous section and Ref. [49]. We
show that the in-scattering term of the collision integral in
the Boltzmann theory is significant and equivalent with the
current-vertex correction in the linear response theory (see
Sec. III). Sufficiently far from the Dirac point the impurity
scattering can be treated by the Born approximation [51]. The
nonequilibrium distribution function f (q) in the presence of a
uniform external electric field E is governed by the linearized
Boltzmann equation

−e

(
− ∂f (0)

∂Eqs

)
vqs · E =

(
∂f

∂t

)
scat

, (28)

where vqs = ∇qEqs/h̄ is the group velocity and f (0)(q) the
equilibrium Fermi-Dirac distribution function. The collision
term on the right-hand side is affected by in- and out-scattering
of the state with wave vector q:(

∂f

∂t

)
scat

= 1

L2

∑
q′

Wq,q′[f (q′) − f (q)], (29)

where Wq,q′ is the transition probability between q and
q′ states. Elastic impurity scattering implies |q| = |q′|.
By Fermi’s golden rule, Wq,q′ = (2π/h̄)|Tq,q′ |2δ(Eqs − Eq ′s),
with the T -matrix element Tq,q′ for scattering from q to q′.
The transition rate can be expressed in terms of the disorder

potential [Eq. (5)]. Combining Eqs. (28) and (29), the transport
time of Dirac electrons in the Born approximation reads

1

τ (q)
=

∫
d2q′

(2π )2
Wq,q′[1 − cos(q′,q)], (30)

where the in-scattering term contributes to the factor
cos (q′,q) = q′ · q/q2 = cos(φ − φ′) that is associated with
the ladder-vertex correction in the Kubo theory [43,52].

To lowest order in the scattering potential (thereby disre-
garding skew scattering as above) the transition probability in
the upper band reads

|Tq,q′ |2 ≈ 〈|〈uq ′+|V̂ |uq+〉|2〉imp

= nV 2
0 |〈uq ′+|uq+〉|2

= nV 2
0

(
1 − sin2 θ sin2 φ − φ′

2

)
, (31)

leading to the electron transport relaxation time

1

τ
=

∫
d2q′

(2π )2

2π

h̄
|Tq,q′ |2[1 − cos(φ − φ′)]δ(EF − Eq ′+)

= 1

4τe

(
1 + 3ξ 2M2

z

)
. (32)

This result reduces to the transport relaxation time of massless
Dirac electrons τ = 4τe for ξMz → 0. From Eq. (12), the
transport time without the vertex correction is

1

τ nv
= −2 Im �̂R

=
∫

d2q′

(2π )2

2π

h̄
|Tq,q′ |2δ(EF − Eq ′+)

= 1

4τe
2
(
1 + ξ 2M2

z

)
, (33)

while the transport time with in-scattering is expressed as
Eq. (32). On the other hand, Eq. (14) gives a corrected velocity
(or current) of the form vx = sav sin θ cos φ, with a = τ/τ nv,
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which directly relates the ladder-vertex correction in the Kubo
theory with the Boltzmann transport time [43]. Therefore, we
can confirm that the ladder-vertex correction and in-scattering
terms both renormalize the velocity in the same way.

B. Longitudinal and transverse conductivities

Here we calculate the charge current Jc driven by an in-
plane electric field as a function of the exchange field direction
M as shown in Fig. 1. The corresponding nonequilibrium
distribution function is f (q) = f (0)(q) + g(q) = f (0)(q) +
eτ (∂f (0)/∂Eqs)vqs · E, where at zero temperature f (0)(q) ≈
θ (EF − Eqs). To leading order in E = Ex x̂

σix = Jc · êi

Ex

= −e

Ex

∑
s

∫
d2q

(2π )2
g(q)vqs · êi , (34)

where êi = x̂ and ŷ and the electron velocity vqs =
〈ψqs |v̂|ψqs〉 is the expectation value of the velocity operator
v̂ = (−i/h̄)[r̂,Ĥ ] = vF ẑ × σ̂ or the group velocity vqs =
vx x̂ + vy ŷ, with vx = svF sin θ cos φ and vy = svF sin θ sin φ.
When the Fermi energy is above the gap, i.e., EF > �, the
longitudinal and transverse conductivities are

σxx = 2
e2

h

EF τe

h̄

1 − ξ 2M2
z

1 + 3ξ 2M2
z

, (35)

σxy = 0. (36)

In contrast to the linear response result, Eq. (25), σxy vanishes,
because intrinsic (Berry phase) and side-jump scattering
contributions are not included in Eq. (28). Sinitsyn et al. [43]
demonstrated that and how the Boltzmann equation can be
repaired to recover the diagrammatic results for the AHE. We
can disregard this complication for the MR, the focus of the
present study, since the intrinsic mechanism and the side-jump
scattering (to leading order) do not contribute to longitudinal
transport.

C. Current-induced spin polarization

Here we discuss the conductivities derived above in terms
of current-induced torque to the magnetization [49] in the
metallic regime (EF > �) [45,53]. The electric-field-driven
nonequilibrium spin density or Edelstein effect [54,55] can be
expressed by the Kubo formula as well as by the Boltzmann
theory. For 2D massless Dirac electrons, the charge current
is proportional to the spin operator, as can be seen from
ĵ = −ev̂ = −evF ẑ × σ̂ . Therefore, a nonzero steady-state
charge current implies a finite spin density that can easily
be found by multiplying the charge current by −h̄/(2evF ),
yielding

〈s〉 =
∑

s

∫
d2q

(2π )2
g(q)s(q,s), (37)

where s(q,s) = (h̄/2)〈ψqs |σ̂⊥|ψqs〉 = −h̄/(2evF )ẑ × v(q,s),
with σ̂⊥ = (σ̂x,σ̂y), i.e., for E = Ex x̂,

〈sx〉 = 0, 〈sy〉 = −h̄

2

2eEx

hvF

EF τe

h̄

1 − ξ 2M2
z

1 + 3ξ 2M2
z

. (38)

The current-induced spin polarization is therefore not affected
by an in-plane magnetization despite the exchange interaction
in Eq. (1). Finite functional derivatives of the total energy as
a function of M are equivalent to effective fields acting on the
magnetization. From the exchange energy Eex = �〈s〉 · M,

we can compute the (fieldlike) T = −γ (δEex/δM) × M =
−γ�〈sy〉ŷ × M, where γ is the gyromagnetic ratio. When
M‖E, the torque strives to rotate the magnetization out-of-
plane, while it vanishes when M‖ŷ, just like the torques
induced by the spin Hall effect in metallic conductors.
However, the electric resistance is not affected because there
is no in-plane (antidampinglike) torque. The Mz dependence
of Eqs. (38) and (35) is the same, which is another conse-
quence of the spin-momentum locking in the Dirac electron
system.

V. MAGNETIC IMPURITIES

We assumed above nonmagnetic scattering which might not
be a good representation of the TI | FI interface. Any roughness
of this interface is likely to introduce magnetic disorder on
the TI surface that can be modeled by randomly distributed
magnetic impurities of spin S with the direction given by the
unit vector Sm,i with index i at positions Ri and scattering
potential

V̂m(r) = Vm

Nm∑
i=1

σ̂ · Sm,iδ(r − Ri), (39)

where Vm = JmS is the interaction strength between the
conduction electrons and the local moments with a magnitude
S and an exchange constant Jm. Since these impurities are
coupled to the FI magnetization, a large fraction is likely to
be parallel to M. TI surface states with magnetic impurities
(but without proximity ferromagnets) display various phases
as a function of the impurity concentration and the temperature
(here T = 0) [56,57]. For example, a phase transition from a
paramagnetic to an out-of-plane ferromagnetic phase can be in-
duced by increasing the impurity concentration. Only when the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction among
impurity spins is overcome by the exchange interaction from
the attached FI does the ferromagnetic phase become aligned
to the FI magnetization.

Next we calculate the conductivity in the presence of
magnetic impurities modeled by Eq. (39). Since we found
in previous sections that the Kubo and Boltzmann theories
give identical results for the conductivities, we use the latter
(and simpler) method in the following.

A. Magnetic impurity aligned to M

First, the magnetic impurities are assumed to be aligned
such that Si

m = M. Hence, the scattering potential can be
simplified to V̂m(r) = Vmσ̂ · M

∑
i δ(r − Ri). The impurity

moments contribute an exchange potential, 〈V̂m〉 = �mMzσ̂z,
to the the surface electrons, where �m = nmVm [58], which
can be added to the proximity exchange as �̃ = � + �m.
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The transition probabilities in the upper band are then∣∣T (m)
q,q′

∣∣2 ≈ 〈|〈uq ′+|V̂m|uq+〉|2〉imp = nmV 2
m|〈uq ′+|(σ̂xMx + σ̂yMy + σ̂zMz)|uq+〉|2

= nmV 2
m sin2 θ

(
M2

x sin2 φ + φ′

2
+ M2

y cos2 φ + φ′

2
− MxMy sin(φ + φ′)

)

+ nmV 2
mMz cos θ sin θ [Mx(sin φ + sin φ′) − My(cos φ + cos φ′)]

+ nmV 2
mM2

z

(
1 − sin2 θ cos2 φ − φ′

2

)
. (40)

The associated electron transport time becomes

1

τm(q)
=

∫
d2q′

(2π )2

2π

h̄

∣∣T (m)
q,q′

∣∣2
[1 − cos(φ − φ′)]δ(EF − Eq ′+)

= 1

4τ e
m

(
1 − M2

z

)(
1 − ξ̃ 2M2

z

)
[2 + cos 2(φM − φ)]

+ 1

4τ e
m

2ξ̃M2
z

√(
1 − M2

z

)(
1 − ξ̃ 2M2

z

)
sin(φM − φ)

+ 1

4τ e
m

M2
z

(
3 + ξ̃ 2M2

z

)
, (41)

where

h̄

τ e
m

= nmV 2
m

∫ ∞

0
qdqδ(EF − Eq+) = 2πnmV 2

mD(EF ) (42)

defines the elastic scattering rate by magnetic impurities, ξ̃ =
�̃/EF , and φM(= α) is the polar angle of the magnetization.
The q dependence is caused by spin-flip scattering due to the
in-plane magnetic impurities that contribute to the transport
relaxation through the spin-momentum locking.

To leading order in E = Ex x̂,

σ
(m)
ij = e2

∑
s

∫
d2q

(2π )2
δ(EF − Eqs)τm(q)vivj

= 2
e2

h

EF τ e
m

h̄

∫ 2π

0

dφ

2π

× Fij (φ)

A − B sin(φM − φ) + cos 2(φM − φ)
, (43)

where Fxx(φ) = 1 + cos 2φ, Fxy(φ) = sin 2φ, A = 2 +
M2

z (3 + ξ̃ 2M2
z )/[(1 − M2

z )(1 − ξ̃ 2M2
z )], and B = 2ξ̃M2

z /√
(1 − M2

z )(1 − ξ̃ 2M2
z ). In the absence of out-of-plane spin

components Mz = 0 (A = 2,B = 0),

σ (m)
xx = 2

e2

h

EF τ e
m

h̄

√
3

3

[
1 − (2 −

√
3)

(
M2

x − M2
y

)]
, (44)

σ (m)
xy = 2

e2

h

EF τ e
m

h̄

2
√

3

3
(2 −

√
3)MxMy. (45)

In contrast to the homogeneous proximity effect, a disordered
in-plane exchange potential generates a MR with periodicity
π as well as a planar Hall effect. This result agrees with
the AMR computed for a single magnetic impurity by first
principles [59] and explains the experimental in-plane MR of
TI/FI bilayers [60] as well as magnetically doped TIs [61].
The reported in-plane unidirectional MR (with periodicity
2π ) in the TI/magnetically doped TI bilayer [62] is nonlinear

(proportional to the applied current), and therefore beyond
the linear response treatment here. In Fig. 5(b), the planar
Hall conductivity is plotted as a function of the in-plane
magnetization angle α that displays both AMR and SMR
character. The planar Hall angle

θPHE ≡ σ (m)
xy

σ
(m)
xx

= sin 2α

(2 + √
3) − cos 2α

� 0.28 (46)

is maximal for α = tan−1(3−1/4) = 37.2◦. This Hall angle for
diffuse transport is much smaller than that predicted in a
ballistic transport model [63].

In Fig. 5 we plot the conductivity equation, Eq. (43), as
a function of the angles α, β, and γ as defined in Fig. 4,
where α = φM is the in-plane angle, while β and γ are
out-of-plane angles θM for α = π/2 and α = 0, respectively.
A sizable MR with twofold symmetry in all three orthogonal
planes is shown in Fig. 4(d). In Fig. 5(a), the conductivity σxx

[see Eq. (45)] depends only on the in-plane magnetization
angle φM, which can be explained in terms of electron
scattering by the magnetic impurities under spin-momentum

(b)

α β
γ

0 2ππ
α,β,γ

σ xx
  /σ

D

0

0.8 (a)

0 2ππ
α

σ xx
(x

y)
/σ

D

-0.4

0.8

0

σxx

σxy

(m
)

(m
)

(m
)

(m
)

FIG. 5. (a) MR curves for a TI|FI bilayer as a function of
magnetization angles α, β, and γ [defined in Fig. 4(d)] for ξ̃ = 0.5.
σ

(m)
D = (2e2/h)(EF τ e

m/h̄) is the longitudinal conductivity limited by
magnetic impurities. (b) Longitudinal and transverse conductivities
as a function of in-plane magnetization angles α.
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locking of the Dirac electrons. When the magnetic impurities
are aligned with M, electron scattering is affected by the
magnetization of the FI and the transport time is modified. In
contrast to the MR by nonmagnetic impurities, the out-of-plane
conductivities σxx(β) and σxx(γ ) differ, which again reflects
the spin-momentum locking of Dirac electrons, i.e., fixing
the spin direction to 0 (π/2) leads to different momentum
relaxations.

When the magnetic impurity concentration becomes higher,
the impurity spin direction may be locked perpendicular to
the plane by the RKKY coupling mediated by the Dirac
electrons, which is stabilized by the induced gap [56,57]. Weak
applied magnetic fields then control only the direction of FI
magnetization; only a sufficiently strong magnetic field may
also rotate the orientation of the impurity magnetization from
the z direction. In the former regime V̂m(r) = Vmσ̂z

∑
i δ(r −

Ri) and 〈V̂m〉 = �mσ̂z with upper-band transition probabilities∣∣T (z)
q,q′

∣∣2 = nmV 2
m

(
1 − sin2 θ cos2 φ − φ′

2

)
, (47)

which lead to the following transport time and longitudinal
conductivity:

1

τz

= 1

4τ e
m

(
3 + ξ 2

m + ξ 2M2
z

)
, (48)

σ (z)
xx = 2

e2

h

EF τ e
m

h̄

1 − ξ 2
m − ξ 2M2

z

3 + ξ 2
m + ξ 2M2

z

, (49)

with ξm = �m/EF . The conductivity is now reduced because
by scattering at a magnetic impurity the electron acquires a
phase shift, ei(φ+π), that enhances backscattering.

B. Paramagnetic impurities

When the magnetic impurities are paramagnetic, Si
m = Sm,

and assuming that the magnetic fields do not significantly
polarize the moments 〈Sm〉 = 0, the scattering potential is
reduced to V̂m(r) = Vm

∑
i σ̂ · Sm,iδ(r − Ri). The transition

amplitude in the upper band becomes∣∣T (p)
q,q′

∣∣2 ≈ 〈|〈uq ′+|V̂m|uq+〉|2〉imp

= nmV 2
m|〈uq ′+|σ̂ · Sm|uq+〉|2

= nmV 2
m

1

3
S2

(
1 + sin2 θ sin2 φ − φ′

2

)
. (50)

The electron transport time is

1

τp
= 1

12τ e
m

S2
(
5 − 3ξ 2M2

z

)
. (51)

An in-plane component (Sm,i)x(y) contributes to the transport
relaxation. To leading order in E = Ex x̂,

σ (p)
xx = 2

e2

h

EF τ e
m

h̄S2

3
(
1 − ξ 2M2

z

)
5 − 3ξ 2M2

z

. (52)

The z component of the magnetic impurity contributes a
scattering phase shift ei(φ+π) and thereby additional backscat-
tering. Moreover, the x and y components of the magnetic
impurity locally break the time-reversal symmetry on the TI
surface and allow backscattering, which is weaker than for the
polarized impurities, however.

FIG. 6. In-plane MR ratio as a function of normalized nonmag-
netic resistivity ρ0/ρm, where ρ0 = σ−1

D and ρm = (σ (m)
D )−1. The inset

shows the resistivity ρxx as a function of α for ρ0/ρm = 10.

C. In-plane magnetoresistance

The magnitude of the in-plane magnetoresistance can be
expressed in terms of the MR ratio:

MR = ρxx(α = 0) − ρxx(α = π/2)

ρxx(α = 0)
, (53)

where ρxx = σxx/(σ 2
xx + σ 2

xy) is the resistivity. For comparison
with experiments, we assume disorder with both nonmagnetic
and magnetic impurities, Eqs. (5) and (39). Figure 6 is a plot
of the in-plane MR ratio as a function of the normalized
nonmagnetic resistivity ρ0/ρm, where ρ0 = σ−1

D and ρm =
(σ (m)

D )−1. The MR ratio can become 42.3% in the absence
of nonmagnetic scattering ρ0 = 0, but gradually decreases
with increasing ρ0/ρm. Reference [60] reports a measured
MR ∼ 3% for a TI|YIG system, while Ref. [62] finds MR ∼
13% for TI|magnetically doped TI bilayers. In the inset of
Fig. 6, we plot the resistivity ρxx as a function of α for
ρ0/ρm = 10, in good agreement with the measured in-plane
MR of TI|CoFeB bilayers [64].

VI. SUMMARY

We model the magnetic-proximity-induced magnetoresis-
tance in disordered topological|ferromagnetic insulator bilay-
ers. Assuming that an FI contact magnetizes the TI-surface
states, we derive analytical expressions for the electric dc
conductivity. We formulate electron transport by the Kubo
linear response theory including the ladder-vertex correction as
well as by the Boltzmann approach including the in-scattering
term of the collision integral. The induced exchange splitting
generates an electric resistance that depends on the normal
component of the magnetization direction for nonmagnetic
disorder. For in-plane magnetizations, unlike for the magnetic
Rashba 2D system, the in-plane MR then vanishes. For
out-of-plane magnetizations, we predict that the gap opening at
the Dirac point causes a large MR ratio. On the other hand, we
do find an in-plane MR and planar Hall effect in the presence
of magnetic impurities aligned to the FI magnetization that
can be explained by the spin-momentum locking for Dirac
electrons. Our calculated results agree with the limited number
of experiments on the out-of-plane MR. We explain the MR
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observed for in-plane magnetizations by magnetic disorder,
which thereby provides information on the interface morphol-
ogy. In terms of the functional dependence on magnetization
direction, our model predicts a mixture of AMR and SMR
character. Our model calculation might help the theoretical
design of topological insulators for next-generation spin-based
information technologies.
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APPENDIX: CURRENT-INDUCED SPIN POLARIZATION
IN THE PRESENCE OF MAGNETIC DISORDER

Here we calculate the electric-field-driven nonequilibrium
spin density in the presence of magnetic impurities [Eq. (39)]
by the Boltzmann theory. A nonzero steady-state charge
current implies a finite spin density that can easily be found
by multiplying the charge current by −h̄/(2evF ), yielding

〈s〉 = e
∑

s

∫
d2q

(2π )2
δ(EF − Eqs)τm(q)(vqs · E)sqs, (A1)

where sqs = −h̄/(2evF )ẑ × vqs . In the presence of an electric
field E = Ex x̂ and for in-plane magnetizations,

〈s〉 = −h̄

2

2eEx

hvF

EF τ e
m

h̄

√
3

3

[−2(2 −
√

3)MxMy x̂

+ [
1 − (2 −

√
3)

(
M2

x − M2
y

)]
ŷ
]
. (A2)

In contrast to the current-induced spin polarization for the nor-
mal disorder, Eq. (A2) is affected by an in-plane magnetization
through the exchange interaction in Eq. (39).
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