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The family of magnetic rare-earth pyrochlore oxides R,M, O plays host to a diverse array of exotic phenomena,
driven by the interplay between geometrical frustration and spin-orbit interaction, which leads to anisotropy in
both magnetic moments and their interactions. In this article we establish a general, symmetry-based theory
of pyrochlore magnets with anisotropic exchange interactions. Starting from a very general model of nearest-
neighbor exchange between Kramers ions, we find four distinct classical ordered states, all with q = 0, competing
with a variety of spin liquids and unconventional forms of magnetic order. The finite-temperature phase diagram
of this model is determined by Monte Carlo simulation, supported by classical spin-wave calculations. We pay
particular attention to the region of parameter space relevant to the widely studied materials Er,Ti;O7, Yb,Ti,O7,
and Er,Sn,0;. We find that many of the most interesting properties of these materials can be traced back to the
“accidental” degeneracies where phases with different symmetries meet. These include the ordered ground-state
selection by fluctuations in Er,Ti, O, the dimensional reduction observed in Yb,Ti,O7, and the lack of reported
magnetic order in Er,Sn,O;. We also discuss the application of this theory to other pyrochlore oxides.
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I. INTRODUCTION

Like high-energy physics, condensed matter is dominated
by the idea of symmetry. Any physical property which cannot
be traced back to a broken symmetry is therefore of enormous
fundamental interest. In this context, the spin-liquid phases
found in frustrated magnets are a rich source of inspiration
[1]. Perhaps the most widely studied examples are the “spin-
ice” states in Ho,Ti,O7 and Dy, Ti, O, classical spin liquids
famous for their magnetic monopole excitations [2]. And there
is now good reason to believe that a quantum spin-liquid phase,
in which the magnetic monopoles are elevated to the role of
“elementary” particles, could exist in spin-ice-like materials
where quantum effects play a larger role [3—14].

The extraordinary physics of spin ice stems from the
combination of the geometrical frustration inherent to the
pyrochlore lattice on which the magnetic rare earth ions R3*
reside, and the strongly anisotropic nature of the interactions
between rare-earth ions [15,16]. This mixture of geometrical
frustration and strong spin anisotropy is common to many
pyrochlore materials, and gives rise to a wide array of
interesting physical behaviors [17].

The spin ices belong to a wider family of rare-earth
pyrochlore oxides R,M,07 in which the magnetic ions have a
doublet ground state, and highly anisotropic interactions. The
physical properties of these materials depend on the choice of
rare-earth R** and transition metal M**, and are fabulously
diverse. In addition to spin ices, this family includes a wide
range of systems that order magnetically, spin glasses and
systems where local moments couple to itinerant electrons
[17-19]. Materials of current interest include Yb,Ti,O7,
which exhibits striking “rodlike” features in neutron scattering
[20-23], and has been argued to undergo a Higgs transition
into a ferromagmetically ordered state [24]; Er, Ti,O7, which
appears to offer an elegant worked example of (quantum)
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order-by-disorder [25-29]; and Er,Sn,07, which has yet to
been seen to order at any temperature [30-34]. Alongside
continuing investigations into these materials, the last few
years has seen the synthesis of a steady stream of new
rare-earth pyrochlore oxides, exhibiting both ordered [35-39]
and disordered [40] low temperature states.

Given this “embarrassment of riches,” it seems reasonable
to ask whether there is any common framework which
can connect the properties of different rare-earth pyrochlore
oxides, place new materials in context, and help guide the
search for novel magnetic states. In this article we enlarge on
the results in an earlier preprint [41] to develop a broad scenario
for these materials, based on the concept of multiple-phase
competition. We go on to show how this approach can be used
to explain many of the interesting properties of Yb,Ti,O7,
Er,Ti»O7, and Er,Sny 0.

Our starting point is the most general model of nearest-
neighbor interactions compatible with the symmetries of the
pyrochlore lattice [42-44]

Hex = Y _ J/"SI'S!, (1)
(i)

where the sum on (i j) runs over the nearest-neighbor bonds of
the pyrochlore lattice, S; = (S}, S;,S7) describes the magnetic
moment of the rare-earth ion, and the matrix Ji’j ¥ is a function
of four independent parameters. Following the notation of
Ross et al. [44], we identify these as “X-Y” (J}), “Ising” (J>),
“symmetric off-diagonal” (J3), and “Dzyaloshinskii-Moriya”
(J4) interactions. This model encompasses an extremely
rich variety of different magnetic physics, including an
exchange-based “spin ice” (J; = —J, = J3 = Jy <0), and
the Heisenberg antiferromagnet on a pyrochlore lattice (J; =
Jo >0, J3 = Jy =0), both of which are believed to have
spin-liquid ground states [15,45]. Nonetheless, materials such
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FIG. 1. Classical ground-state phase diagram for a pyrochlore
magnet with anisotropic exchange interactions. The model considered
is the most general nearest-neighbor exchange Hamiltonian on
the pyrochlore lattice Hex [Eq. (1)], with symmetric off-diagonal
exchange J; < 0, and vanishing Dzyaloshinskii-Moriya interactions
(Jy =0). There are four distinct ordered phases, illustrated in
the insets of Fig. 3. Points correspond to published estimates of
parameters for Yb,Ti,O; [44], Er,Ti,O; [26], and Er,Sn,O; [34],
setting J; = 0. The white circle corresponds to the path through
parameter space shown in Fig. 3.

as Er,Ti,O7, which is extremely well described by a nearest-
neighbor exchange model [25-27], do order magnetically [25].

The phase diagram of Hex [Eq. (1)] for a quantum spin-1/2
has previously been studied using mean-field and spin-wave
approximations, with many papers emphasizing connections
with spin ice [5,8,9,11,46]. In this article we take a different
approach, starting from an analysis of the way in which
different spin configurations break the point-group symmetries
of the pyrochlore lattice. We show that, for classical spins,
the problem of finding the ground state of Hex [Eq. (1)] can
be neatly separated into two steps: (i) finding the ground
state of a single tetrahedron and (ii) understanding how the
spin configuration on that tetrahedron can be used to tile
the pyrochlore lattice. The first step, in turn, reduces to
understanding how the different interactions in the model
transform under the symmetries T, of a single tetrahedron.
The second step, summarized in a simple set of “Lego-brick”
rules, enables us to encompass both ordered ground states,
which break lattice symmetries, and spin liquids, which do not.

This approach, augmented by spin-wave calculations and
extensive classical Monte Carlo simulations, makes it possible
both to establish a complete phase diagram for Hex [Eq. (1)] as
a function (J1, J»,J3, J4), and to link ground-state properties to
predictions for neutron-scattering experiments. In this article,
taking our motivation from estimated parameters for Yb,Ti, O
[44], Er,Ti,O7 [26], and Er,Sn,O; [34], we concentrate
on ordered phases in the limit J3 < 0, J; = 0. Here there
is a competition between four different types of order: a
Palmer-Chalker [47] phase (W4), a noncollinear ferromagnet
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FIG. 2. Suppression of classical order by quantum fluctuations
in pyrochlore magnets with anisotropic exchange interactions, as
described by Hex [Eq. (1)], with J3 < 0, J; = 0. Colored regions
show the four ordered phases illustrated in Fig. 3. White regions
indicate where quantum fluctuations eliminate conventional magnetic
order, within a linear spin-wave theory. Parameters J, /| J3| = p cos 6,
J»/|J3| = psin@ are shown on a log-polar scale with 0 < p < 10°.
The white circle corresponds to the path through parameter space
shown in Fig. 3.

(FM), a coplanar antiferromagnet (¥3), and a noncoplanar
antiferromagnet (\V,). The way in which these phases relate to
one another is illustrated in Figs. 1,2, and 3.

Crucially, the same symmetry-based approach used to find
ordered ground states also permits us to explore the way in
which these physically distinct states are connected by the “ac-
cidental” degeneracies arising at boundaries between phases
with different symmetry. The enlarged ground-state manifolds
at these phase boundaries have far-reaching consequences,
once quantum and thermal fluctuations are taken into account.
The common theme which emerges is of systems “living on the
edge”—the physical properties of materials showing one type
of magnetic order being dictated by the proximity of another,
competing, ordered phase.

Thus, in Yb,Ti»O7, we find ferromagnetic order proximate
to competing, “W3” and “W,” phases, which manifest them-
selves in the “rods” seen in neutron scattering. Meanwhile,
in Er,Ti,O7, we discover that the reason fluctuations select
the well-established W, ground state [25-27] is proximity to a
neighboring Palmer-Chalker phase, as illustrated in Fig. 4. And
in the case of Er,Sn, 07, we find that fluctuations of Palmer-
Chalker order predominate, but that all forms of magnetic
order are strongly suppressed by the proximity of a degenerate
ground-state manifold connected to a neighboring W, phase.

We note that the same approach of combining symmetry
analysis and the Lego-brick rules can also be used to system-
atically search for unconventional ordered states and new
(classical) spin-liquid phases on the pyrochlore lattice. This
is a theme which will be developed elsewhere [48,49]. The
remainder of the present article is structured as follows:
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FIG. 3. Finite-temperature phase diagram for a pyrochlore magnet with anisotropic exchange interactions. The model considered is Hex
[Eq. (1)], with J; = 3|J5]|cos b, J, = 3|J3|sin6, J5 < 0, and J, = 0, corresponding to the white circle in Fig. 1. Points show finite temperature
phase transitions found from classical Monte Carlo simulations. The four ordered phases, Palmer-Chalker (\W,), noncollinear ferromagnetic
(FM), coplanar antiferromagnetic (V3), and noncoplanar antiferromagnetic (W,), are illustrated at the top of the figure. Each of these phases is
sixfold degenerate, with zero crystal momentum, and is completely specified by the spin configuration in a single tetrahedron.

In Sec. II we introduce a general model of nearest-neighbor
exchange interactions on a pyrochlore lattice and, restricting
to classical spins, establish the conditions under which the
model has a magnetically ordered ground state. We also

Er, T30, ¥,/\¥, phase boundary

+1

FIG. 4. Selection of an ordered ground state by thermal fluctu-
ations in Er,Ti,O;. For T < T, fluctuations select six states with
noncoplanar antiferromagnetic order (¥,) from a one-dimensional
manifold of degenerate ground states. The entropic selection of these
six states can be traced to an enlarged ground-state manifold found
on the boundary with the Palmer-Chalker phase (\Wy). Plots show the
probability distribution of the order parameter mg = (mg, ,mE}_), as
described in Sec. VL

provide a complete classification of possible ordered states
in terms of the irreducible representations of the tetrahedral
symmetry group 7.

In Sec. III we show that this symmetry analysis can
be used to determine the classical ground state of Hex
[Eq. (1)] for arbitrary parameters (Jy,J>,J3,J4). The nature
of the ground states in the limit (J3 < 0,Js = 0), which is
of particular relevance to real materials, is explored in some
detail, including analysis of the degenerate manifolds arising
at the phase boundaries of the model.

In Sec. IV we explore the spin-wave excitations associated
with these ordered phases. This enables us to make predictions
for neutron scattering, and to develop a ground-state phase
diagram for classical and semiclassical spins, focusing again
on the limit J3 < 0 and J4 = 0, as illustrated in Fig. 1. It also
enables us to identify regions of the phase diagram where
strong quantum fluctuations are liable to eliminate classical
order entirely, as illustrated in Fig. 2.

In Sec. V we use classical Monte Carlo simulation to
explore the finite-temperature phase transitions which separate
each of the ordered phases from the high-temperature param-
agnet. The results of this analysis are summarized in Fig. 3.

In Sec. VI we study the finite-temperature consequences of
the enlarged ground-state manifolds arising at the boundary
between different ordered phases. This is illustrated in Fig. 4.

In Secs. VII, VIII, and IX we discuss the implications of
these results for the rare-earth pyrochlore oxides Er,Ti,O7,
Yb,Ti,O7, and Er,Sn, 07, respectively. Other rare-earth py-
rochlore magnets to which the theory might apply are
discussed briefly in Sec. X.

We conclude in Sec. XI with a summary of our results, and
an overview of some of the interesting open issues.

Technical details of calculations are reproduced in a short
series of Appendixes at the end of the article: Appendix A
provides details of the local coordinate frame throughout the
article, and the associated form of the g tensor. Appendix B
provides technical details of the linear spin-wave calculations
described in Sec. IV. Appendix C provides technical details as-
sociated with the classical Monte Carlo simulations described
in Sec. V.
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As far as possible, we have endeavored to make Secs. VII—-
X, describing the application of the theory to experiments
on rare-earth pyrochlores, self-contained. Readers chiefly
interested in these materials may safely omit the theoretical
development in Secs. III to VI of the article.

II. MICROSCOPIC MODEL OF
ANISOTROPIC EXCHANGE

A. Magnetism at the level of a single ion

Pyrochlore oxides, A;B,07, are a ubiquitous feature of
igneous rocks throughout the world. This broad family of
materials takes its name from the mineral “pyrochlore”
[(Ca, Na);Nb,Os(OH,F)], which burns with a green (x Awpo¢)
fire (m U p), and shares its crystal structure with a great many
other oxides, halides, and chalcogenides. Here we concentrate
on those pyrochlore oxides in which the B cation is a
nonmagnetic transition metal, such as Ti** or Sn**, while
the remaining cation A3* is a rare-earth ion with a magnetic
doublet ground state. These magnetic ions form a pyrochlore
lattice, built of corner-sharing tetrahedra, which shares the
same cubic symmetry Fd3m as the parent material.

Even within this restricted group of rare-earth oxides, the
interplay between strong spin-orbit coupling, and the crystal
electric field (CEF) at the A-cation site, leads to a huge
variation in the magnetic properties of the rare-earth ion.
For example, Dy>* provides the strong Ising moment in the
spin-ice Dy, Ti, O, while Er** forms a moment with XY-like
character in Er, Ti, O7 [50].

The goal of this article is not to explore the intricate CEF
ground states of rare-earth ions (see, e.g., Refs. [51,52] for
a discussion on this topic), but rather to understand the way
in which the anisotropic exchange interactions between them
shape the magnetism of rare-earth pyrochlore oxides. We
therefore concentrate on materials in which the ground state
of the rare-earth ion is a Kramers doublet, with an odd number
of electrons, like Yb** ([Xel4 £13) or Er** ([Xel4 f11).

In this case, as long as the temperature is small compared
with the lowest-lying CEF excitation, the magnetic ion can be
described by a pseudospin-1/2 degree of freedom

[S#,8"] = i€, SE. 2)

It is important to note that, even with the restriction to
Kramers doublets, there is more than one possibility for how
S* will transform under space-group operations [53]. In this
article we will focus on the case where S* transforms like
a magnetic dipole, which is the case appropriate to Yb**
and Er** based pyrochlores. We note that an alternative
“dipolar-octupolar” case may be realized in Dy**, Nd**, and
Ce’** based pyrochlores [40,53,54].

Where S transforms like a magnetic dipole, it will be
associated with an effective magnetic moment

3
ml =Y gl"s}, 3)
v=1

where ©, v = {x,y,z}. Since the magnetic anisotropy of a
rare-earth ion is determined by the local CEF, the g-tensor
g!"" is site dependent, as described in Appendix A. This
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FIG. 5. A single tetrahedron within the pyrochlore lattice, show-
ing the convention used in labeling sites. The positions of the
magnetic sites relative to the center of the tetrahedron are defined in
Appendix A.

has important consequences for the magnetic correlations
measured in neutron scattering experiments, discussed below.

B. Anisotropy in exchange interactions

The interplay between spin-orbit coupling and CEF leads
to anisotropy in the interactions between rare-earth ions, just
as it leads to anisotropy in the magnetic ground state of an
individual ion [51]. Itis possible to make estimates of exchange
interactions in pyrochlore oxides from knowledge of the CEF
ground state and low-lying excitations [52,55]. However for
the purposes of this article it is sufficient to consider the
constraints on these interactions imposed by the symmetry
of the lattice.

In the case of Kramers ions on a pyrochlore lattice, the
most general form of nearest-neighbor exchange can be broken
down into a sum over tetrahedra ¢,

Hox = Y JL"SIESY =Y HE 1], 4)
(i) !
where
HE =Y Salls;. 5)
i,jet

Here S; = (S,?‘,Siy,Sl.Z), and Jl[t.] is a 3x3 matrix specific to
the bond ij, within tetrahedron ¢. The exchange interactions
Jij do not, in general, possess any continuous spin-rotation
invariance. Nonetheless, the form of exchange J;; is strongly
constrained by the symmetry of the bond ij, and the inter-
actions on different bonds must also be related by lattice
symmetries.

Once these constraints are taken into account [42], J;; is a
function of just four independent parameters and, for the six
bonds which make up the tetrahedron shown in Fig. 5, can be
written

S Jy Iy Ji —=Jy T3
Juo=|-N" I KB, Jo=\|N L L],

=l B3 A Js —=Js S

Ji Sz =y Ji —J3 Jy
Js=|h N L), Jo=|-Hh S -4,

Js s J —Jy Js J
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Ji Jy =

Jen=|-N" L Ji |,
-5 =N
J —J4 Js

Jn=| /. Ji —J3], (6)
—Jy =3 Ji

where we label lattice sites and interactions following the
conventions of Ross et al. [44]. The structure of these matrices
imply that the different contributions to the interaction J;;
[Eq. (6)] can be approximately identified as

(1) Ji — “XY” with respect to the local bond.

(i) Jo — “Ising” with respect to the local bond.

(iii) J3 — symmetric off-diagonal exchange.

@iv) J4 — Dzyaloshinskii-Moriya.

The anisotropic nearest-neighbor exchange model Hex
[Eq. (1)] has been applied with considerable success to a
number of pyrochlore oxides. In the case of Yb,Ti;O7, Hex
[Eq. (1)] has been shown to give an excellent description
of spin-wave spectra measured in magnetic field [44]. Ther-
modynamic quantities, calculated from Hex [Eq. (1)] using
the parameters from [44], also gave a very good description
of experiments [56,57]. Parameters for Er,Ti,O; have been
extracted from equivalent inelastic neutron scattering experi-
ments [26], and from measurements of the field dependence
of magnetization at low temperature [58]. The model Hex
[Eq. (1)], using parameters taken from neutron scattering
[26], has been shown to give good agreement with the
observed spin-wave spectrum in Er,Ti,O7, consistent with
quantum order-by-disorder [26]. Anisotropic nearest-neighbor
exchange parameters for Er,Sn,O; have also been estimated
from measurements of the magnetization curve [34].

Representative estimates of the exchange parameters
(Jy, Jo, J3, Jg) taken from experiment on Yb,Ti,O; [44],
Er,Ti,O7 [26], and Er,Sn,O; [34], are shown in Table I.
The typical scale of interactions is |J| ~ 0.1 meV (.e.,
|J] ~1 K), with typical uncertainty in estimates of order
8J ~0.02 meV (i.e., §J ~ 0.2 K) [26,34,44]. In all of these
cases, the symmetric off-diagonal exchange interaction Jj3 is
negative, while the Dzyaloshinskii-Moriya interaction Jy is
relatively small [60].

TABLE 1. Estimates of the parameters for anisotropic near-
neighbor exchange, taken from experiments on Yb,Ti,O; [44],
Er,Ti,O; [26], and Er,Sn,O; [34]. Values are quoted for exchange
interactions in both the crystal coordinate frame Hex [Eq. (1)], and
the local coordinate frame H!;’fa' [Eq. (8)], following the notation of
Ross et al. [44]. An alternative set of parameters for Yb,Ti,O7 has
recently been proposed by Robert et al. [73].

Yb,Ti, O [44] Er, Ti,O7 [26] Er,Sn, 07 [34]
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C. Anisotropic exchange in a local frame

Since both the anisotropy in magnetic ground state of
the rare-earth ion, and the anisotropy in its interactions, are
dictated by the local CEF field, it is often convenient to describe
them in a local coordinate frame

local local ,local
{Xi Yi % }’

such that the axis /°%@ aligns with the C; symmetry axis of the
local CEF on site i, as described in Appendix A. We introduce
a SU(2) (pseudo)spin-1/2 in this local frame

[S¢.8] = ieus,S] . %

where a, B, y = {xI°¢@ ylocal glocal} ‘Note that throughout the
paper S¢ will refer to the spin components in this local frame,
while S refers to the spin components in the global, crystal,
coordinate system.

In the local coordinate frame, the most general form of
exchange interactions between Kramers ions on the pyrochlore

lattice can be written [44]
He? =Y {1..S;S% — Ju(S/S; +5;'S))
(ij)
-I-Jﬁ[[)’ijs;rs}F + 38 S;1

where the matrix

T K 4
0 -1 e's e's

ot

(e}
|

—

-
el's -1

encode the change in coordinate frame between different
sublattices.

The relationship between the parameters in this local frame,
(JzzoJx,J4x,J;1), and exchange parameters in the global
frame of the crystal axes (Jy, J2, J3, J1), is given in Table II.
Corresponding estimated parameters from experiment on
Yb,Ti,O7 [44], Er, Ti,O7 [26], and Er,Sn,O7 [34] are shown
in Table I.

TABLE II. Relationship between the parameters of the
anisotropic nearest-neighbor exchange model in the local coordinate
frame H/%%@ [Eq. (8)], and the exchange parameters in the crystal
coordinate frame Hex [Eq. (1)]. The notation used for the different

components of the interaction follows Ross et al. [44].

Ji —0.09 meV 0.11 meV 0.07 meV
Jo —0.22 meV —0.06 meV 0.08 meV
J3 —0.29 meV —0.10 meV —0.11 meV
Ja 0.01 meV —0.003 meV 0.04 meV
J.. 0.17 meV —0.025 meV 0

Ji 0.05 meV 0.065 meV 0.014 meV
Jit 0.05 meV 0.042 meV 0.074 meV
Jox —0.14 meV —0.009 meV 0

Interaction in local
coordinate frame

Exchange parameters
in global frame

T2z —1QN = L+ 205441
Ji QI = Jy— T3 —20)
Jit %(-’1 + L —=2J5+20)
Jox ﬁ(h + L+ T3 =Ty

094422-5



HAN YAN, OWEN BENTON, LUDOVIC JAUBERT, AND NIC SHANNON

D. Proof of the existence of a classical ground state
with q = 0, 4-sublattice order

Finding the ground state of Hex [Eq. (1)], for a quan-
tum (pseudo)spin-1/2, and arbitrary exchange interactions
(J1,J2,J3,J4), is a very difficult problem, in general only
tractable as a mean-field theory [5,8,9,11,46]. However, many
rare-earth pyrochlores are known to have relatively simple
ground states, with vanishing crystal momentum q = 0,
implying a 4-sublattice magnetic order [17]. Here we show
that, under the restriction that S; is a classical variable, Hey
[Eq. (4)] always possesses a ground state of this type. In
Sec. IIE, below, we explore the conditions under which this
classical ground state is unique.

We begin with the simple observation that, since Hex
[Eq. (1)] is expressed as a sum over individual tetrahedra,
any state which minimizes the energy of each individual
tetrahedron must be a ground state. It is convenient to split
this sum into two pieces:

Hex = Y Haxltl+ Y Helt'l, (10)
teA t'eB

where A and B refer to the two distinct sublattices of tetrahedra,
with

Mol ="y SJ'S;, (1n
i,jet

G E I (12)
i,jet

The interactions J 5.';‘] and J !?] are related by inversion about a
single site Z,

W=z} 1. (13)
Since 7% = 1, we can write
S -IM.s; =812 g .12,
=S I3} 1-8;. (14)

where we have used the fact that the spin S; is invariant under
lattice inversion. This implies

N =7 g .7 =J (15)

It follows that interactions for any tetrahedron ¢ is the same,
regardless of which tetrahedral sublattice it belongs to, and we
can safely write

Mo =Y SiJijS;, (16)
i,jet
where J;; are given by Eq. (6) and the sum runs over all pairs
of sites 7,j in a given tetrahedron ¢, which may now be of
either sublattice.

The proof we are seeking follows directly from this result
[Eq. (16)]: for classical spins, [HQX,HEX] =0, and we can
construct a ground state of Hex by choosing any state which
minimizes the energy of a single tetrahedron, and repeating
it across all A-sublattice (or B-sublattice) tetrahedra. Since
every spin is shared between one A- and one B-sublattice
tetrahedron, and the Hamiltonians for A or B sublattices are
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equivalent [Eq. (16)], any such classical spin configuration
which minimizes the energy on one tetrahedral sublattice,
simultaneously minimizes the energy on the other tetrahedral
sublattice, and is a ground state of Hex [Eq. (1)].

It follows that there always exists a classical, q = 0 ground
state of Hex [Eq. (1)], with a 4-sublattice long-range magnetic
order, for arbitrary exchange interactions (Ji,J>, J3,J4). This
is true even in the presence of finite Dzyaloshinskii-Moriya
interaction Jj.

Such a q = 0 ground state has a finite, discrete degeneracy
associated with the breaking of point-group and time-reversal
symmetries (in the case of classical spins, time-reversal
corresponds to the inversion of all spins S; — —S;). This
degeneracy must be at least 2 (time reversal), and is typically
6 (C3 rotations ® time reversal), for the ordered phases
considered in this article.

E. Conditions for the uniqueness of 4-sublattice
order—The Lego-brick rules

The existence of a classical ground state of Hex [Eq. (1)]
with 4-sublattice magnetic order, for arbitrary exchange inter-
actions (Jy,J2,J3,J4) constitutes an enormous simplification,
since it is much easier to determine the spin configuration
which minimizes the energy of a single tetrahedron (as de-
scribed in Sec. II1, below) than to find the ground state of the en-
tire lattice. However, as we shall see, many of interesting prop-
erties of rare-earth pyrochlores follow from the fact that while
such a classical ground state must exist, it need not be unique.

Establishing the uniqueness of a 4-sublattice ground state,
up to the discrete degeneracy of the state itself, amounts to
determining the number of ways in which the spin config-
urations which minimize the energy of a single tetrahedron
can be used to tile the entire lattice. For many purposes, it is
convenient to think of these as a set of Lego-brick rules for
fitting together spin configurations on a lattice (Fig. 6). These
rules allow us to determine the degeneracy, and nature, of the
ground states of the whole lattice, using the ground states of a
single tetrahedron.

The rules can be stated as follows:

(1) If the spin on every site of the tetrahedron points in a
different direction, in each of its classical ground states, then
the 4-sublattice ground state of the lattice is unique (up to
global symmetry operations). In this case, the degeneracy of
the ground state of the lattice is the same as that of a single
tetrahedron.

(2) If, within the set of ground states for a single tetrahe-
dron, there are two states in which a single site has the same
spin orientation, the 4-sublattice ground state of the lattice is
not unique. In this case, the system undergoes a dimensional
reduction into independent kagome planes, and the number of
classical ground states is at least 0(2%), where L is the linear
size of the system.

(3) If, within the set of ground states for a single
tetrahedron, there is a pair of states which have the same spin
orientation on two sites, the 4-sublattice ground state is also
not unique. However, in this case, the number of classical
ground states must grow as at least 0(21‘2), corresponding
to dimensional reduction into independent chains of spins.
In the special case of spin ice, the corresponding classical
ground-state degeneracy is extensive.
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A-sublattice B-sublattice

a f
b e
(D
d g
C h
a f
b e
(2)
d g
C a
a f
b e
(3)
d b
C a

FIG. 6. The Lego-brick rules describing how the ground states of
a single tetrahedron can be connected to tile the pyrochlore lattice. The
two tetrahedra in the left and right panels represent a pair of tetrahedra
in distinct ground-state configurations. Distinct spin orientations on
the sites of each tetrahedron are denoted by letters a—h. Three cases
are shown. In case (1) all of the ground states for a single tetrahedron
have different spin orientations for any given site. This means that two
tetrahedra in distinct ground states cannot be joined together because
they do not share a common spin orientation on any site. In this
case the 4-sublattice ground state of the lattice is unique with g = 0
order, up to global symmetry operations. In case (2) there are two
ground-state configurations for a tetrahedron which share a common
spin orientation on a single site, here denoted a. These tetrahedra can
be joined together by sharing the spin in orientation a. In this case the
ground state of the lattice has a degeneracy of at least O(2%). Indeed,
successive kagome layers of spins can be independent in BDC or FEG
configurations. In case (3) there is a pair of ground states which share
common spin orientations on two sites, here denoted a and b. These
tetrahedra can be joined together by sharing the spin in orientation a
or the spin in orientation b. In this case the ground state of the lattice
has a degeneracy of at least 0(2L2).

The first rule guarantees the uniqueness of a 4-sublattice
ground state, where the spin on every site of the tetrahedron
points in a different direction in each of the ground states of
a single tetrahedron. Away from phase boundaries, this is true
for all of the 4-sublattice q = 0 ordered phases discussed in
this article. However, it is clear from rules 2 and 3 that if two
of the ground states of a single tetrahedron share a common
spin—i.e., the spin on a given site points in the same direction
in more than one ground state—then it is always possible to
construct other ground states, with finite q.

PHYSICAL REVIEW B 95, 094422 (2017)

To give a concrete example of how these Lego-brick rules
work, let us assume that two different ground states for a single
tetrahedron have identical orientation of the spin on site 0, but
different orientation of the spins on sites 1, 2, and 3. In this
case it is possible to divide the pyrochlore lattice into a set of
parallel kagome planes, containing spins associated with sites
1, 2, and 3 of a tetrahedron, separated by triangular-lattice
planes associated with site 0. Since each successive kagome
plane can take on one of two different spin configurations,
the number of such ground states grows as 2N<, where N is
the number of kagome planes, and encompasses all possible
q || [111]. Dimensional reduction of this type occurs on the
classical phase boundary between ordered FM and Palmer-
Chalker phases discussed in Sec. III T of this article.

An example where rule 3 applies, and a set of independent
chains emerges in the ground-state manifold, is the phase
boundary between the Palmer-Chalker phase and the non-
coplanar antiferromagnet discussed in Sec. III G. However, the
Lego-brick rules permit even larger ground-state degeneracies,
as is known from the “two-in, two-out” states, made famous by
the spin-ice problem. In this case there are a total of six possible
ground states for a single tetrahedron, but each possible spin
orientation, on each site, belongs to three different ground
states. According to rule 3, the 4-sublattice classical ground
state—a ferromagnet—should not be unique, and the total
number of classical grounds states must grow as at least
02", In fact, the ground-state degeneracy of spin ice is
extensive, scaling as Qice ~ (3/2)"/2, where N is the total
number of sites in the lattice [62]. This manifold of spin-ice
states includes ground states with all possible q.

F. Representation theory

Except in very specific limits, such as the Heisenberg model
(Jy = Jh» =J, J3 = Jy =0), Hamiltonian Hex [Eq. (1)] does
not possess any continuous spin-rotation symmetry. The key
to unlocking its properties, therefore, is to understand how
different ordered states, and indeed different spin fluctuations,
break the space-group symmetries of the pyrochlore lattice.
This task is made easier by the realization that a classical
ground state with q = O exists for all possible (J,J>,J3,J4),
as discussed in Sec. IID. It is therefore possible to restrict
discussion to the point-group symmetries of the lattice.

In what follows, we explore the consequences of applying
representation theory for these point-group operations to a
general model of anisotropic nearest-neighbor exchange on the
pyrochlore lattice Hex [Eq. (1)]. This analysis serves a twofold
purpose: it reduces the Hamiltonian for a single tetrahedron
Hfg} [Eq. (16)] to a diagonal form, and it provides a set of order
parameters with which to characterize the q = 0, 4-sublattice
ordered phases found in real materials.

The point-group symmetry of the pyrochlore lattice is the
cubic symmetry group O, = T, x |. Here T, is symmetry
group of a single tetrahedron, and | = {€,Z}, where € is the
identity and Z corresponds to the lattice inversion introduced
in Eq. (13). For classical spins, lattice inversion plays a benign
role (cf. Sec. II D), and it is sufficient to consider T, alone.
The group T, has 24 elements [63], corresponding to the
symmetries of the tetrahedron: 8 x C3—ZT” rotation around a
[111] axis; 3 x C,—7 rotation around [100] axis; 6 x S4—%
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TABLE III. Order parameters m,, describing how the point-group symmetry of a single tetrahedron within the pyrochlore lattice is broken
by magnetic order. Order parameters transform according to irreducible representations of the point-group T,, and are expressed in terms of

linear combinations of spin-components S; = (S}

,S7,87), in the global frame of the crystal axes—cf. Hex [Eq. (1)]. Labeling of spins within

the tetrahedron follows the convention of Ross ef al. [44]—cf. Fig. 5. The notation W; for ordered phases is taken from [65].

Order Associated
parameter Definition in terms of spin components ordered phases
ma, ﬁ(sg + S+ S S =S =S-S5+ -8 -85 -8 +5)) all in-all out

57e (=285 + Sy + 85— 287 — S — S{ + 285 + 85 — 85 +28f — $; + 59)
mg , . ) . -
53S0 + S5+ ST =S =85 — S5+ 85+ 855)

) \I’Z and \113

5(S5 + ST+ S5+ 59

collinear FM

noncollinear FM

mr, , 58+ ST+ 85+ 59)
0S5+ ST+ S5+ 5
55+ 85— 8 = Si =8 + 855 +8 -5
mr, 556 + S5 — ST+ ST =85 — S5+ 85— 55
S+ S-S+ ST+ S-S -8 -5
55(=S) + S5+ S = ST+ 85 + 85— 85— S))
mr, 57586 — S5 —

ST — ST — S+ S5+ 55+ 59)

Palmer-Chalker (W,)

(=S5 S SIS =8-S+ 578D

rotation around a [100] axis followed by reflection in the same
[100] plane; 6 x o;—reflection in [011] plane; and e—the
identity [64].

The different ways in which classical ground states with
q = 0 break the symmetries of a tetrahedron can be fully
characterized by introducing order parameters m, which
transform with the nontrivial irreducible representations A =
{As, E, Ty, Ty} of T,. These order parameters are formed
by linear combinations of spin components, and can be

expressed in either global coordinate frame of Hey [Eq. (1)]—
cf. Table Ill—or in the local coordinate frame of H!%@
[Eq. (8)]—cf. Table IV.

The anisotropic exchange Hamiltonian ' [Eq. (16)] can
be transcribed exactly in terms of same set of irreps:

tet _ 1 2 2 2 2
Hex = 2 [aAz mp, + ag Mg + at, My, +ar, , my,

2
+atg my . + ATy pp MT, , mT1.B]’ (17

TABLE IV. Order parameters m,, describing how the point-group symmetry of a single tetrahedron within the pyrochlore lattice is broken
by magnetic order. Order parameters are irreducible representations of the point-group T, and are expressed in terms of linear combinations of
spin-components S; = (S,S;,S}), in the local frame of the magnetic ions—cf. H'eofa' [Eq. (8)]. For convenience, in this table, the local axes
(x'ocal ylocal slocaly are simply written (x,y,z). Labeling of spins within the tetrahedron follows the convention of Ross et al. [44]—cf. Fig. 5.

Order
parameter Definition in terms of local spin components
ho S +Si+S5+S)
1/{Si+Si+S5+S3
mg 5 , , ,
2\S)+S7+S;+S;
SR (=28 + S] — V2S] + Si + V285 — S5 + V28 - S3)
mr, 5(V/6S5 — 328 + 2¢/3S) — V/6S] +3v/28] — 24/3S] + /685 — 3V2S) + 24/3S; — V65 + 3V2S) — 24/38)
L(V6S) + 328y + 2v/355 — V657 — 3v2S] — 24/38; — V685 — 3v/2S) — 24/3S5 + V/6S + 3v28S] + 24/35))
SR (—V2S; — S§ — V2S] - S + V285 + S5 + V2S5 + S3)
mr, S(/6SE — 3v2S) — 24/3S] — V657 + 3v2S] + 2438 + V655 — 3v/2S) — 24/3S5 — V653 + 3v28S] +24/35))

L(V6S) +3v2S) — 24355 — V657 — 328 +24/38; — V685 — 3v/28) +24/3S5 + V/6S5 + 3v28S) — 24/35))
1(=8) -S| +S,+5S)
mr, 1(V38) + 8 — V35 — S| + 35} + S} — V3S} - 8))
(=38 + S} + 38} — S + /385 — S) — V/3S5 + 8))
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TABLE V. Coefficients a; of the scalar invariants |my,|> appearing in X

PHYSICAL REVIEW B 95, 094422 (2017)

g{” [Eq. (21)]. Coefficients are expressed as a function of

(J1, Ja, J3, Ju), the parameters of Hex [Eq. (1)]; and (J,;, J+, Jix, J.+), the parameters of Hgfa' [Eq. (8)], with the canting angle 6r, defined
in Eq. (20). The classical ground states of Hex [Eq. (4)] can be found by identifying the coefficient(s) a; with the lowest value, and imposing

the constraint of fixed spin length, Eq. (24), on the associated m,,.

Coefficient Definition in terms of Definition in terms of

of |my |2 parameters of Hey [Eq. (1)] parameters of H'%% [Eq. (8)]

aA2 —2.]1 + Jz - 2(‘]; + 2]4) 3]23

ag 2L+ L+ +24 —6J4

aT2 —Jz + .13 — 2./4 2Ji — 4Jii

ar, @1y + T2 cos® (6r,) — (Jy + Js — 21) sin’ (6, ) YAJL +8us +8V2 s — Joo) cos? (Br,)
++/2J; sin (261,) +2(1Js +2Jes — 4201 — J.)sin? (6r,)

AL (—2Js — 4Jas +2V2Js — J)sin (207,
ar, g (2J; + Jo)sin? (6r,) — (J» + J3 — 2Js) cos? (Or,) %(4Ji +8Js + 824 — J..)sin? 61,

—/2J; sin (26r,)

(s +2Jis — 4v/2J 1 — J) o8 (br,)
2 (—2Jy — 4ot + 24204 — J.)sin (26r,)

where the coefficients
ap, = =201+ Jo — 2(J3 + 2Ju),
ag = =201+ o+ J3+ 24,
ar, = =D+ Jz —2J4,

ar, . = 2J1 + Jo,
aryg = —Jo — J3 +2Js,
aTias = _‘/§J3 (18)

are completely determined by the parameters of Hex [Eq. (1)].
Equivalent expressions for a, can be found in terms of the
parameters of Hg(ca' [Eq. (8)]. We note that a similar analysis,
applied to Er,TiO7, appears in Ref. [43], with a different
choice of basis for the two appearances of the Ty irrep.
Note that this is entirely different from the analysis appearing
in Ref. [42] which classifies wave functions for spin-1/2
on a tetrahedron according to the irreps of Ty, not linear
combinations of spin operators.

Symmetry permits a finite coupling ar, ,, 7 0 between the
two distinct Ty irreps mr, , and m, ;. This can be eliminated

from HE! by a coordinate transformation

mr, ,, = costr, mr,, — sinOy, mr, g,

mr, ., = sin6y, mr,, + cosfr, mr, g, 19)
where
1 8J
fr, = — arctan V83 (20)
2 250 +20, + J3 — 2,

is the canting angle between spins and the relevant [100] axis
in the ferromagnetic ground state. The Hamiltonian Hfg(t then
becomes

[Tal _ 1 2 2 2

Hel' = E[aAzmA2 + agmg + ar,myg,
+ar, ,m7_, +ar,,mi | 1)

Ty a7, Tig M7, 5 >

with coefficients given in Table V. We wish to emphasize that

g(d] [Eq. (21)] is an exact transcription of H' [Eq. (16)]

and not a phenomenological Landau theory. As such, Hg(d]
[Eqg. (21)] is subject to the constraint that every spin has fixed
length.

For the majority of the discussion in this article, we
shall be concerned with classical vectors S; representing a

(pseudo)spin-1/2, with
S =1/2, (22)
in which case
ISi|> = 1/4. (23)

For spins belonging to a single tetrahedron, we can use
symmetry [67] to express this constraint as

S;+ST+85+83=1,
S;+S7 -85 -8 =0,
S;—Si+85-85=0,
S;—S7i—S5+85=0. (24)

The constraint of fixed spin length, Eq. (24), plays a central
role in determining the allowed classical ground states, below.

We note in passing that the addition of a single-ion
anisotropy term —D(S - z/°°@)? can easily be included in the
analysis by a simple modification of the coefficients a; in Hg{‘]
[Eq. (21)], and so do not affect any of the conclusions reached
about ground states, below. However, since interactions of this
form contribute only to a trivial energy constant for a Kramers
doublet, we will not pursue this point further here.

II1. ANALYSIS OF CLASSICAL PHASE
DIAGRAMFORT =0

A. General considerations

Given the existence of a classical ground state with q = 0,
4-sublattice order, it is easy to determine a ground-state phase
diagram directly from the Hamiltonian ngd] [Eq. (21)]. The
method developed below is quite general and can be applied
for arbitrary (Jy,J2,J3,J4). However, for concreteness, we
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concentrate on the limit
J3 <0, Jy=0, 25)

which is of particular relevance to known pyrochlore materials,
leading to the phases shown in Figs. 1-3.

The classical ground state of Hg(d] [Eqg. (21)] can be found
by first identifying the irrep A* for which a,- takes on the
minimum value, and then imposing the constraint on the total
length of the spin [Eq. (24)] on my«, which implies that

mp, + Mg +my, +my  +my = > mi=1. (26)
x

Such an approach is possible because each individual order
parameter m, can reach a maximum value of unity within
physical spin configurations

maxm; = 1. 27

This method of determining the classical ground state is
completely general and, once generalized to the lattice, is not
restricted to conventionally ordered states [48,49].

In the limit J5 < 0, J4 = 0, the coefficients a; with the
lowest values are ag, ar,,,, or aT,, and the correspondingq = 0
ordered ground states found have E, T, and T, symmetry. The
boundaries between these phases occur where

aT, = ag < at,, AT,y aA,
=J,=J>0, (28)

ar, = ar,, <ag, Aty aa,
= h=-J>0, 29

ag = ar,, < dat,, ATy, da,

i@ = 50)

h = 0, 30
ROV A G0

as illustrated in Fig. 7.

In what follows, we explore the classical ground states
with E, Ty, and T, symmetry in some detail, paying particular
attention to what happens on phase boundaries where more
than one order parameter can take on a finite value. We will
not consider the all-in, all-out ground state, a simple Ising-type
order with two degenerate ground states. All-in, all-out order
has a finite value of the order parameter ma, (cf. Table IV),
which requires aa, to be the lowest coefficient. This only
occurs for J4 > 0 and/or J3 > 0, and so falls outside the scope
of this article.

B. Noncollinear FM with Ty symmetry

We begin by considering what happens where interac-
tions are predominantly ferromagnetic (i.e., Ji,J> < 0), as in
Yb,Ti,O7 [44]—-cf. Table 1. For most of this region, as might
be expected, the classical configuration with the lowest energy
is a state with a finite magnetization. This is the ground state
throughout the region bounded by ar, ,, = art, [Eq. (29)], and
at, , = ae [Eq. (30)]—cf. Fig. 7. Here the energy is minimized
by setting

m-2|-1,A’ = 1 (31)
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Palmer—Chalker
(T)

S/l

- Ji /|5

Non—collinear FM
(T1)

1D manifold
(E)

ag=4ar, ,

FIG. 7. Classical ground-state phase diagram of Hex [Eq. (4)]
for J; <0, J;, =0, as a function of (Jy,J>)/|J3|. In the absence of
fluctuations, the ground states are a noncollinear FM transforming
with the Tq irrep of T,; a one-dimensional manifold of states
transforming with the E irrep of Tg; and the Palmer-Chalker
phase, a coplanar antiferromagnet transforming with the T, irrep
of T,. All three phases have long-range 4-sublattice order. Ana-
Iytical expressions for the boundaries between phases are given in
Eqgs. (28)—(30), with coefficients a; defined in Table V.

and
ma, = Mg =My, = mT1B, =0. (32)

The constraints on the spin lengths [Eq. (24)] further imply
that

Yy z _

my my,, =0
x z

my, my = 0. (33)
X Yy —

MMy =

It follows that there are six possible ground states

+1\ (0) [0
mr, =0 |[x1].] 0] (34)
0/ \o) \#1

Written in terms of spins, these are six, noncollinear ferromag-
netic (FM) ground states, with typical spin configuration

So = S(sinér, /+/2, sinbr, /v/2, cos br, ),

S = S(—sin6r, /N2, sinbr, /N2, cos or,),

S, = S(sinbr, /+/2,—sinér, /+/2, cos br,),

S; = S(—sinér, /v/2,—sinbr, /v/2, cosbr,),  (35)

where 6t, is given by Eq. (20) and, following Eq. (22),
S=1/2.
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(a) (b)

FIG. 8. Spin configuration in the 4-sublattice noncollinear FM
phase, transforming with the T+ irrep of 7;: (a) viewed along the [001]
axis; and (b) viewed slightly off the [110] axis. The magnetization
is aligned with the [001] axis. Spins are canted into the plane
perpendicular to this, with canting angle 6r,. The canting is of an
icelike form such that the projection of the spin configuration onto
a [001] plane has two spins oriented into the tetrahedron and two
oriented out, as shown in (a).

The magnetization of this FM ground state, illustrated in
Fig. 8, is parallel to a [001] axis, with spins canted away from
this axis, in an icelike manner. This state has been identified
as the ground state in Yb,Sn,O5, where it was referred to as a
“splayed FM” [36], and in most samples of Yb,Ti,O; which
order at low temperature [24,66,68—73] although a different
form of canting has recently been claimed in Ref. [74]. It is
also the observed ordered state of the Tb based pyrochlore
Tb,Sn, 07 [75,76].

C. One-dimensional manifold of states with E symmetry

For a wide range of parameters, predominantly with
antiferromagnetic XY interactions J; > 0, the classical ground
state of Hg("] [Eq. (21)] is a one-dimensional manifold of states
which transforms with the E irrep of T, (Fig. 9). These ground
states occur in a region bounded by ag = ar, ,, [Eq. (30)] and
ag = ar, [Eq. (28)]—cf. Fig. 7—and is characterized by spins

(b)

FIG. 9. Example of a spin configuration within the one-
dimensional manifold of states transforming with the E irrep of
T,: (a) viewed along [001] axis; and (b) viewed slightly off the
[110] axis. The manifold possesses 4-sublattice long-range order,
with spins lying in the “XY” plane perpendicular to the local [111]
axis at each site. The manifold is continuous, and can be parametrized
with a single angle 6g. The manifold can be generated by a clockwise
rotation of all spins around their respective local axes.

PHYSICAL REVIEW B 95, 094422 (2017)

lying in the XY plane normal to the local [111] axis on each
site [cf. Egs. (A2)—(A4)].

For this range of parameters, the classical ground state
energy can be minimized by setting

mi =1 (36)
and
mpa, =my, =mr,, =mr,, =0. 37

These solutions automatically satisfy the constraint on the total
length of the spin Eq. (24) and are conveniently characterized
by writing

mg = (cos g, sinfg). (38)

It follows that the ground state is a continuous, one-
dimensional manifold of states parametrized by the single
angle 0 < 6g < 2. The spin configuration in this manifold is
given by

S —S\F 0e). 2 cos (e + 2=
0= [ 5005( E), §COS<E+?),
2 P 21
V§°°S<E_?)
S—S\/3 0 ,/2 o+ =
1= 5‘:05( E), — §COS< E+?>,
\/5 p 27
- §C°S(E‘?)]
S g 2 o \/3 o 27
2= [— 5008( E), §005<E+T),
2 2
o)
2 2 2
S; = S|:— 3 cos(fg), — \/;cos (QE + ?n),
12 P 2 39
§COS<E—?>i|, ( )

with spins lying in the local XY plane [cf. Egs. (A3) and (A4)].

D. Noncoplanar antiferromagnet ¥, with E symmetry

It is now well established that in Er,Ti,O; quantum
fluctuations [26,27,46], classical thermal fluctuations at low
temperature [25] and thermal fluctuations near the ordering
temperature [28,77] fluctuations all act within the one-
dimensional manifold of classical ground states described
in Sec. IIIC, to select a noncoplanar antiferromagnet W,
illustrated in Fig. 10. Structural disorder, meanwhile, favors the
coplanar antiferromagnet W5 [78,79], illustrated in Fig. 11. To-
gether, this pair of states form a basis for the E irrep of T, [65].

The W, ground state is sixfold degenerate, with spins
canted symmetrically out of the [100] plane. The six spin
configurations for W, states are given by Eq. (39) with
O = %, n=0,1,2,...,5. The ¥, state is characterized by
the primary order parameter mg (cf. Table III), and by cg > O,
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N X /
(a) (b)

FIG. 10. Spin configuration in the 4-sublattice noncoplanar anti-
ferromagnet W,, selected by fluctuations from the one-dimensional
manifold of states transforming with E: (a) viewed along [001] axis;
and (b) viewed slightly off the [110] axis. At the phase boundary with
the Palmer-Chalker phase, each of the six W, ground states can be
transformed continuously into a Palmer-Chalker state without leaving
the ground-state manifold.

where (cf. Refs. [77,80])
cg = (cos 66g). (40)

Symmetry allows for fluctuations to induce a finite value
of mp, in the W, state [81], but classically this must vanish as
T — 0 since the energy is minimized by ma, = 0 within the
region of phase diagram which favors the W, state.

E. Coplanar antiferromagnet ¥; with E symmetry

For parameters bordering on the noncollinear FM phase,
fluctuations select a coplanar antiferromagnet W3 from the
one-dimensional manifold of states transforming with E. The
W3 ground state is sixfold degenerate, with spins lying in a
common [100] plane.

The six spin configurations for W; states are given by
Eq. (39) with 6 = @, n=20,1,2,...,5. These states are
characterized by a finite value of the order parameter mg (cf
Table III), and by cg < O [cf. Eq. (40)]. An example of a typical
spin configuration is shown in Fig. 11.

Taken together W; and W3 form a complete basis for the E
irrep of T,.

_ Sl AN /
(a) (b)

FIG. 11. Spin configuration in the 4-sublattice coplanar antifer-
romagnet s, selected by fluctuations from the one-dimensional
manifold of states transforming with E: (a) viewed along [001] axis;
and (b) viewed slightly off the [110] axis. At the phase boundary
with the noncollinear FM phase, each of the six W5 ground states can
be transformed continuously into a noncollinear FM state, without
leaving the ground-state manifold.
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F. Palmer-Chalker phase ¥, with T, symmetry

In aregion bounded by at, = ar, ,, [Eq. (29)] and at, = ae
[Eq. (28)]—cf. Fig. 7—the energy is minimized by setting

m7, =1 41)
and
mp, =mg =mr,, =mr, =0. (42)

The constraints on the total length of the spin, Eq. (24),
further imply that

mi, =1, (43)
m:T-zm-Z'-2 =0, (44)
m?zsz'2 =0, 45)
m%m-yr2 =0, (46)

giving us a set of six ground states

+1\ /0 0
mr,=|o0|.[x1].[o0] 47
0 0] \+1

Within these ground states, spins are arranged in helical
manner in a common [100] plane, with a typical spin
configuration given by (see Fig. 12)

1 1
55 = s(——,—,o). (48)
V2 V2
This phase is the “Palmer-Chalker” phase, first identified
as the ground state of a model with antiferromagnetic nearest-
neighbor Heisenberg interactions and long-range dipolar
interactions on the pyrochlore lattice [47]. The six degenerate

(a) (b)

FIG. 12. Spin configuration in the 4-sublattice Palmer-Chalker
phase W, transforming with the Ty irrep of 7,: (a) viewed along
[001] axis; and (b) viewed slightly off the [110] axis. At the phase
boundary with the W, phase, each of the six Palmer-Chalker ground
states can be transformed continuously into a W, state.
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ground states in this phase are described by the basis vectors
W, 5.6 [65], which are all equivalent by symmetry. For brevity
we refer to this phase as Wy, but it should be remembered that
all three basis vectors Wy 5 ¢ are equivalent ground states.

The Palmer-Chalker states are superficially similar to
the W3 states (Sec. IITE), being coplanar, antiferromagnet
configurations with all spins lying in a [100] plane. However,
their symmetry properties are quite different (as is expressed
in the fact that they transform according to different irreps of
T,). A simple example of these different symmetry properties
is their behavior under the three C; rotations around (100) axes.
The W5 configurations are invariant under all such rotations.
The PC states are invariant under one such rotation (the one
around the axis normal to all the spins), but reverse all spin
orientations under the other two.

G. Boundary between Palmer-Chalker phase and
the one-dimensional manifold of states with E symmetry

The boundary between the Palmer-Chalker phase and the
one-dimensional manifold of states with E symmetry occurs
when ag = ar, [cf. Eq. (28)]. In this case, Hg(d] [Eq. 21)] is
minimized by setting

mg +mj, =1 (49)
and
ma, =mr,,, =mr,, =0. (50)
Substituting
mg = me(cosfg, sinfg), 51

and imposing the constraint Eq. (24), we find

2m Emi sin(GE)

27[ X z
5 )~ my,my, = 0,

y ooz
—my,my, = 0,

y .
2mEmT2 sin <QE -

2mgm3, sin (95 + %T) — my,my, = 0. (52)

It is easy to show that there are no solutions to Egs. (52)
where more than one component of mr, is finite. There
are, however, three distinct one-dimensional manifolds which
connect pairs of Palmer-Chalker states to the one-dimensional
manifold of E-symmetry states:

1
mg = cos(w) <é>, m, = sin(e) | 0], (53)
0
_1 0
mg = cos(ﬁ)<[2>, mr, = sin(B) (1) (54)
5 0
1 0
mg = cos(y)( j§> mr, = sin(y)(o . (55)
S 1

where the angles o, 8, and y run from O to 2.
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1D manifold of E-symmetry states

additional 1D manifolds present
at phase boundary

® P, ground state

@® Palmer-Chalker ground state

FIG. 13. Structure of the ground-state manifold at the boundary
between the Palmer-Chalker (PC) phase and the one-dimensional
manifold of states with E symmetry. The black circle denotes
the manifold of E-symmetry ground states, including the six W,
ground states (black dots). At the boundary with the PC phase, this
manifold branches at the W, states, to connect with three, additional,
one-dimensional manifolds. These manifolds in turn interpolate to
the six Palmer-Chalker ground states with T, symmetry (red dots).
An exactly equivalent picture holds on the boundary between the
noncollinear ferromagnet (FM), and the one-dimensional manifold of
states with E symmetry. However, in this case the different manifolds
intersect at the W5 states.

A typical spin configuration for one of the three connecting
manifolds is
@), cos (o + 3). cos (o= 5
cos(a), cos (o + =), cos (e — =) |,
3 3

-
[—cos(@), —cos(a+ 5 ). —cos(« — T )];
[
[

| |
)

| |
©

| |
”

cos(a), cos (a — %) —cos(a + %)],

cos(w), —cos(a — %), cos <a + %)], (56)

| |
o

mmmm

where o =0, m correspond to the W, ground states with
0g =0, m, and @ = /2, 37 /2 correspond to two of the six
Palmer-Chalker ground states. These manifolds are illustrated
in Fig. 13.

By application of the Lego-brick rules given in Sec. IIE,
the ground-state degeneracy on this phase boundary must
be at least 0(2L2). This follows from the fact that, on
the boundary, the Palmer-Chalker ground states W, share
two spin orientations with the neighboring W3 configuration.
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This, in turn, is connected with the O(L?) number of zero
modes appearing in spin-wave expansions around the W,
configurations at this boundary (cf. Sec. IV B).

We note that a special case of this phase boundary is studied
for pure XY spins (i.e., with infinite easy-plane anisotropy) in
Ref. [82], finding the same structure of ground-state manifolds.

H. Boundary between the noncollinear ferromagnet
and the one-dimensional manifold of states
with E symmetry

The boundary between the noncollinear ferromagnet and
the one-dimensional manifold of states with E symmetry

occurs when ag = ar, . [cf. Eq. (30)]. In this case, Hg(d]
[Eq. (21)] is minimized by setting

m; 4+ mg =1 (57)
and
mp, =mr, , =mr, =0. (58)
Defining, for the sake of brevity, the quantities
(o) = [V2cos (br,) — sin (o))
v(6r,) = [sin (6r,)° + v2sin (261,)], (59)

and imposing the constraint Eq. (24) we obtain

wr )
2memy,,, cos(0) = —% Tw mT
1A
, 2 wu(or
ZMEW%M/ cos <9E - TJT) = 1)((91_1 A))mn N mT1 W (60)
1A
i 2 w(O7
2mEm:F1.A’ cos <9E + ?) 1)((61-1 A)) MT, p T1 A’
1A

where 67, is the (fixed) canting angle [Eq. (20)] and &g is the
(variable) angle within the U (1) manifold [Eq. (38)]. For the
parameters considered here, the quantities ©(61,) and v(6t,)
are always finite.

Arguments identical to those developed for the boundary
with the Palmer-Chalker phase, give us three further 1D
manifolds in addition to that associated with the E phase.
However the intersections of the manifolds are now located at
O = %, corresponding to the W states. This explains the
model’s general entropic preference for W5 states in the region
proximate to the ferromagnetic phase.

A typical spin configuration for one of the three connecting
manifolds, parametrized by an angle 7 is

Sy = S(cos (6r,) sin(n), —cos(n) + sin(n) sin (6r,)],

—
NG
[ cos(n) + sin(n) sin (6r, )]>’

(91-1) sin(n), \}E[cos(n) — sin(n) sin (91-1 )],

x
I
Sl 28l

[—cos(n) — sin(n) sin (67, )])
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S, = S(cos (91-1) sin(n), %[—cos(n) — sin(n) sin (91-1)],

1
ﬁ[ cos(n) + sin(n) sin (6, )]),
S; = S( cos (6r,) sin(n), \;i[cos(n) + sin(n) sin (6r,)],
1
ﬁ[cos(n) — sin(n) sin (6’T1)]). (61)

Here n = 0 corresponds to the W3 ground state with 6 = /2,
and n = /2 to one of the six FM ground states.

We note that an equivalent ground-state manifold was
discussed by Canals and co-authors [83], and later by Chern
[80], in the context the Heisenberg antiferromagnet with
Dzyaloshinskii-Moriya interactions on the pyrochlore lattice.
This case corresponds to a single point on the phase boundary
considered here.

I. Boundary between the Palmer-Chalker phase
and the noncollinear ferromagnet

The boundary between the Palmer-Chalker phase and
the noncollinear ferromagnet occurs when at, = af, . [cf.

Eq. (29)]. In this case, 5! [Eq. (21)] is minimized by setting
mi, +my =1 (62)
and
mpa, =mg =mr, , =0. (63)
Imposing the constraint Eq. (24) we obtain
—my,mi, + [sin (6r,)” + ¥ sin (20r,) g, i
+[VZcos (0r,) — sin (6r,)](mr,, x mr,), =0
—mi,ms, + [sin (6r,)" + v2sin (26r,) |, m3.,
+[(V2cos (6r,) — sin (6r,)](mr,,, x mr,) =0
— my,my, + [sin (6r,)’ + V2sin (207, ) s, .
+[(v/2cos (67,) — sin (6r,)](mr,, x mr,). =0. (64)

where 67, is defined in Eq. (20).

In general, the ground-state manifold on the boundary of the
Palmer-Chalker phase is locally two dimensional. To establish
this, we consider small deviations from a given solution

0
my, = my, + émr,,

mr,, =m}  +omr,, (65)

and expand the constraint Eq. (64) to linear order in ém.
Generally, we find two linearly independent solutions for
(émr,,0mr,, ), and the manifold in the vicinity of (m%)-z ,mgw)
is two dimensional.

However if we expand around a state (i, 1}, ) where
both order parameters are aligned with the same cubic axis,

e.g.,

DL | () A
my, = mT =my,, =My, = 0, (66)
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one of the Eqs. (64) is satisfied trivially, leaving only three
constraints on six variables. It follows that the manifold is
locally three dimensional in the vicinity of (ﬁl—?—z ,Ii19|-1 ).

This set of ground states on the tetrahedron includes
multiple states where one of the spins has the same direction.
Applying the Lego-brick rules, described in Sec. IIE, this
means that neighboring kagome planes can be effectively
decoupled in the ground state and there is a ground-state
degeneracy on the lattice of at least O(2%).

J. All-in, all-out order with A, symmetry

In Secs. III B-III F we have explicitly discussed the differ-
ent types of ordered, classical ground state which occur for
J3 < 0,J4 = 0. For a more general choice of parameters, with
Jy > 0 or J3 > 0, it is possible to find situations where the
lowest parameter in H! [Eq. (21)] is aa,. In this case, the
ground state will have 4-sublattice order with a finite value
of the order parameter ma, (Table III). As can be seen from
the definition of the order parameter, this type of order is
particularly simple, with all spins aligned along the local [111]
axes, and all spins pointing either into, or out of, tetrahedra on
the A sublattice. This type of order is commonly referred to
as all-in, all-out and is observed in some pyrochlore magnets,
including Nd,Zr, 07 [84].

Since this type of order does not occur for J3 < 0,J;, = 0,
we will not discuss it further here. However, we note that the or-
der parameter m p, is a scalar, and that finite-temperature phase
transitions are therefore expected to fall into the Ising univer-
sality class, in the absence of a first order phase transition.

IV. THEORY OF CLASSICAL AND QUANTUM
SPIN-WAVE EXCITATIONS

In order to complete the classical phase diagram described
in Sec. III, it is necessary to understand how quantum and/or
classical fluctuations select between the one-dimensional
manifold of states described by mg. At low temperatures,
this can be accomplished by exploring the way in which
spin-wave excitations contribute to the free energy. Knowledge
of the spin-wave excitations also makes it possible to make
predictions for inelastic neutron scattering, discussed below,
and to benchmark the results of the classical Monte Carlo
simulations described in Sec. V.

In what follows, we describe a general theory of classical
and quantum spin-wave excitations about the different
ordered states described in Sec. III. In Sec. IV A we establish
a classical, low-temperature spin-wave expansion, which
makes it possible to determine the boundary between the
W, and W; ground states for classical spins in the limit
T — 0 (cf. Fig. 1). In Sec. IVC we develop an equivalent
quantum theory, within the linear spin-wave approximation,
which allows us to estimate the boundary between the W,
and W3 ground states for quantum spins in the limit 7 — 0
(cf. Fig. 2). We find that the high degeneracies at classical
phase boundaries, described in Sec. III, strongly enhance
quantum fluctuations, and in some cases eliminate the
ordered moment entirely. In Sec. IVD we show how both
classical and quantum spin-wave theories can be used to make
predictions for inelastic neutron scattering. Readers interested
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in the relationship between classical and quantum spin-wave
theories are referred to the discussion in Ref. [85].

A. Classical spin-wave expansion

To obtain the low-energy excitations around the ordered
ground states of Hex [Eq. (4)] we use a description in terms of
classical spin waves, analogous to that described in Ref. [86].
We begin by defining a local coordinate system by introducing
a set of orthogonal unit vectors {u;,v;,w;} for each of the four
sublattices i = 0,1,2,3 (cf. Fig. 5). The local “z-axis” w; is
chosen to be aligned with the spins in a given 4-sublattice
ground state

S; = Sw; Vi. (67)

The remaining unit vectors u; and v; are only determined up
to a rotation about w;, and any convenient choice can be made.

Using this basis, the fluctuations of the spin S;; on sublattice
i of tetrahedron k can be parametrized as

N/ S8u
V/S8vi
82— s8u3, — 5802,
v/ S8u
VS8v; : (68)
S — 38uf — 38v},

Substituting Eq. (68) into Hex [Eq. (4)] we obtain

Hox =) D Suc-Jij - Sik

Sik =

%

tetk i<j
=E+HEY +--, (69)
where
NS§?
& = e 'Z()wj “Jij W (70)
LJ=

is the classical ground-state energy of the chosen 4-sublattice
state, and

3
LALEDY

k i.j=0

1
x [—E(au?k + 815y + 8v7 4 8V5 ) (Wi - Jij - W)

+ Suirduji(; - Jij - wj) + Svikdv (Vi - Jij - V)
+ Suidvjx(u; - Jij - v;) + Svidu jk (vi - Jij 'llj)]

(71)
describes the leading effect of (classical) fluctuations about

this state. Performing a Fourier transformation we find

NS? & l—_ N
Hex = e w; - Jij oW+ 3 E i(—q)" -M(q) - ii(q).
q

i,j=0
(72)
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Here ii(q) is the vector

i(q) = (uo(q),du1(q),8u(q),dus(q),

8v0(q).8v1(q).8v2(q),8v3(q)) (73)
and M(q) the 8 x 8 matrix
Mll M12
Mig) = 25 (leggg Mzzgg;) (74)

built from 4 x 4 blocks

M/} (q) = cos(q - r;j)

X (Ui “Jij ;=4 Z(Wl Jij 'Wj)>» (75)
]

M}7(q) = M7} (q) = cos(q - 1;))(v; - Jij - u;),  (76)

J

M;?(q) = cos(q - 1)

X(Vi “Jij v —8ij Z(Wl -Jij ~Wj)>, 77)
1

where i,j € {0,1,2,3} and r;; =r; —r; [cf. Eq. (A1)].
The matrix M(q) [Eq. (74)] can be diagonalized by a
suitable orthogonal transformation U = (U”)~! to give

8
1
He" = 5 Z Z KvqUuqVv—q; (78)

q v=l1

where the eight normal modes of the system are given by
v(q) = U -i(q), (79)

with associated eigenvalues «,(q). Since ngsw [Eq. (78)]
is quadratic in v,q, the associated partition function can be
calculated exactly

Z05W _ (\/%)w exp <_T&’> / [ﬁndvuq}

v=1 q

8
< 1 Zv:l Zq quUquu—q>
xexp | —=

2 T

= exp <_T50> ]i]:[ (\/:%) (80)

It follows that, for T — 0, the free energy of the system is
given by

T
Fer T8y L e NTRT O b
vq

Where the O(T?) corrections arise from the higher order, spin-
wave interaction, terms neglected in Eq. (69).

Within this classical, low-T expansion, the eigenvalues
k,(q) correspond to independent, low-energy modes, which
determine the physical properties of the states, and have
the interpretation of a classical spin-wave spectrum. How-
ever the classical spectrum «,(q) should not be confused
with the quantum spin-wave dispersion w,(q), measured in
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inelastic neutron scattering experiments and discussed in
Sec. IVC.

B. Ground-state selection within the one-dimensional
manifold of states with E symmetry

Energy alone does not select between the one-dimensional
manifold of states with E symmetry [25,87]. However
quantum fluctuations [26,27,46], thermal fluctuations at low
temperature [25,87], thermal fluctuations near the ordering
temperature [28,77], structural disorder [78,79], and structural
distortion [78] are effective in selecting an ordered ground
state. In what follows, we use knowledge of the free energy
within a classical spin-wave theory Fé?(W‘T [Eq. (81)] to
determine which of the possible E-symmetry ground states is
selected by thermal fluctuations in the limit 7 — 0. A parallel
treatment of the quantum problem is given in Ref. [46] and a
classical analysis applied to the limiting case of pure XY spins
(i.e., with infinite easy plane anisotropy) is given in Ref. [82].

As a first step, it is helpful to write down a minimal,
symmetry allowed, form for the free energy in terms of the

components of
_ (mEgcos(6g)
me = <mE sin(eE)) (82)

(cf. [81]). Keeping only those terms which respect the lattice
symmetries, and going up to sixth order in mg,

fE:fo+%am2E+ibm‘E+%Cm6E
+ & dmi cos(66g) + O(mg), (83)

where g is an unimportant constant.
Note that Eq. (83) does not contain the symmetry allowed
coupling to ma,:

ma,mi cos(36g),

which appears in [81]. This is for two reasons: (i) we are
considering the T — 07 limit where a finite value of ma, is
energetically unfavorable and will be very small; and (ii) ma,
can, in any case, be integrated out to arrive at Eq. (83) with
renormalized coefficients for the sixth order terms.

It follows from Eq. (83) that (i) a suitable order parameter
for symmetry breaking within this manifold is cg = cos 66
[77,80], cf. Eq. (40), and that (ii) the two states spanning mg,
W,, and W5 are distinguished only at sixth order (and higher)
in mg [43]. The quantity cg is a secondary order parameter,
in the sense that a finite expectation value of cg is induced
by coupling to the primary order parameter mg. These facts
have important consequences for the finite temperature phase
transition into the paramagnet, as discussed below.

For T — 0, we can parametrize Fg [Eq. (83)] from Fé?(W’T
[Eq. (81)]. Since Hg{‘] [Eq. (21)] is quadratic in mg, all other
terms in the free energy must be of purely entropic origin.
Moreover, symmetry requires that the entropy associated with
the E-symmetry states will vary as

Se(g) = N Z s, cos(6n0g). (84)
n=0,1,2,...

The sign of the coefficients s,, then determines the ground state
selected by fluctuations. Taking the derivative of Eq. (81) with
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FIG. 14. Variation of entropy per spin within the one-dimensional manifold of states with symmetry E. Entropy S(6g) has been estimated
using the low-temperature expansion [Eq. (85)], for a range of values of J,, with the entropy of the W3 state subtracted as a reference, i.e.,
Asge = [S(6e) — S(r/6)]/N. The parameters J; = 0.115 meV and J; = —0.099 meV were fixed at values appropriate to Er,Ti,O; [26],
setting J; = 0. In all cases, Asg. repeats with period 7 /3. For a choice of J, appropriate to Er, Ti,O7 (J/J; = —0.49—solid purple line),
entropy takes on its maximum value for g = “F, with n = 0,1,2,3,4,5, corresponding to the six W, ground states. The extreme variation in
entropy at the boundary of the Palmer-Chalker phase (J; = J,—dashed black line), reflects the presence of an O(L?) set of zero modes in the
spectrum of W, ground state. Nonetheless, the entropy difference between W, and W3, As, 3 ~ 0.18, remains finite. For sufficiently negative
J> (dashed blue line, dotted green line) As, ;3 < 0, and fluctuations select the W3 state. All results have been calculated from Eq. (85), with the
sum evaluated numerically by a Monte Carlo method. Statistical errors are smaller than the point size.

respect to T allows us to explicitly calculate Sg(6g):

Se(6e) 1 0F9NT
N N T

1
=InT +1-— oI Xq:ln {detMg. (@)1}  (85)

(cf. Ref. [86]), where My.(q) is the 8 x 8 matrix defined
in Eq. (74), calculated by expanding around a state with
a particular value of 6g. These results are illustrated in
Fig. 14. Equivalent calculations, carried out numerically for
all parameters associated with E-symmetry ground states, lead
to the phase boundary between W, and W3 shown in Fig. 1.
For parameters appropriate to Er,Ti,O; [26], we find that
fluctuations select a W, ground state, in keeping with published
work [26,27,43,87].

We can now learn more about how ground-state selection
works by realizing that, for some choices of parameters,
the operation connecting different E-symmetry ground states
becomes an exact symmetry of the Hamiltonian. This is most
easily seen in a coordinate frame tied to the local [111] axis,
as described in Sec. I C. Considering H/9® [Eq. (8)], for the
simple choice of parameters

(‘]ZZ’ Ji, Jii» Jzi) = (0, J, 0, 0), J >0

the ground state belongs to E and the Hamiltonian reduces
to that of an XY ferromagnet. In this case the entire one-
dimensional manifold of E-symmetry states are connected
by an explicit symmetry of the Hamiltonian (rotation around
the local (111) axes). It follows that order-by-disorder is
ineffective, and the ground state retains its U (1) symmetry—
for a related discussion, see [46].

To gain insight into the phase diagram for J; <0, J, =0
(cf. Fig. 1), we expand about a point in parameter space

(Jogs Iy Jia, Jox) =(—2J,J,0,0) J >0
= (1,2, J3,Js) = (2J,-2J,0,0).

At this point the ground-state manifold is formed from linear
combinations of E and A, symmetry states and the entire
ground-state manifold is connected by an exact symmetry of
the Hamiltonian, so once again there is no order-by-disorder.
For J; < 0, states with a finite value of ma, are removed from
the ground-state manifold and fluctuations select a ground state
from among the E states. It follows that, for J3; — 07, J, =0,
the phase boundary between the W, and W5 states should tend
to the line J,/|J3| = —J;/|J3]| (cf. Fig. 1).

To see which phase is preferred for finite J3, we expand the
difference in entropy Sg(0g) between the W, and W3 ground
states

Asom — Se(/3) — Sg(/6)
Sg/3 = N

in powers of Jyy and J,+. We do this by writing the matrix
M(q) [Eq. (74)] as

M(q) = My(q) + €X(q),

where My(q) is the matrix associated with the high-symmetry
point, and X(q) is that associated with the perturbation, and
noting that

In[det(Mg + €X)]

(86)

87)

_ C _ (n+l)i . —1\"
= In[detMp)] + Y (=D —Tr[(X- My")"]. (88)

n=1

We then expand in powers of Jyy and J 4.
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We find that the leading correction to Asz /3 is

(5)
Aszp3~al — ) , (89)
J
where a = 0.0045. It follows that, for sufficiently small J3,
the phase boundary between W, and W3 should tend to the
line J11 = 0, with the W, phase favored for J14 > 0 and W3
favored for J11 < 0. Numerical evaluation of Eq. (85), in the
limit J3 — 0, yields results in agreement with these arguments
(cf. Fig. 1).

On the line Jiy =0 itself, we find that the leading
correction to the difference in entropy is

Jz:t 6
Asn/3 ~b|l—), 90)
Ji

withh = —5.3 x 1073, Hence the W5 state is weakly preferred,
and the phase boundary will bend towards positive J,/|J3|,
as observed in Fig. 1. Since J,1 is a term which drives
ferromagnetic out-of-plane fluctuations, a negative sign for
b is consistent with the argument that W3 is better connected
to the ferromagnetic phase, and hence has a softer spectrum
for ferromagnetic out-of-plane fluctuations. On the other hand,
symmetries of the W, states have been shown to allow for small
antiferromagnetic out-of-plane ordering, of the all-in, all-out
type [81].

In the limit |J5] 2 (|J1],]J2]), numerical evaluation of
Eq. (85) yields the more complex, reentrant behavior, as seen
in Fig. 1. This behavior occurs over a very narrow region of
parameter space, and is discussed in detail in Ref. [46] for the
case of quantum, as opposed to thermal, order-by-disorder.

C. Quantum spin-wave theory

Quantum spin-wave theories for q = 0, 4-sublattice classi-
cal ground states of Hex [Eq. (1)] have been discussed by a
number of authors, with attention focused on comparison with
inelastic neutron scattering in applied magnetic field [26,44],
and the way in which quantum fluctuations select between
the one-dimensional manifold of states with E symmetry
[26,27,46]. To date, all calculations have been carried out in
the linear spin-wave approximation

3
Hex ~ 6o<1 + é) + > ol
q v=0

1
x (bi(q)bv(q) + 5) + Oon

where & is the classical ground-state energy defined in
Eq. (70), w,(q) is the spin-wave dispersion, and b, is a set
of noninteracting bosons describing spin-wave modes with
band index v = 0,1,2,3.

Since the anisotropic exchange model Hex [Eq. (1)] does
not, in general, posses any continuous symmetry, spin-wave
excitations about a 4-sublattice classical ground states will
generally be gapped, and quantum effects are small. However,
the enlarged ground-state manifolds occurring where differ-
ent symmetry ground states meet can lead to “accidental”
degeneracies in the spin-wave spectrum, and large quantum
fluctuations about the ordered state. The effect of these
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FIG. 15. Fraction of the classical moment achieved in ordered
phases of a pyrochlore magnet with anisotropic exchange interactions,
within linear spin-wave theory. Away from the phase boundaries,
the ordered moment is close to its full classical value. All results
are obtained within a linear spin-wave analysis of Hex [Eq. (1)]—
cf. Appendix B—with J,/|J3| =3cos@, J,/|J5] =3cosb, J;3 <0,
J4 = 0, corresponding to the white circle in Figs. 1 and 2.

fluctuations on classical order may be estimated by calculating
the correction to the ordered moment on sublattice i, (S")
defined in Eq. (B1). Details of calculations are given in
Appendix B. In all of the 4-sublattice phases described in
this text, (S") is the same for all sublattices i = 0,1,2,3.

In Fig. 15 we show the effect of quantum fluctuations on
the classical, zero-temperature ground states of Hex [Eq. (1)].
For parameters which are deep within the ordered phases, the
ordered moment approaches its full classical value. However,
the enlarged ground-state degeneracies on classical phase
boundaries lead to additional zero modes in the spin-wave
spectrum, and correspondingly larger corrections. Corrections
to the ordered moment diverge logarithmically approaching the
boundary with the Palmer-Chalker phase from W,, where there
are entire planes of zero modes, and approaching the boundary
with the ferromagnetic phases from the Palmer-Chalker
phase.

In Fig. 2 (Sec. I) we show the quantum phase diagram of
Hex [Eq. (1)], within linear spin-wave theory. Regions where
quantum fluctuations eliminate the ordered moment entirely,
are shaded white. The effect is strongest where the degeneracy
of the classical ground state is highest, i.e., approaching the
Heisenberg line

Ji/I3l = 2/ |J3] — o0,
and in the vicinity of the special point [48]
Ji/I51 5 /103 = 0.

The absence of an ordered moment within linear spin-wave
theory can indicate a region where conventional magnetic
order breaks down entirely, and typically underestimates
the extent of any unconventional order [88-91]. It therefore
seems reasonable to suggest that the vicinity of these phase
boundaries will be favorable places to find novel quantum
ground states and quantum spin liquids. We will return to this
point in our discussion of Er,Sn, 07, in Sec. IX.
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D. Cross section in neutron scattering

Inelastic neutron scattering experiments measure the dy-
namical structure factor
_ qap )

Saor= Y Z(
x(ml,(—q, —)m}(q,)), 92)

a,f=1i,j=0
where the projection operator

%%3)
Sup —
( S

reflects the fact the neutron interacts with the components of
the spin transverse to the momentum transfer q, and

1[4
i _ _E: ap

< [ar| Cemenrsiwan | o3

R;

is the Fourier transform of the magnetic moment associated
with the rare-earth ions, for a given sublatticei = 0,1,2,3. The
associated g-tensor g?ﬁ is defined in Appendix A.

The equal-time structure factor measured in energy-
integrated, quasielastic neutron scattering, is given by

% /_00 do S(q,w)

Z Z(aﬂ_%ﬂﬁ)

a,f=1i,j=0
x (mi(—q.t = Om)(q.t = 0)).  (94)

For many purposes it is also convenient to resolve the
equal-time structure factor S(q) = S(q,t = 0) into spin-flip
(SF) and nonspin flip (NSF) components, or comparison
with experiments carried out using polarized neutrons. For
neutrons with polarization along a direction fi L q, these are
given by

S(q,t =0) =

3
SN (@ = ) (m'(—q) - i)m/(q)-Al),  (95)
i,j=0
J X |
T@w=2. 5

i,j=0
x [m/(q) - (h x Q)]). (96)

In this article, where we quote results for SF and NSF
components of S(q), we follow the conventions of Fennell
et al. [92] and consider fi = (1,—1,0)//2.

Connection to theory is made by using simulation or
spin-wave theory to evaluate the correlations of the magnetic
moments mfx(q,t). Equal-time correlations S(q) [Eqs. (94)—
(96)] can be calculated directly using classical Monte Carlo
simulation described in Sec. V, or using the classical spin-wave
theory described in Sec. IV A. The quantum spin-wave theory

([m'(—q) - (i x q)]
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described in Sec. IV C and Appendix B gives access to the full
dynamical structure factor S(q,) [Eq. (92)], as measured by
inelastic neutron scattering.

In the case of the classical spin-wave theory discussed
in Sec. IVA, equal time correlations (m}(—q)my(q)) are
expressed in terms of the correlations of the spin-wave modes
v,(q) using Eqgs. (68) and (79). The required correlation
functions (v,qui—q) can then be obtained directly from
Eq. (80):

T
(UquA—q) =8p—. o7
Kvq

InFigs. 20,21, and 22, explicit comparison is made between
the equal-time structure factor S(q) calculated within classical
Monte Carlo simulation, and from a low-temperature classical
spin-wave theory. We find excellent, quantitative agreement
between the two approaches. This confirms classical spin-
wave theory as a useful link between the exact analytical zero-
temperature theory developed in Secs. II and III and the finite-
temperature simulations presented in Sec. V.

In the case of the quantum spin-wave theory described in
Sec. IVC and Appendix B, it is necessary to reexpress the
spin correlation functions (S7 Sf ) in terms of the spin-wave

operators b} ,b, [cf. Eq. (91)]. This can be accomplished using
the Bogoliubov transformations described in Appendix B.
Within linear spin-wave theory, the correlations of b, take
on a simple form

<bu(qsw)bv’(_q,

(b}(q,w)b! (—q,—w)) = —w)) =0, (98)

(b(Q.0)b),(q.0)) = 8,v8[0 — 0, (@)] + (b (q.0)by (q.0))
= dyvé[w — (@1 + nplw, (@1}, (99)

where 6[w — w,(q)] is the Dirac delta function enforcing con-
servation of energy and n g(w) is the Bose-Einstein distribution

1

_ . (100)
exp (%) —1

ng(w) =

V. FINITE-TEMPERATURE PROPERTIES

The symmetry analysis and Lego-brick rules described in
Sec. II, analysis of ground-state energy described in Sec. III,
and spin-wave theory described in Sec. IV, together make
it possible to determine the ordered ground states of the
anisotropic exchange model Hex [Eq. (1)], in the limit 7 — 0.
The resulting classical ground-state phase diagram is shown
in phase diagram Fig. 1. However the interesting and unusual
properties of rare-earth pyrochlore oxides all come from
experiments carried out at finite temperature, and often relate
to paramagnetic, rather than ordered phases. We have therefore
used classical Monte Carlo simulations to explore the physics
of Hex at finite temperature. The main conclusions of these
simulations are summarized in the finite-temperature phase
diagram Fig. 3.

We note that, although the systems we wish to describe are
fundamentally quantum in nature, the classical simulations can
be expected to give a qualitatively correct description of the
physics in the high temperature, paramagnetic phase, where
thermal fluctuations destroy quantum coherence. The classical
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description should also work, at least in some respects, at
low temperature as long as the ground state of the quantum
system is in a classically ordered phase. Ultimately, the best
justification for our approach will come a posteriori from
agreement with neutron scattering experiments (cf. Fig. 24).

In what follows we document the nature of phase transi-
tions from the paramagnet into each of the ordered phases
(Secs. VA-VD), and explore how the enlarged ground-
state degeneracies at classical phase boundaries manifest
themselves at finite temperature (Sec. VI). Technical details
of simulations are given in Appendix C.

A. Finite-temperature transition from the paramagnet
into the Palmer-Chalker phase

The most revealing feature of any broken-symmetry state
is usually its finite-temperature phase transition. In Fig. 16
we show simulation results for the finite-temperature phase
transition from the paramagnet into the Palmer-Chalker phase
with T, symmetry. Simulations were carried out for parameters

(J1, Jo, J3, Js) =(0,0.3,-0.1,0) meV

deep within the Palmer-Chalker phase. Clear evidence for
a phase transition can be found in the anomalies in both
the specific heat ¢;(T) [Fig. 16(a)], and the order-parameter
susceptibility xT,(7T") [Fig. 16(b)] at 7T, = 305 £ 5 mK.

Symmetry permits a continuous phase transition between
the paramagnet and the Palmer-Chalker phase. However for
this parameter set, fluctuations drive the transition first order,
as is evident from the discontinuity in the value of the order
parameter mr, for T = T, [Fig. 16(c)], and the double peak
in the probability distribution for the energy [Fig. 16(d)].

B. Transition from the paramagnet into the noncolinear
ferromagnetic phase

In Fig. 17 we show simulation results for the finite-
temperature phase transition from the paramagnet into the non-
collinear ferromagnet, for parameters appropriate to Yb, Ti, O
[44], setting J4 = 0,

(Ji, J2, J3, Js) =(—=0.09,-0.22,-0.29,0) meV.

Anomalies in both the specific heat ¢,(T") [Fig. 17(a)] and
order-parameter susceptibility x1,(7) [Fig. 17(b)] at TT, =
455 £+ 5 mK, provide clear evidence of a phase transition.

At low temperatures, the temperature dependence of the
order parameters mry,, and m,, [Figs. 17(c) and 17(d)]
converges on the values expected from the zero-temperature
analysis of Sec. IIIB, and with a slope predicted by a
low-temperature expansion about the FM ground state (not
shown).

The single peak in the probability distribution for the
energy [Fig. 17(e)] suggests that for these parameters, the
thermal phase transition from paramagnet to noncollinear FM
in a classical model is probably continuous and at most very
weakly first order.

C. Transition from the paramagnet into the ¥, phase

In Fig. 18 we show simulation results for the finite-
temperature phase transition from the paramagnet into the W,
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FIG. 16. Finite-temperature phase transition from the paramagnet
into the Palmer-Chalker phase (W,), as determined by classical Monte
Carlo simulation of Hex [Eq. (1)], for parameters J; =0 meV,
J» =0.3meV, J; = —0.1 meV, J; = 0 meV. (a) Temperature depen-
dence of the specific heat ¢, (7). (b) Temperature dependence of the
order-parameter susceptibility xr,(7T'). (c) Temperature dependence
of the order parameter |mr,(7")|. (d) Probability distribution of the
energy E evaluated at the transition temperature for a cluster of
size L = 12. The black dashed lines in (a)—(c) indicates a first-order
phase transition at 77, = 305 4= 5 mK. Simulations were performed
for clusters of N = 16L3 spins, with L = 4,6,8,12.

phase, for parameters appropriate to Er,Ti,O7 [26], setting
Jys =0,

(J1, 2, J3, J4) =(0.11,-0.06,—0.1,0) meV.

This shows a number of interesting features.

Anomalies in both the specific heat c¢,(T) [Fig. 18(a)]
and order-parameter susceptibility xg(7') [Fig. 18(b)] at Tg =
505 £ 5 mK offer clear evidence of a phase transition.

Both the smooth evolution of the primary order parameter
mg [Fig. 18(c)] and the single peak in the probability
distribution for the energy [Fig. 18(e)] suggests that the phase
transition seen in simulation is at most weakly first order. For
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FIG. 17. Finite-temperature phase transition from the paramagnet
into the noncollinear ferromagnet (FM), as determined by classical
Monte Carlo simulation of Hex [Eq. (1)], for parameters appropriate
to Yb,Ti,O7 [44], ie., J; = —0.09 meV, J, = —0.22 meV, J; =
—0.29 meV setting J; = 0 meV. (a) Temperature dependence of
the specific heat ¢, (7). (b) Temperature dependence of the order-
parameter susceptibility xt,(T). (c) Temperature dependence of
the order parameter |mr, g (7)|. (d) Temperature dependence of
the order parameter |mr, ,(7)|. (e) Probability distribution of the
energy E evaluated at the transition for a system of size L = 12.
The black dashed lines in (a)—(d) indicates a phase transition at
Tt, =455+ 5 mK. Simulations were performed for clusters of
N =16L3 spins, with L = 4,6,8,12.

the clusters simulated, we confirm that it is possible to obtain
a fairly good collapse of data for xg(7T') [Fig. 18(b)] using 3D
XY exponents [77].

PHYSICAL REVIEW B 95, 094422 (2017)

B

0 0.25 0.5 0.75 1
T [K]
0.012
(e)

)
&=
e
o

(=)

FIG. 18. Finite-temperature phase transition from the param-
agnet into the noncoplanar antiferromagnet W,, as determined by
classical Monte Carlo simulation of Hex [Eq. (1)], for parameters
appropriate to Er, Ti,07 [26], i.e., J; = 0.11 meV, J, = —0.06 meV,
J; = —0.1 meV setting J, = 0 meV. (a) Temperature dependence
of the specific heat ¢,(T). (b) Temperature dependence of the
order-parameter susceptibility xe(7'). (c) Temperature dependence
of the order parameter |mg(7")|. (d) Temperature dependence of
the secondary order parameter cos 60g. (e) Probability distribution
of the energy E evaluated at the transition temperature for a system
of size L = 12. The black dashed line indicates a continuous phase
transition at Ty = 505 £ 5 mK. Simulations were performed for
clusters of N = 16L> spins, with L = 4,6,8,12.

However, there are only a discrete number of ¥, ground
states, and a finite value of |mg| alone does not imply W, order.
Evidence for the W, ground state comes from the secondary
order parameter cg = cos 60g > 0 [Fig. 18(d)]. Here simula-
tion results are strongly size dependent, but suggest a slow
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crossover into the W, state, occurring at a 7* < Tg, without
any accompanying feature in ¢, (7T') [Fig. 18(a)].

On the basis of Landau theory we anticipate that any finite
value of mg = |mg| will induce degeneracy breaking in 6,
and that the entropic selection within the E manifold should
therefore occur concurrently with the onset of magnetic order.
Depending on the sign of the relevant coupling,

8Fe = Ldmi cos 60, (101)
the system will then enter either a W, or a W3 ground state.
However, the free-energy barrier separating the W, and W3
ground states is very small, and this in turn sets a very large
length scale for the selection of the W, ground state. Based on
the low-temperature expansion F.o%~T [Eq. (81)], we estimate
that clusters of N ~ 10° sites should be able to clearly resolve
which state is selected at the magnetic ordering temperature.

D. Transition from the paramagnet into the W; phase

In Fig. 19 we show simulation results for the finite-
temperature phase transition from the paramagnet into the W3
phase, for parameters

(J1, b2, J3, J4) = (0,—0.3,—0.1,0) meV

close to the border with the noncollinear ferromagnet.
Anomalies in both the specific heat ¢;,(T) [Fig. 19(a)] and
order-parameter susceptibility xg(7) [Fig. 19(b)] at Tg =
395 + 5 mK offer clear evidence of a phase transition. Both
the smooth evolution of the primary order parameter mg
[Fig. 19(c)], and the single peak in the probability distribution
for the energy [Fig. 19(e)], suggest that this phase transition is
continuous.

Evidence for the W3 ground state comes from the finite
value of the secondary order parameter cg = cos66g < 0
[Fig. 19(d)]. This secondary order parameter shows only a
slow onset, consistent with a crossover into the W state,
and is very strongly size dependent. As with the W, state
considered above, we infer that, with increasing system size,
the temperature associated with this crossover scales towards
T = Ty, and that in the thermodynamic limit, a single phase
transition takes place from the paramagnet into the W5 state.

E. Comparison between Monte Carlo simulation
and classical spin-wave theory

Here, to demonstrate the validity of our theory, we compare
the structure factors, as calculated from the classical spin-wave
theory HSXSW [Eq. (78)] and Monte Carlo simulation, for three
different parameter sets: the parameters of Yb,Ti,O; as found
in Ref. [44] where the classical ground state is ferromagnetic,
the parameters of Er,Ti;O; as found in Ref. [26] where
we expect the order-by-disorder mechanism to favor the W,
states, and one set of parameters where the order-by-disorder
mechanism favors the Wj states. We find excellent, quantitative
agreement between the two methods.

In Fig. 20 we show the structure factor S(q) calculated
both from classical spin-wave theory and from Monte Carlo
simulation at T = 0.05 K, in the NSF, SF, and total scattering
channels [see Egs. (94), (95), and (96)].
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FIG. 19. Finite-temperature phase transition from the paramagnet
into the coplanar antiferromagnet W3, as determined by classical
Monte Carlo simulation of Hex [Eq. (1)], for parameters J; =0
meV, J, = —0.3meV, J; = —0.1 meV, J; = 0 meV. (a) Temperature
dependence of the specific heat ¢;,(T). (b) Temperature dependence
of the order-parameter susceptibility (7). (c) Temperature depen-
dence of the order parameter |mg(7)|. (d) Temperature dependence of
the secondary order parameter cos 66g. (e) Probability distribution of
the energy E evaluated at the transition temperature for a system of
size L = 12. The black dashed line indicates a continuous phase
transition at 7g = 395 £ 5 mK. Simulations were performed for
clusters of N = 16L3 spins, with L = 2,4,6,12.

We have used the experimentally determined parameters
for the g-tensor [93] g, = 1.77, g, =4.18 and exchange
integrals [44] J; = —0.09 meV, J, = —0.22 meV, and J; =
—0.29 meV, setting J4 = 0. The excellent, quantitative agree-
ment between spin-wave theory and simulation demonstrates
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FIG. 20. Comparison between results for equal-time structure factor S(q) obtained in classical Monte Carlo (MC) simulation and classical
low-temperature expansion (spin-wave theory) for parameters appropriate to Yb,Ti,O; [44]. (a) Total scattering in the (k,h,l) plane within
MC simulation. (b) Associated scattering in the non-spin-flip (NSF) channel. (¢) Associated scattering in the spin-flip (SF) channel. (d) Total
scattering in the (h,h,l) plane within a spin-wave expansion about the ferromagnetic ground state. (¢) Associated scattering in the NSF channel.
(f) Associated scattering in the SF channel. Rods of scattering in the (h,h,h) direction, associated with a low-energy spin-wave excitation
(cf. Fig. 25), are visible in both SF and NSF channels. All results were obtained at 7 = 0.05 K, for exchange parameters J; = —0.09 meV,
J, =—0.22 meV, J; = —0.29 meV, setting J; = 0. SF and NSF channels are defined with respect to a neutron with polarization in
the (1,—1,0) direction, as in Ref. [92]. S(q) has been calculated using the experimentally measured g tensor for Yb,Ti,O; [44,93], with
g. = 1.77,g., = 4.18. In order to avoid saturating the color scale, the intensity associated with Bragg peaks at reciprocal lattice vectors has been

subtracted.

the excellent equilibration of the simulations down to 0.05 K
for the parameters of Yb,Ti,O;.

S(q) is also useful for studying the entropic ground-state
selection within the one—dimensional manifold of state with E
symmetry. For a given set of parameters we may compare the
diffuse scattering calculated in spin-wave theory in expansions
around the W3 and W, phases with the diffuse scattering
calculated in simulations.

Such a comparison is shown in Fig. 21, for exchange
parameters appropriate to Er,Ti;O7 (J; =0.11 meV, J, =
—0.06 meV, and J3 = —0.10 meV, setting Jy =0) and
temperature 7 = 0.36 K. From the entropy calculations shown
in Fig. 14 we expect the W, state to be preferred for these values
of the exchange parameters. Comparison of of the distribution
of weight in the vicinity of the (1,1,1), (3,3,3), and (1,1,3)
reciprocal lattice vectors between the Monte Carlo data and the
spin-wave expansions around the W, and W3 phases supports
this conclusion.

Similarly, in Fig. 22 we show a comparison of the diffuse
scattering between Monte Carlo simulations and spin-wave
expansions around the W, and W; phases for exchange
parameters approaching the noncollinear ferromagnetic
phase (J1 =0, J, = —1.0meV and J3 = —0.1 meV, J; = 0),
at T =0.4 K. Calculations of the entropy within spin-
wave theory show that the W3 state should be preferred by

fluctuations for these parameters, and this is confirmed by
the comparison of the structure factors, in particular by the
presence of bright rods along the (111) directions.

VI. LIVING ON THE EDGE: THE INFLUENCE
OF GROUND-STATE MANIFOLDS ON
FINITE-TEMPERATURE PHASE TRANSITIONS

The major assertion of this article is that many of the
interesting properties of pyrochlore magnets—for example
the rods of scattering observed in Yb,Ti,O7, and the order-
by-disorder selection of a W, ground state in Er,Ti,O7, see
Secs. VII and VIII—are the direct consequence of competition
between different ordered phases, and in particular, of the
high ground-state degeneracy where phases with different
symmetry meet. While the arguments for enlarged ground-
state manifolds at 7 = 0 are easy to understand, it is far less
obvious that this degeneracy should make itself felt at finite
temperature, especially where it is not protected by symmetry.

We can test the internal consistency of these ideas by using
the probability distribution of the order parameter

mg = mg (cosOg, sinfg)

[cf. Eq. (38)] to deconstruct the order-by-disorder selection
of W, and W3 ground states in finite-temperature simulations
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FIG. 21. Comparison between results for equal-time structure factor S(q) obtained in classical Monte Carlo (MC) simulation and
low-temperature expansion (classical spin-wave theory) for parameters appropriate to Er,Ti;O;. (a) Total scattering in the (h,h,l) plane
within MC simulation. (b) Associated scattering in the non-spin-flip (NSF) channel. (c) Associated scattering in the spin-flip (SF) channel.
(d) Total scattering in the (h,h,/) plane within a spin-wave expansion about a W, ground state. (e) Associated scattering in the NSF channel.
(f) Associated scattering in the SF channel. (g) Total scattering in the (h,4,l) plane within a spin-wave expansion about a W3 ground state. (h)
Associated scattering in the NSF channel. (i) Associated scattering in the SF channel. Careful comparison of the distribution of scattering in
the vicinity of the (1,1,1), (3,3,3), and (1,1,3) reciprocal lattice vectors supports the conclusion that the W, state is preferred for these exchange
parameters, in agreement with experiment and the calculations described in the text. All results were obtained at 7 = 0.36 K, for exchange
parameters J; = 0.11 meV, J, = —0.06 meV, J; = —0.10 meV, setting J;, = 0 and g-tensor parameters g, = 2.45 and g., = 5.97 [26]. For
clarity, intensity associated with Bragg peaks at reciprocal lattice vectors has been subtracted.

of Hex [Eq. (4)]. The probability density function P(mg) is
sensitive both to the formation of a one-dimensional manifold
of states with E symmetry—which manifests itself as a ring in
P (mg)—and to the selection of an ordered ground state within
this manifold—which will appear as six degenerate maxima
within the ring.

P(mg) also enables us to study the evolution of the
ground-state manifolds at the boundaries between phases
with competing symmetry—in this case either with T, or
with Ty a. At these phase boundaries, mg takes on a new,
constrained set of values, characteristic of the way in which
different manifolds connect. For example Egs. (53)-(55)
predicts that, on the boundary with the Palmer-Chalker phase,
the one-dimensional manifold of states with |mg| = 1 acquires

“spokes” in the directions

{ 7 27 4 571}
g =10, =, —, w1, —, —

33 33
connecting mg = 0 with the six W, ground states. Observation
of such a “spoked wheel” pattern in P(mg) at finite tem-
perature would therefore confirm that the zero-temperature
degeneracies were still operative.

In an exactly parallel manner, we find that on the bound-
ary with the ferromagnetic phase it is possible to deform
the ground state continuously from W3 to a corresponding
ferromagnetic state. For this reason W3 should be favored
approaching the boundary with the ferromagnet (cf. Fig. 1).
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FIG. 22. Comparison between results for equal-time structure factor S(q) obtained in classical Monte Carlo (MC) simulation and low-
temperature expansion (classical spin-wave theory) in the ordered phase for parameters J; =0, J, = —1.0 meV, J3 = —0.10 meV, J; =0,
approaching the noncollinear ferromagnet from within the E-symmetry phase. (a) Total scattering in the (%,4,]) plane within MC simulation
showing strong rodlike features in [111] directions. (b) Associated scattering in the non-spin-flip (NSF) channel. (c) Associated scattering in
the spin-flip (SF) channel. (d) Total scattering in the (k,k,l) plane within a classical spin-wave expansion about a W3 ground state, showing
strong rodlike features in [111] directions. (¢) Associated scattering in the NSF channel. (f) Associated scattering in the SF channel. (g) Total
scattering in the (h,h,/) plane within a classical spin-wave expansion about a W, ground state. (h) Associated scattering in the NSF channel. (i)
Associated scattering in the SF channel. Comparison of the scattering supports the conclusion that the W3 ground state is found in simulation,
in agreement with the results of the low-T" expansion (cf. Fig. 14). An isotropic g-tensor g, = 1,g,, = 1 has been assumed. For clarity, intensity
associated with Bragg peaks at reciprocal lattice vectors has been subtracted.

In Fig. 23 we present results for P(mg) and S(q) taken from  exactly on the 7 = 0 border of the Palmer-Chalker phase

simulations of Hey [Eq. (4)] for three sets of parameters: [Figs. 23(c), 23(f), 23(i), and 23(1)].
The results for S(q) shown in Figs. 23(a)-23(c), demon-
(A (J1, J2, J3, J4) =(0,—0.3,—-0.1,0) meV, strate the diffuse structure expected in the paramagnet in each

case: (A) Fig. 23(a)—rods of scattering, reminiscent of those

where we expect a W5 ground state, while approaching the observed in Yb,Ti»O; [20-24]; (B) Fig. 23(b)—a diffuse
border with the noncollinear FM [Figs. 23(a), 23(d), 23(2).  web of rings, reminiscent to that observed in experiments

and 23(j)]: on Er,TiO; [see Figs. 24(a)-24(d) for more details], also

_ . ordering in W;; (C) Fig. 23(c)—"bow-tie” patterns reminiscent
B G J2 S5, Jo) = (0.11,0.06,-0.1,0)  meV, of the pinch points observed in the Heisenberg antiferromagnet
where we expect a W, ground state, approaching the border ~ ©1 @ pyrochlore lattice [45]. Indeed, the Heisqnberg antif;r-
with the Palmer-Chalker phase [Figs. 23(b), 23(e), 23(h), and romagnet corresponds to the parameters of Fig. 23(c) with

23(k)], and J;=0. . .
The results for P(mg) strongly validate our understanding
© (1, N, I3, Jy) =(0.11,0.11,—-0.1,0) meV of the problem in terms of degenerate ground-state manifolds,
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FIG. 23. Influence of ground-state degeneracy on finite-temperature phase transitions, as revealed by the probability distribution of the
order parameter mg = mg (cos Og, sinfg) [Eq. (38)]. Results are taken from simulation of Hex [Eq. (4)], with three different sets of exchange
parameters, which we label as parameter sets (A), (B), and (C). Parameter set (A), used to calculate (a), (d), (g), and (j), corresponds to a W3
ground state, approaching the noncollinear FM with 7, = 0.39 K. Parameter set (B), used to calculate (b), (e), (h), and (k), corresponds to a W,
ground state, with 7, = 0.26 K. Parameter set (C), used to calculate (c), (f), (i), and (1), corresponds to a W, ground state, on the border of the
Palmer-Chalker phase with 7, = 0.065 K. (a)—(c) Quasielastic scattering S(q) in the paramagnetic phase 7 > T.. (d)—(f) Corresponding results
for the probability density function P(mg). (g)—(i) P(mg) at the transition temperature T = T,. (j)—(1) P(mg) in the ordered phase T < T..
Parameter set (A): For a finite-size system, the onset of W53 occurs progressively, through (g) the emergence of a one-dimensional manifold
of states with finite |[mg|, and then (j) the entropic selection of 6g corresponding to one of six distinct W3 ground states. (a) The connection
with the noncollinear FM is evident in S(q), with rods of scattering strongly reminiscent of those seen in Yb,Ti,O;. Parameter set (B): The
same process occurs, but in this case P(mg) shows that W, ground states are favored at low temperatures (k) and even at the transition (h).
Parameter set (C): On the boundary of the Palmer-Chalker phase, the ground-state manifold includes additional manifolds of states which mix
mg and mr,. These are evident (f) and (i) in the spoked wheel seen in P(mg) at 7 > T, and drive the entropic selection of the W, ground state.
(c) The high degeneracy at this phase boundary is also evident in the bow-tie structure in S(q). Further details of simulations and the parameters
corresponding to (A), (B), and (C) are given in the text.

even at finite temperatures. On the border of the Palmer-
Chalker phase (C) P(mg) shows a diffuse spoked wheel both
above T, [Fig. 23(f)] and at T, [Fig. 23(i)], confirming that
the connection implied by the 7 = 0 ground-state manifold
survives even for temperatures above the phase transition. The
remnant of this spoked wheel pattern is even seen at 7, when

we tune away from the phase boundary [parameter set (B)]
[Fig. 23(h)]. This spoked wheel pattern in P(mg) is strong evi-
dence that the manifolds continue to be operative at 7, and play
arole in ordered state selection. This perspective is consistent
with the Ginzburg-Landau theory presented in Ref. [§1]. And
it gives new insight into zow the terms in the Ginzburg-Landau
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[00K]

FIG. 24. Correlations in the high-temperature paramagnetic phase, as revealed by the quasielastic structure factor S(q). (a)—(c) Results for
parameters interpolating from (a) Er,Ti,O; [26] to (c) the boundary of the Palmer-Chalker phase (W,). The diffuse scattering characteristics of
the W, phase evolve into sharp features reminiscent of pinch points when bordering the W, phase. Results are taken from classical Monte Carlo
simulations carried out for (a) J, = —0.06 meV, T' = 750 mK; (b) J, = 0.06 meV, T = 390 mK; and (c) J, = 0.11 meV, T = 100 mK. In
all cases, J; = —0.11 meV, J3 = —0.1 meV, J;, = 0, and S(q) has been calculated using g-tensor parameters appropriate to Er,Ti,O7 [26].
(d) Detail of S(q) for parameters appropriate to Er,Ti;O; at T = 616 mK, plotted with a color scale chosen to match Fig. 14 of [94] and
with the same temperature ratio 7'/ T, = 1.22 (T, = 505 mK in simulations). (e)—(g) Results for parameters interpolating from Yb,Ti,O; [cf.
Ref. ([44])], to the border of the W5 phase. The rods of scattering along [111] directions, interpreted as evidence of dimensional reduction in
Yb,Ti,O; [22], evolve into weakly dispersing, low-energy excitations in the neighboring W5 phase. Results are taken from classical Monte
Carlo simulations of Hex [Eq. (1)] for (e) J; = —0.09 meV, T = 750 mK; (f) J; = —0.04 meV, T = 400 mK; and (g) J; = —0.0288 meV,
T =450 mK. In all cases, J, = —0.22 meV, J; = —0.29 meV, J; = 0, and S(q) has been calculated using g-tensor parameters appropriate to

Yb,Ti, 07 [93].

theory which lift the U (1) degeneracy are generated—namely
by fluctuations into these low-energy manifolds.

The reason why we see the spoked wheel pattern at
T, = 0.26 K for parameter set (B) and not at 7, = 0.39 K for
parameter set (A) is probably a consequence of the strong finite
size dependence of the entropic selection between W, and V3.

To conclude, we should add that where these two phase
boundaries approach one another, the soft modes associated
with the two different sets of manifolds compete. This leads to
the complicated, reentrant behavior seen in Fig. 1, and studied
for quantum spins in [46].

VII. APPLICATION TO Er,Ti,07

Early heat capacity measurement of Er,Ti,O; revealed
a phase transition at 7, = 1.25 K, releasing an entropy
As ~ 0.97kp In2 per spin, consistent with the ordering of
the ground-state doublet of Er [18]. Later, neutron scattering
studies revealed the nature of the low temperature order,
finding it to correspond to the W, configurations illustrated
in Fig. 10 [25,26,65].

The selection of the W, states in Er,Ti,O; out of the
1D manifold of states transforming with E symmetry has
been identified as a textbook example of order-by-disorder

[25], with quantum zero-point fluctuations [26,27,46],
low-temperature classical thermal fluctuations [82], and
thermal fluctuations near the ordering temperature [28,77] all
favoring W, order. A corollary of this conclusion is that there
should be a small, fluctuation induced, gap at q = 0 in the
spin-wave spectrum. And such a gap has now been observed
in inelastic neutron scattering [95]. We note that an alternative
scenario has been proposed in which the selection of ¥, comes
instead from virtual fluctuations into higher crystal field levels
[29,43,96]. Thus it may in fact be that the selection of W, has
multiple contributions, both from harmonic fluctuations of the
ground-state order and from virtual crystal field fluctuations.

Here, using the exchange parameters for Er,Ti;O; taken
from [26], we confirm that thermal fluctuations of classical
Heisenberg spins select a W, phase at finite temperature.
Estimates from our Monte Carlo simulations give 7, =
500 mK (Fig. 18), somewhat lower than both experiments
and those obtained in a high temperature series expansion of
the quantum spin model [28]. But within the paramagnetic
phase, our simulations of the spin structure factor S(q) are
in excellent agreement with neutron scattering measurements
[94] showing the build-up of long-range order, as can be seen
from the comparison between Fig. 24(d) of this work and
Fig. 14 of Ref. [94].
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A question which remains is why fluctuations should favor
W, in the case of Er, Ti,O; and more generally why they should
favor either W, or W3 for a given set of exchange parameters
{J;}. Our work provides the answer to this question and, in
so doing, underlines how the properties of a frustrated magnet
are strongly influenced by competing phases.

The mechanism by which the W, states are selected is
inherited from the phase boundary with the neighboring
Palmer-Chalker phase. At this boundary three additional
continuous sets of ground states appear connecting the six
Palmer-Chalker ground states, to the 1D manifold of E
symmetry states (Fig. 13). The points in configuration space
at which these sets of ground states meet are none other
than the W, configurations. Due to their favored position at
the junctions of the ground-state manifold the W, states gain
additional soft modes and are selected by fluctuations in the
region approaching the boundary with the Palmer-Chalker
phase. The consequences of these connected manifolds are
visible even in finite temperature simulations as shown in
Fig. 23.

Itis worth noting that an exactly parallel mechanism selects
the W3 states for parameters proximate to the ferromagnetic
phase. In the region proximate to both Palmer-Chalker and
ferromagnetic phases, a complicated reentrant behavior is
observed [46] (Fig. 1).

Our work shows that the preference of fluctuations for W,
ordering in Er,Ti;O7 is a property inherited from a nearby
phase boundary where the W, states sit at the junctions of a
connected ground-state manifold. In the context of this result
it is interesting to ask how the spin correlations evolve as
the exchange parameters are tuned from those appropriate to
Er,Ti, O7 to the boundary of the Palmer-Chalker phase. This is
illustrated using Monte Carlo simulations of the spin structure
factor S(q) in Figs. 24(a)-24(c). For the parameters appropriate
to Er,Ti,O7, our simulations reproduce the smooth features
observed in experiment. As the phase boundary is approached
these smooth features evolve into sharp, pinch-point-like
features, associated with the large ground-state manifold on
the phase boundary. In the limit J3 — 0 these pinch-point-like
features become the pinch points associated with the Coulomb
phase of the O(3) Heisenberg model on the pyrochlore lattice
[45].

Our study of the ground-state selection in Er, Ti,O;7 empha-
sises that the properties of frustrated magnets can be strongly
influenced by the soft modes appearing on nearby boundaries.
This same essential insight also manifests itself—in rather
different ways—in the study of Yb,Ti,O; and Er,Sn, 07, to
which we now turn.

VIII. APPLICATION TO Yb,Ti, 07

Like its sister compound Er,Ti,O7, Yb,Ti,O; was first
identified as undergoing a finite temperature ordering tran-
sition in the heat capacity study by Blote et al., nearly 50
years ago [18]. That study revealed a sharp anomaly in the
heat capacity at 7, = 0.214 K, with a corresponding release of
entropy of As = 0.97kp In 2 per spin. Since then, the presence
of this phase transition in stoichiometric Yb,Ti,O; has been
debated in the literature, with different groups, with different
samples, reporting differing results for the presence or absence
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FIG. 25. Spin-wave dispersion calculated within a classical,
low-temperature expansion, showing dimensional reduction of a
subset of excitations. (a) Excitations of the FM ground state, for
exchange parameters appropriate to Yb,Ti,O7,i.e., J; = —0.09 meV,
J, = —0.22meV, J; = —0.29 meV, setting J;, = 0. The ferromagnet
possesses a flat band in the (k,h,h) (I' — L) direction at energy
A =~ 0.22 meV, which gives rise to rods in the equal time structure
factor (cf. Fig. 20). (b) Excitations of the W; ground state, for
exchange parameters on the boundary between the W3 and FM phases,
ie., J; = —0.029 meV, J, = —0.22 meV, J; = —0.29 meV with
Js = 0. The W; phase, on the phase boundary, also possesses a
quasiflat band along (%,h,h), which in this case is gapless at the
I' point of the Brillouin zone. This leads us to suggest that the
low-energy rodlike features observed in the paramagnetic phase of
Yb,Ti,O7 arise from its proximity in parameter space to the W5 phase
and the low-energy modes which are present on the phase boundary
(see discussion in Sec. VIII).

of magnetic order. Nevertheless, it is now widely accepted that
stoichiometric Yb,Ti,O7 undergoes a thermodynamic phase
transition into a state with finite magnetization at a temperature
T, ~ 0.2 K [24,66,68,69,71-74,97,98].

For the parameters given by Ross et al. [44], the theory
developed in Sec. III predicts that Yb,Ti,O; has a q =0
ground state, with noncollinear order ferromagnetic order. This
“splayed ferromagnet” is consistent with the interpretation
of neutron scattering experiments given in [68,71-73]. An
ordered ground state of this type would normally be expected
to support coherent, dispersing spin-wave excitations, with a
finite gap coming from the anisotropy of exchange interactions,
as illustrated in Figs. 25 and 26.

Curiously, however, gapped, coherent spin waves have yet
to be observed in Yb,Ti,O7, with a succession of experiments
reporting a broad, gapless continuum at low temperatures
[21,71-73]. The origin of this gapless continuum remains a
puzzle, although the presence of competing classical ordered
phases must ultimately impact on quantum excitations [70]. It
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FIG. 26. Prediction for the spin-wave excitations of the ferromagnetically ordered ground state of Yb,Ti,O;, calculated within linear
spin-wave theory for the parameters given by Ross et al. [44]. (a) Spin-wave dispersion for a single ferromagnetic domain with magnetization
parallel to [100], showing a minimum gap to excitations A ~ 0.3 meV, occurring in the zone center. (b) Spin-wave dispersion averaged over
the six possible ferromagnetic domains. (c) Path in reciprocal space used in making plots. Calculations were carried out for the anisotropic
exchange model Heyx [Eq. (1)], with results convoluted with a Gaussian of full width at half maximum 0.014 meV to mimic finite experimental
resolution. The relative intensity of scattering is shown in false color. Details of calculations are given in Sec. IV C and Appendix B.

is also important to recall that the ordered ground state breaks
only the point-group symmetries of the anisotropic exchange
model Hex [Eq. (1)], and so spin waves cannot be interpreted
as Goldstone modes. It follows that interaction effects may
play an important role, even at low orders in 1/S. And it
is interesting to note that the broad continuum observed in
experiment has more in common with semiclassical simu-
lations of the spin excitations of the paramagnetic phase of
Yb,Ti,O7 [73,99], than with the linear spin-wave excitations
of the ground state, as shown in Fig. 26. This point will be
discussed further elsewhere [99].

While the nature of the ground state of Yb,Ti,O7 has proved
controversial, and the associated excitations remain to be
understood, all neutron-scattering experiments agree about the
signature feature of its paramagnetic phase—striking “rodlike”
structures along the (111) directions of reciprocal space. First
observed more than ten years ago [20], these rods of scattering
have since been interpreted as evidence of dimensional reduc-
tion [21,22] and, in the context of Hex [Eq. (1)], as evidence of
significant anisotropic exchange interactions [23,44,50]. They
are a robust feature of S(q), as calculated from Hex [Eq. (1)]
within both the (semiclassical) random phase approximation
[23,24], and classical Monte Carlo simulations [70] (Fig. 24).
However, despite their ubiquity, the origin of these rods of
scattering remains mysterious.

To understand the origin of the rods of scattering we must
once again look to the influence of the phase boundaries.
The classical ground states of Hex reduce to a set of

independent kagome planes on the boundary between FM and
Palmer-Chalker phases, and to a set of independent chains
on the boundary between the W, and Palmer-Chalker phases.
However the rods of scattering seen in Yb,Ti,O; occur for
parameters where the ground state of Hey is expected to be
ordered and fully three dimensional [44]. Indeed, our classical
Monte Carlo simulations predict that Yb,Ti,O; orders at
450 mK (cf. Fig. 17), a little higher than the T, ~ 200 mK
found in experiment.

Within the scenario of multiple-phase competition, rods
of scattering can be traced back to dimensionally reduced
excitations, due to quasidegenerate lines of low-lying spin-
wave excitations, which evolve into low-lying excitations of
W5 on the boundary between the FM and the W53 phases (cf.
Fig. 25). This progression is also clear in the evolution of S(q)
from parameters appropriate to Yb,TiO; [Fig. 24(e)] to the
border of the W3 phase [Fig. 24(g)], also shown in Ref. [70].

Seen in this light, the observation of rods of scattering in
Yb,Ti,O7 is a consequence of the proximity of competing
ordered states—in this case the W, and W; states. The
importance of these competing ground states in driving the
unusual physics of Yb,Ti;O; has been underlined in recent
work [70,73]. In Ref. [70] it was shown that both quantum
and thermal fluctuations bring the phase boundary between
ferromagnetic and E symmetry phases closer to the parameter
regime appropriate to Yb, Ti,O7. In this sense, Yb, Ti, O7 really
is a material “living on the edge” between differing magnetic
orders, and the rods of scattering are a manifestation of this.
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FIG. 27. Ordered moment in the region of parameter space
relevant to Er,Sn,05, as calculated in linear spin-wave theory. On
the Palmer-Chalker (W4) side of the phase boundary, the quantum
correction to the ordered moment is small. However, the correction
diverges on the approach the phase boundary from the noncoplanar
antiferromagnet (W), indicating the possibility of a region of
quantum disorder between these two phases. Experimental estimates
of exchange parameters in Er,Sn,O; [34] place it close to this
phase boundary, making it a good candidate for the observation of
quantum spin-liquid physics. Calculations were carried out for the
anisotropic exchange model Hex [Eq. (1)], as described in Sec. IV C
and Appendix B, with parameters J, = 0.08 meV, J; = —0.11 meV
taken from [34], setting the Dzyaloshinskii-Moriya interaction
J4 = 0. The error bars on the estimated value of J; are taken from
Ref. [34].

IX. APPLICATION TO Er,Sn,07

Like Er,TiO; and Yb,Ti,O;, the magnetic ions in
Er,Sn; 07 have a Kramers doublet ground state [30,100], and
their interactions are believed to be well described by Hex
[Eq. (1)] [34]. Correlations reminiscent of the Palmer-Chalker
phase have been observed in neutron scattering [34], and mag-
netization measurements show some evidence of spin freezing
at low temperatures [34]. Nonetheless, Er,Sn,O7 shows no
evidence of magnetic order, in thermodynamic measurements
[33,34], uSR [31], or neutron scattering [33,34], down to a
temperature of 20 mK [31].

The exchange parameters determined for Er,Sn,O; in
Ref. [34] would place it extremely close to the phase boundary
between the Palmer-Chalker and W, states (Fig. 1). Classical
Monte Carlo simulations with this parameter set predict a
phase transition into the Palmer-Chalker state at 7, ~ 200 mK.
However, we can once more gain further insight by looking
at the behavior of the model Heyx approaching the phase
boundary.

As the phase boundary is approached, the ground-state
value of the ordered moment, as calculated in linear spin-wave
theory, is reduced by quantum fluctuations. This is illustrated
in Fig. 27. Approaching the boundary from the Palmer-Chalker
side, this quantum correction is small. However, approaching
the boundary from the W, side, the correction is logarithmically
divergent. Since spin-wave theory typically underestimates
quantum effects, this divergence is a likely indicator of a
region of quantum disorder between the Palmer-Chalker and
W, region of the phase diagram (cf. Fig. 2). The placement
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of Er,Sn,0; immediately adjacent to this classical phase
boundary thus makes it a prime candidate for the observation
of quantum spin-liquid physics.

We can see therefore that the competition between Palmer-
Chalker and W, ordering in Er,Sn,O; enhances quantum
fluctuations in that material and may even stabilize a quantum
disordered state. Such a scenario would be consistent with the
lack of observed magnetic order in Er,Sn,O; and would make
Er,Sn, 05 the first example of a pyrochlore spin liquid with
dominantly XY-like interactions. While the recent years have
seen considerable theoretical advances in the understanding
of quantum spin-liquid states occurring close to the Ising
(spin-ice) limits of Hex [5—11], the limit of dominant XY
interactions has been much less explored for quantum spins.
A deeper understanding of Er,Sn,O5 calls for further work in
this direction.

X. OTHER PYROCHLORE MAGNETS

The family of rare-earth pyrochlore oxides R,M,;07 is
very diverse [17], and it is becoming even more so, with
high-pressure synthesis techniques allowing for many new
combinations of rare-earth R and transition metal M to be
realized [101]. In this section we briefly explore the properties
of further examples of pyrochlore magnets. We will mostly
restrict our comments to materials based on the Kramers ions
such as Er’t, Yb’*, where the model Hex [Eq. (1)], with
couplings of the form of Jo; [Eq. (6)], offers a completely
a completely general description of nearest-neighbor interac-
tions on the pyrochlore lattice. That said, many of the same
physical phenomena arise in pyrochlore magnets based on
non-Kramers ions and, where these have a doublet ground
state, interactions may also be described using Hex [8,52].
With this in mind, we also make a few brief comments about
materials based on the non-Kramers ions Tb** and Pr**.

Yb,Sn,05 [35,36,102] and Yb,Pt,O7 [39] have both been
identified as having ferromagnetic ground states, and may
therefore be placed in the noncollinear ferromagnet (T1)
region of our phase diagram. Meanwhile, the ground state
of another Yb based system, Yb,Ge,O; has been shown
in neutron scattering experiments to belong to the manifold
of E symmetry states, although any ground-state selection
between W, and W3 configurations has yet to be determined
[103,104]. The progression, as a function of decreasing
transition metal ionic radius Sn — Pt — Ti — Ge for the
Yb,M,0; compounds thus tunes across the phase boundary
between the ferromagnetic and W,/ W; regions in Fig. 1
[70,103]. The spin excitations above these ordered states
remain a puzzle, however, with a recent systematic study
of the Sn, Ti, and Ge compounds showing an absence of
coherent spin waves in all three materials, and a continuity
of the inelastic neutron scattering spectrum across the finite
temperature ordering transition in each case [72].

Amongst Er based pyrochlores, Er,Ge,O; has been ob-
served to order antiferromagnetically at 7y = 1.41 K [38].
Neutron scattering experiments reveal this to belong to the
W, /W3 region of the phase diagram in Fig. 1. The behavior
of the intensity of the magnetic Bragg peaks under external
magnetic field suggests that fluctuations select a W3 ground
state out of the E symmetry manifold for Er,Ge,O; [38].
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Er,Pt,07 also orders antiferromagnetically at Ty = 0.3 K.
If the variation of exchange constants with the size of the
transition metal ion M is montonic, then it would be expected
for this material to lie near the boundary between the W,
and Palmer-Chalker regions of the phase diagram in Fig. 1.
However, this assumption could fail in the case of Er,Pt,O
since Pt** jon differs from {Ti**, Sn**, Ge*'} in that it
possesses a partially filled d shell [39,105].

The Gd based pyrochlores Gd,M,07 have attracted sig-
nificant research interest over a period of nearly two decades
[17,106]. The physics of these pyrochlores is somewhat dif-
ferent from, e.g., Yb and Er based systems, because the Gd*t
ions have vanishing orbital angular momentum L = 0. The
interactions of the S = 7/2 Gd spins are thus quite isotropic,
and the nearest-neighbor anisotropic exchange which is
the focus of this article is a less important consideration
than further neighbor interactions—including dipole-dipole
interactions. Nevertheless, combining the effect of nearest-
neighbor antiferromagnetic exchange and the nearest-neighbor
part of the dipole-dipole interaction our theory does predict
a Palmer-Chalker ground state which is consistent with
observations on Gd,Sn,O7 [107,108].

In Gd,Ti,O7 further neighbor interactions drive a complex
phenomenology involving multiple phase transitions and
“partially ordered” states [109—112]. The precise nature of
the magnetic ground state remains a matter of discussion in
the literature [113], and is beyond the scope of the present
study. Recently, another Gd pyrochlore, Gd;Pb,O; has
been synthesised presenting an antiferromagnetic ordering
transition at 7 = 0.81 K into an as yet unidentified ground
state [114].

Nd based pyrochlores have attracted considerable recent
attention and provide examples of all-in, all-out ordering on the
pyrochlore lattice [84,115—117]. In particular, it has recently
come to light that Nd,Zr,0O; exhibits the novel phenomenon
of “moment fragmentation” in which the spin correlations
simultaneously show the pinch points of a Coulomb phase
and the Bragg peaks of an ordered state [118-120]. However,
we note that the ground doublet of the Nd ions is of the
dipolar-octupolar type [84,117]. In this case, the anisotropic
exchange interactions would have a different form to Eq. (6)
[53]. Recently, a Ce based pyrochlore Ce,Sn; 07, also believed
to belong to the group of dipolar-octupolar pyrochlores,
has been synthesized which appears to show an absence of
magnetic order down to 7 = 0.02 K [40], suggesting it as a
promising candidate spin-liquid system.

There are also many pyrochlore systems where the rare-
earth ion R is a non-Kramers ion, such as Tb** or Pr** [17].
Many of these systems also exhibit twofold degenerate crystal
field ground states, and a pseudospin-1/2 description of the
magnetic degrees of freedom may be appropriate [52,121,122]
(although in the Tb** systems the picture is complicated by the
relatively small gap to crystal field excitations [123-125]). In
this case the nearest-neighbor bilinear exchange Hamiltonian
for these pseudospins takes the form of Eq. (8), with the
constraint that J,. = 0 [8,52]—«cf. Table II. The pseudospin S
must also be interpreted differently in this case with the part
of the pseudospin perpendicular to the local [111] directions
corresponding to a quadrupolar degree of freedom. Thus, an
“easy plane” order of the pseudospins (as occurs in the E
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and T» regions of our phase diagram) actually corresponds to
quadrupolar order for non-Kramers ions.

Among the Tb pyrochlores, Tb,Sn, 07 is known to exhibit
ferromagnetic order [75,76,126] and therefore belongs to
the T4 region of the phase diagram. Tb,Ti,O7, meanwhile,
has been studied for a long time as a candidate spin liquid
[127,128] exhibiting power-law spin correlations [129,130].
The apparent spin-liquid behavior has been linked with
quantum spin-ice physics [55], but it has recently been
proposed that an alternative form of spin-liquid physics may be
at work [48]. Recent studies have also revealed the presence of
competing ordered states, with quadrupolar order (correspond-
ing to a Palmer-Chalker-like configuration of the pseudospins
[131,132]) and antiferromagnetic q = (1/2,1/2,1/2) order
[133,134] observed depending on the sample details and
the experimental cooling protocol. Tb,Ge,O7 has recently
come to light as another system of interest for spin-liquid
physics, with no long-range order observed down to 20 mK
and short-range ferromagnetic correlations [135]. This may
suggest that Tb,Ge,O5 lives in a region of disorder, proximate
to the ferromagnetic (T1) phase, such as that proposed in
Ref. [48].

At the same time, the Pr based pyrochlores PryM,0;
(M = Sn, Zr, Hf, Pb) have emerged as promising candidates for
quantum spin-ice physics, exhibiting an absence of magnetic
order and dynamic, spin-ice-like correlations [114,136—138].

XI. CONCLUSION

Rare-earth pyrochlore oxides offer a veritable treasure trove
of novel physical phenomena, ranging from classical and
quantum spin liquids, to dimensional reduction, and phases
governed by order-by-disorder effects. In this article we have
established a general theory of multiple-phase competition
in materials with anisotropic exchange interactions on the
pyrochlore lattice, and shown how it can be can be applied to
three specific materials: Er,Ti,O7, Yb,TiO7, and Er,Sn,O5.
The recurring theme throughout this analysis is of materials
living on the edge, in the sense of having properties which
are dictated by the competition between neighboring forms of
magnetic order.

Starting from a very general model of interactions between
nearest-neighbor spins on the pyrochlore lattice Hex [Eq. (1)],
we have used an analysis based on point-group symmetry
to establish the exact, classical, ground-state phase diagram
(Secs. II and III). As a by-product, we provide a complete
classification of possible 4-sublattice ordered states, according
to the way they lift the symmetry of a single tetrahedron.
Moreover, using the Lego-brick rules developed in Sec. IIE,
we are able to identify the conditions under which the classical
ground-state manifold undergoes a dimensional reduction into
independent planes or chains of spins, opening the door to new
physical phenomena.

We have given particularly careful consideration to the
ground-state manifolds in the limit where the symmetric
off-diagonal exchange J3 < 0 and the Dzyaloshinskii-Moriya
interaction Jy; =0 (Sec. III). Based on the experimental
parametrizations of exchange interactions for Kramers py-
rochlores [26,34,44], this limit is of particular experimental
relevance. We have elucidated the nature of the expanded
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ground-state manifolds which occur at the phase boundaries
of this model, and it is these which drive much of the physics
of the surrounding regions of parameter space.

Stepping out of the ground-state manifold, we have given,
in Sec. IV, calculations of the spin-wave excitations in
the ordered phases. Among other things, this allows us to
determine the ground-state selection by both quantum and
thermal fluctuation and to identify regions of the phase diagram
where classical order will be melted by quantum fluctuations.

We have also studied the finite-temperature properties of
the anisotropic exchange model [Eq. (1)] using classical
Monte Carlo simulations, presented in Secs. V and VL
These simulations make it possible to determine the finite
temperature phase diagram (Fig. 3) and to show how the
expanded ground-state manifolds on the phase boundaries
manifest themselves at finite temperature (Fig. 23).

The implications of our theory for three specific py-
rochlore materials—Er, Ti,O7, Yb,Ti,O7, and Er,Sn,O;—are
expounded in Secs. VII, VIII, and IX. We find that the influence
of nearby phase boundaries accounts for the ground-state
selection by fluctuations in Er, Ti, O7, the apparent dimensional
reduction in the paramagnetic phase of Yb,Ti,O7, and the
suppression of magnetic order in Er,Sn,O;. The unusual
properties of these three materials can be understood as living
on the edge—having properties controlled by the competition
between different ground states.

As discussed in Sec. X, the family of rare-earth pyrochlore
magnets is a large one, extending well beyond the three
materials covered in Secs. VII to IX. In particular, recent work
has seen the synthesis of rare-earth pyrochlores R,M,07 with
M = Ge, Pt, Pb, Os, Zr, Hf [38,39,114,138-140]. This work
suggests the possibility to move around the phase diagram
shown in Figs. 1 and 2, using chemical or physical pressure.
This would be particularly interesting in cases where systems
related by a change of transition metal ion M live on opposite
sides of a classical phase boundary. One might then hope to
tune through a region of strong quantum fluctuations using
substitution of the transition metal ion. Such an opportunity
would seem to present itself for Er,M,07 with M = Sn, Ti,
and Yb,M,0; with M = Ge, Ti [70].

Our analysis may also be useful in the study of related
systems, such as the rare-earth spinel CdEr,Se4 [141], where
the Er ions also form a pyrochlore lattice. Looking further
afield, a modification of our theory could be used in the
understanding of “breathing” pyrochlore compounds, where
the tetrahedra of the pyrochlore lattice alternate in size
[142-145]. It is also interesting to note recent neutron
scattering experiments on NaCaCo,F;, a pyrochlore material
with quenched exchange disorder [146]. The observed diffuse
scattering in that material is rather similar to that predicted by
our Monte Carlo simulations in Fig. 24(b). This may spring
from a connection between the low-energy configurations
found in the clean limit of the anisotropic exchange model,
studied in this article, and the low-energy configurations of
the disordered system.

From a theoretical perspective, our work also highlights
the importance of large, classical, ground-state degeneracies
which are not related to the well-studied examples of spin ice,
or of the Heisenberg antiferromagnet on a pyrochlore lattice.
These degeneracies, which emerge in a number of different

PHYSICAL REVIEW B 95, 094422 (2017)

limits of Hex [Eq. (1)], could lead to novel forms of classical or
quantum spin liquid, as well as entirely new forms of classical
and quantum order [49]. One such case, where fluctuations
lead to a spin liquid described by a rank-2 tensor field with a
continuous gauge symmetry, has been developed in Ref. [48].
However, there are many other regions of parameter space
where strong fluctuations persist to low temperature [147], and
the majority of these have yet to be fully explored. It seems that
the study of rare-earth pyrochlore magnets with anisotropic
exchange interactions may have many more surprises yet in
store.
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APPENDIX A: g TENSOR IN LOCAL AND GLOBAL
COORDINATE FRAMES

The local crystal-electric field (CEF), acting on a given
magnetic ion, affects both the character of its ground state,
and the nature of its exchange interactions with other magnetic
ions. For this reason, it is often convenient chose a coordinate
frame

{X!.ocal , yiocal , Z1_ocal } ,
which is tied to the local CEF on site i. We can accomplish
this by choosing z/°°@ to be parallel with the [111] axis on site
i, i.e., the local axis with C3 symmetry
For the tetrahedron shown in Fig. 5, the magnetic ions
labeled Sy, S1, S», and S3 occupy positions

ro = <(1LL1), 1 =a(,—1,—1)
0—8 ,1,1), 1—8 s s ’

a a

rn=-(-L1L-1), r=_-(-1,—-11), (AT)
8 8

relative to the center of the tetrahedron, in units such that the

cubic, 16-site unit cell of the pyrochlore lattice occupies a

volume V = a3. The local [111] axes on these sites are given
by

1 1

local local
Z = (17151)7 A - (17_17_1)9

0 V3 : V3

1 1
local local

= —=1L1,-D, z377 = —=(-1,—-11). (A2)

g V3 ’ V3

In defining (x!°¢@ y'°c@) we follow the conventions of Ross

et al. [44], and make the convenient choice

1 1
x2% — —ﬁ(—z,m), xiooal — —ﬁ(—z,—l,—l),
1 1
local local
=—(02,1,-1), x =—02,—-1,1), A3
> %< ), Xy ﬁ( ) (A3)
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TABLE VI. Estimates of the components of the g tensor in the
local frame goca [Eq. (A6)], taken from experiment on Yb,Ti,O;
[93], Er,Ti,O7 [26], and Er,Sn, 07 [34].

szTi207 EI'QTizO7 ErZSn207
8xy 4.18 597 7.52
<. 1.77 2.45 0.05
such that all y/°%@ lie in a common plane
ylocal — L(O —1 1) ylocal — L(O 1 _1)
0 \/E 1 \/§
1 1
local local
= —=(0,-1,-D), =—=0,1L1). (A4
y2 \/§ y3 ﬁ

In this local coordinate frame, the magnetic moment

_ af QB
mi = SlocalSi

i (A5)
p=1

is connected to the (pseudo)spin-1/2 operator S [Eq. (7)],

through a g tensor with a diagonal simple form

&xy 0 0
Llocal = 0 8xy 0 , (A6)
0 0 g

where o, B = {xl.oca',yl,oca',zl,oca'}, and gioca is independent

of the site considered. Estimates of g, and g, taken from
experiment on Yb,TiO7 [93], Er,Ti»O7 [26], and Er,Sn, O
[34], are shown in Table VI. For rare-earth ions with Ising
character, such as Dy*" in Dy,Ti,O7, g; > gy, while for
the rare-earth ions considered in this paper with easy-plane
character, g. < gx,.

The g tensor in the coordinate frame of the crystal axes g;
[Eqg. (3)] can be found by rotating giocal [Eq. (A6)] back into
the global coordinate frame u, v = {x,y,z}. Since the required
rotation depends on the lattice site, the resulting g tensor is
sublattice dependent

81 & & 81 —& —&
20=18 & &) 8=|"8& 81 £ |,

8 8 8 —&2 82 81

81 —82 82 81 82 —82
=% 81 —&1, =1 & 81 —82 1],

82 —82 81 —& —& 81

(A7)

where

81 = %gxy + %gzv 82 = _%gxy + %gr (A8)
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APPENDIX B: LINEAR SPIN-WAVE THEORY FOR
A GENERAL 4-SUBLATTICE GROUND STATE

A general framework for linear spin-wave theory on the
pyrochlore lattice is set out in [44], following the pattern that
can be found in [148]. For completeness here we reproduce
the technical steps needed to apply such a theory to the 4-
sublattice, q = 0 classical ground states discussed in Sec. III.

As with the classical spin-wave theory developed in
Sec. IV A, it is convenient to work in a local basis, in which
spins are quantized such that their local z axis is aligned with
the classical ground state. Following Eq. (68), we label these
local axes

{u;,vi,w;}
and quantize fluctuations about the classical ground state by

introducing Holstein-Primakoff bosons

SY=S—dala (B1)

S; =St +iS’ =S —aja,)?a; ~2Sa;, (B2)

ST =S —iS’ =a](2S —ala,)'* =~ V2Sa], (B3)

1

where [q; ,a;] = §;j.
Substituting these expressions in Hex [Eq. (4)] and Fourier
transforming them, we obtain

Hex%g()‘l'Hle_fW'i_"'a (B4)

where & is the classical ground-state energy defined in
Eq. (70), and

1 - -
Hoe' =5 2 Al X(@) - Ag) (BS)
q

describes quantum fluctuations at the level of linear spin-
wave theory. Here Af(q),A(q) are eight-component vectors
of operators

Alq) = [a)(@),a(@),al@),al (@),
ay(—q),a,(—q),a,(—q),a5(—q)]  (B6)

and X(q) is an 8 x 8 matrix written in block form as

11 12
X@)X(m) )

X@ZMQMDXWm

lejl(q) — cos(q . rij)<ci . Jij . cj'; — (S,'j ZWI . Jlj . Wj>,
1
(B8)

X,ljz(q) = X%ll* = COS(q . rij)(ci . Jij . cj)» (B9)

X?jz(q) — COS((] . rij)(c? . J’] “Cj— 81] Zwl . JZ/ . WJ>7
1
(B10)
where

1
¢ = _2(ui +iv;). (B11)

7
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The spin-wave Hamiltonian H5SW [Eq. (B5)] can be

diagonalized by a suitable Bogoliubov transformation. We
accomplish this following the method outlined in Ref. [149]

by introducing new Bose operators [b; ,b;] = §;j, such that

B'(q) = [b)(q),b!(@).b1(@).b}(q),
by(—=q),b,(—=q),b,(—q),b5(—q)]
= Al(q) - U'(q).

The condition that these operators are Bosonic may be written
as

(B12)

[B; (@), B}(q)] = 084 (B13)

. (1 0
7=l -1
isan 8 x 8 matrix (written in block form) and leads to a pseudo-

unitary condition on U(q):

U'(q=6-Ul(g-6.

where

(B14)

(B15)
Substituting in Eq. (B5), we obtain

1
Hee' =5 ) Bl@- U @) X@- U@ B (@)
q

1
52 Bl@ 6 U@ 6 X@ U@ B @
q

(B16)

The object U(q) - & - X(q) - U~'(q) is a similarity transforma-
tion on the matrix & - X(q), and for correctly chosen U(q), will
be a diagonal matrix containing the eigenvalues of & - X(q).
We then arrive at

sw _ 1§ pi .A.(“)”(q) 0 )
Hoc' =352 Bl@-o-{ o) B @

q
(B17)

Collecting all terms, reordering operators, and inserting into
Eq. (B4) we obtain the result quoted in Sec. IV C,

3
1
Hex ~ 50(1 + §) +Y ) o
q v=0
t 1

x| by(@b, (@) + )t (B13)
The dispersion w,(q) of the four branches of spin waves can
be found by numerical diagonalization of & - X(q).

APPENDIX C: CLASSICAL MONTE CARLO SIMULATION

The Monte Carlo simulations described in this paper are
based on the Metropolis algorithm with parallel tempering
[150,151] and over-relaxation [152]. The spins are modeled
as classical vectors of length |S;| = 1/2 and locally updated
using the standard Marsaglia method [153]. We consider cubic
clusters of linear dimension L, based on the 16-site cubic
unit cell of the pyrochlore lattice, and containing N = 16L3
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sites. A Monte Carlo step (MCs) is defined as N attempts to
locally update a randomly chosen spin, and #.x (measured
in MCs) is the total Monte Carlo time over which data are
collected.

Equilibration is performed for each temperature in two suc-
cessive steps. First the system is slowly cooled down from high
temperature (random initial spin configuration) to the temper-
ature of measurement 7" during #,,,x /10 MCs. Then, the system
is equilibrated at temperature 7 during additional #,,/10
MCs. After equilibration, Monte Carlo time is set to zero and
measurements start and go on for fy,x ~ 10°-107 MCs.

All thermodynamical observables have been averaged
over Monte Carlo time every 10 MCs, except for calcu-
lations of the equal-time structure factor S(q), where data
points were taken every 100 MCs for efficiency. The par-
allel tempering method implies simultaneously simulating
a large number of replicas of the system in parallel, with
each replica held at a different temperature. The program
then regularly attempts to swap the spin configurations of
replicas with neighboring temperatures, in such a way as
to maintain detailed balance [150,151]. Simulating ~120
replicas, with swaps attempted every 100 MCs appears to
offer a good compromise between efficiency and decorrelation
for L = 6.

In the case of the over-relaxation method, after each Monte
Carlo step, two further sweeps are made of the entire lattice.
Each spin feels an effective field due to the interaction with its
six nearest neighbors; any rotation around this axis conserves
the energy and is thus an acceptable move respecting detailed
balance. To avoid rotating successive neighboring spins, we
first update all spins of sublattice O, then sublattice 1, 2, and
finally 3. The first iteration of all N spins is deterministic, i.e.,
we rotate them by the maximum allowed angle; while for the
second iteration, a random angle of rotation is chosen for each
spin. The generation of so many random numbers is of course
time consuming but is recommended for better equilibration
[154]. We note that convergence of the specific heat ¢, — 1
for T — 0 is a good indication of the equilibration of ordered
phases at low temperatures.

The main results of Monte Carlo simulations are summa-
rized in the finite-temperature phase diagram Fig. 3, which
spans all four of the ordered phases discussed in the article.
This phase diagram was determined from simulations for 64
different parameter sets, equally spaced on the circle defined
by \/J} + J} = 3|J;] illustrated by the white circle in Fig. 1,
with J3 = —0.1 meV and J; = 0. Transition temperatures for
each phase were extracted from the relevant order-parameter
susceptibilities, as described in Sec. V.

Simulations were performed for a cluster of N = 3456
spins (L = 6), and data averaged over ten independent runs
during fy,,c = 10° MCs. Parallel tempering was used, typically
with 121 replicas, at temperatures equally spaced from 0
to 1.2 K. However, close to the boundaries between phases
with different symmetries, the large number of competing
ground states makes simulations difficult to equilibrate. Here
additional data points with better statistics were sometimes
necessary, typically with 201 temperatures on a smaller
temperature window, with fyx = 107 MCs and N = 8192
(ie., L =38).
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