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The influence of uniaxial single-ion anisotropy −DS2
z on the magnetic and thermal properties of Heisenberg

antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg
interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015)], where
thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear
AFMs with ordering along the z axis (D > 0) in applied field Hz = 0 are calculated versus D and temperature T ,
including the ordered moment μ, the Néel temperature TN, the magnetic entropy, internal energy, heat capacity,
and the anisotropic magnetic susceptibilities χ‖ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field
average magnetization per spin μz(Hz,D,T ) is found, and the critical field Hc(D,T ) is derived at which the
second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are
calculated, including the zero-field properties TN(D) and μ(D,T ). The high-field μz(Hz,D,T ) is determined,
together with the associated spin-flop field HSF(D,T ) at which a second-order SF to PM phase transition occurs.
The free energies of the AFM, SF, and PM phases are derived from which Hz − T phase diagrams are constructed.
For fJ = −1 and −0.75, where fJ = θpJ /TNJ and θpJ and TNJ are the Weiss temperature in the Curie-Weiss
law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz − T

plane similar to previous results are obtained. However, for fJ = 0 we find a topologically different phase
diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated
are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D,T ),
the associated effective torque at low fields arising from the −DS2

z term in the Hamiltonian, the high-field
perpendicular magnetization μ⊥, and the perpendicular critical field Hc⊥ at which the second-order AFM to PM
phase transition occurs. In addition to the above results for D > 0, the TN(D) and ordered moment μ(T ,D) for
collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the
above spin systems with those of noninteracting systems with −DS2

z uniaxial anisotropy with either sign of D,
Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting
spin systems are given.

DOI: 10.1103/PhysRevB.95.094421

I. INTRODUCTION

The presence of anisotropy in a spin system that otherwise
has isotropic Heisenberg exchange interactions can signifi-
cantly affect the thermal and magnetic properties of the system.
The origin of the anisotropy can take various forms [1–3]. The
ubiquitous magnetic dipole interaction between spins is well
known. A comprehensive study of the resulting anisotropic
properties of spin systems with Heisenberg interactions within
molecular field theory (MFT) recently appeared [4]. Another
potential source of anisotropy is anisotropy in the exchange
interactions in spin space, leading, e.g., to the XY, Ising, and
intermediate XXZ models. The anisotropy in the magnetic
susceptibility χ of noninteraction spin systems arising from
single-ion magnetocrystalline anisotropy is also well known
[5,6], although a comprehensive study of the magnetic and
thermal behaviors of these systems is lacking.

A MFT study of the influence of single-ion anisotropy
on χ of Heisenberg spin systems was carried out in 1951
[7] using the same MFT as for calculations in 1941 of the
anisotropic χ below the antiferromagnetic (AFM) ordering
temperature TNJ for Heisenberg spin interactions [8]. These
MFT predictions are highly constrained by the requirement
that in the absence of the uniaxial anisotropy, the ratio fJ =
θpJ /TNJ of the Weiss temperature θpJ in the high-temperature
Curie-Weiss law and TNJ is equal to −1, which is rarely

if ever observed in practice. Here we distinguish between
the Weiss temperature θp and Néel temperature TN obtained
in the presence of both uniaxial anisotropy and Heisenberg
interactions from the above designations θpJ and TNJ resulting
from exchange interactions alone. Spin-wave theory has been
applied to systems with single-ion anisotropy and Heisenberg
interactions, and the theory predicts that the anisotropy gives
rise to energy gaps in the spin-wave spectra [9] in addition
to modifying the spin wave branches. Spin-wave calculations
have also been useful in predicting the χ and magnetic heat
capacity Cmag of AFMs at temperatures T below their TN

[9,10]. The influence of uniaxial single-ion anisotropy on
TN of Heisenberg spin systems was studied using Green
function techniques and was found for spins with spin angular
momentum quantum number S = 1 on a simple-cubic lattice
to be significantly stronger than inferred from MFT for
small anisotropy parameters [11]. Subsequent Green function
treatments for S = 1 showed that MFT accurately predicts TN

for large values of the single-ion anisotropy [12,13].
In this paper we greatly extend previous work by carrying

out a comprehensive investigation of the influence of uniaxial
single-ion DS2

z anisotropy on the thermal and magnetic
properties of local-moment Heisenberg AFMs. The anisotropy
is treated exactly and the Heisenberg interactions by MFT. We
obtain expressions for arbitrary values of fJ and for both
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positive and negative anisotropy parameters D of arbitrary
magnitude. Many plots of the properties are provided including
phase diagrams in the field-temperature plane. We confirm that
the presence of ferromagnetic (FM) interactions in addition
to the required AFM ones can result in first-order AFM to
paramagnetic (PM) phase transitions for fields aligned along
the AFM easy axis with D > 0 [14]. We also calculate the
magnetic properties of systems with D < 0 where in-plane
AFM ordering occurs.

The unified MFT used in our calculations to treat the
Heisenberg interactions was recently presented for local-
moment AFMs containing identical crystallographically-
equivalent spins with Heisenberg interactions that does not
use the concept of magnetic sublattices [15–17]. Instead, the
magnetic and thermal properties are calculated simply from the
interactions of a representative spin with its neighbors. Another
significant advantage of this MFT is that it is formulated in
terms of physically measurable quantities. These include the
spin S of the local moment, fJ , TN, χ (TN), and θp in the
Curie-Weiss law.

The Curie-Weiss law in the PM state at temperatures
T � TN is written for a representative spin as

χ = C1

T − θp
, (1a)

where

C1 = g2S(S + 1)μ2
B

3kB
(1b)

is the single-spin Curie constant, g is the spectroscopic
splitting factor (g factor), μB is the Bohr magneton, and kB

is Boltzmann’s constant. For simplicity it is assumed in this
paper that the g factor is isotropic as appropriate for s-state
magnetic ions for which g ≈ 2. For moments that are aligned
along a principal axis α, g can be replaced by a variable gα

in the respective equations, where gα is obtained theoretically
and/or from experimental measurements.

The Hamiltonian associated with a representative spin i is
taken to be

H = S ·
∑

j

Jij Sj + gμBS · H − DS2
z , (2)

where the first term is the sum of the Heisenberg exchange
interactions between spin i with spin operator S and its
neighbors Sj with which it interacts with strength Jij , a positive
(negative) Jij corresponds to AFM (FM) interactions, and S
is in units of h̄ where h̄ is Planck’s constant divided by 2π .
The second term in Eq. (2) is the Zeeman interaction −�μi · H
of the magnetic moment operator �μi with the applied field H,
where this operator is written in terms of S as

�μi = −gμBS, (3)

and the negative sign originates from the negative charge on
the electron which is usually taken to be a plus sign in the
literature. The third term in Hamiltonian (2) is the uniaxial
single-ion anisotropy with respect to the uniaxial z axis. The
negative sign preceding this term is conventional and results
in collinear AFM ordering along the z axis for D > 0. The
present paper is devoted to studying the influence of this term

on the thermal and magnetic properties of Heisenberg spin
systems.

The theory needed for the calculations of the thermal and
magnetic properties with the Heisenberg interactions treated
by the unified MFT is given in Sec. II. This section includes
the general expression for the exchange field expressed in
terms of the MFT variables in Refs. [15,16], the magnetic
moment operators needed to calculate the thermal-average
moments, expressions for the Néel and Weiss temperatures due
to Heisenberg exchange interactions by themselves, treatment
of the special case of two-sublattice AFM structures, the
definitions of the dimensionless magnetic susceptibilities,
the expressions used to calculate the magnetic entropy,
internal energy, Helmholtz free energy and heat capacity
within the context of MFT, and the second-order perturbation
theory for both integer and half-integer spins that is used
to provide formulas for the perpendicular susceptibilities of
various spin configurations. The parallel susceptibility χ‖ is
defined as the magnetic susceptibility parallel to the easy
axis of a collinear AFM taken to be the z axis for D > 0,
and the perpendicular susceptibility χ⊥ measured with the
applied field perpendicular to the easy axis, taken to be the
x axis.

The remainder of the paper presents applications of the
theory in Sec. II to the influences of the quantum uniaxial
anisotropy on the thermal and magnetic properties of various
Heisenberg spin configurations within the unified MFT, mostly
for D > 0. Many plots of the predicted properties versus T

and/or H are provided. The χ‖(D,T ) and χ⊥(D,T ) behaviors
are obtained for the PM state in Sec. III for both integer and
half-integer spins, where second-order perturbation theory is
used to derive χ⊥(D,T ). The ordered moment in H = 0 versus
temperature, the Néel temperature versus D, and the thermal
properties of collinear AFMs with D > 0 are studied versus
T and D in Sec. IV.

The properties of collinear AFMs with D > 0 in parallel
fields are obtained in Sec. V, including calculations of χ‖(D,T )
and the parallel magnetization in high fields, together with the
associated critical fields (Hc) for transitions from the AFM to
the PM state versus T . The staggered magnetization (the AFM
order parameter) versus Hz and D > 0 is also obtained.

Section VI is devoted to a study of the spin-flop (SF) phase
with D > 0, where the ordered moments are flopped over from
the collinear AFM phase along the z axis into two sublattices
that make equal angles with the z axis. In this section the zero-
field Néel temperature and ordered moment of the SF phase
versus T and D are calculated, and the magnetization versus
high applied Hz field determined. From the latter calculation
the spin-flop field HSF(D,T ) for the second-order transition
from the SF to the PM phase is found.

In Sec. VII the free energies of the AFM and SF phases
versus T and Hz are calculated for representative spin S = 1
and D = 0.5kBTNJ . From a comparison of their free energies,
the first-order AFM to SF transition line in the T − Hz

plane is found. Then together with the previous calculations
of Hc(D,T ) of the AFM phase and HSF(D,T ) of the SF
phase, exemplary Hz − T phase diagrams are constructed for
S = 1 and D = 0.5kBTNJ with fJ = −1,−0.75 and 0. The
phase diagrams for fJ > −1 correspond to the introduction
of ferromagnetic exchange interactions between the spins.
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For fJ = −1 and −0.75 we obtain phase diagrams of the
well-known type. However, for fJ = 0 we find a topological
change in the phase diagram where the spin-flop phase appears
as a bubble in the Hz − T plane at finite Hz and T .

In Sec. VIII the effects of fields Hx applied perpendicular
to the easy axis of a collinear AFM with D > 0 are discussed.
Here we calculate χ⊥(D,T ) using the second-order perturba-
tion theory in Sec. II. Expressions for the Weiss temperature
in the Curie-Weiss law (1), the effective torque, and the
anisotropy constant K1 associated with the uniaxial anisotropy
at low fields are also obtained. The latter expression agrees
with a previous result at T = 0 obtained using a different
approach [18]. We also determine the T dependence of K1.
The high-field perpendicular magnetization is then calculated
and the critical field Hc⊥(D,T ) for the second-order transition
from the canted AFM state to the PM state determined. In
contrast to most previous MFT treatments of μ⊥ versus H⊥
(e.g., Ref. [16]), we find that both the ordered moment and
μ⊥/H⊥ at a given T in the AFM state depend on H⊥ when
D > 0. In Sec. IX collinear AFM ordering along the transverse
x axis with D < 0 is discussed, where the Néel temperature
and ordered moment in the AFM state versus D and T in
H = 0 are calculated.

A brief summary of the results of this paper is given in
Sec. X. In order to compare these results with those for
noninteracting spin systems as done in the main text, the
thermal and magnetic properties of spin systems with no spin
interactions but with uniaxial single-ion anisotropy including
plots of these properties versus T and/or H are described in
the Supplemental Material [19].

II. THEORY

The expressions in this section involving the unified MFT
are either quoted from or derived from those in Refs. [15,16].

A. Exchange field and Hamiltonian

The basis states of the Hilbert space used for the Hamilto-
nian eigenfunctions in this paper for spin S are |S,Sz〉, with
z components of the spin angular momentum Sz ≡ mS =
−S,−S + 1, . . . ,S. Since the expectation value 〈S2

z 〉 = 1/4
for the two values mS = ±1/2 of the spin magnetic quantum
number for S = 1/2, the DS2

z single-ion anisotropy term in
Eq. (2) is a constant and hence produces no anisotropy for
spins S = 1/2.

Within MFT, one approximates the exchange interactions
Jij of a given spin i with its neighbors j in Eq. (2) by an
effective molecular (or exchange) field

Hexch i = − 1

g2μ2
B

∑
j

Jij �μj , (4a)

where �μj is the thermal-average moment of spin j . A moment
�μ can arise from exchange interactions, an applied field, or
both. We will therefore often refer to such thermal-average
moments as simply “ordered moments.” The exchange field
is treated as if it were an applied field. The component of the

exchange field parallel to moment �μi is

Hexch i = μ̂i · Hexch i = 1

g2μ2
B

∑
j

Jijμj cos αji, (4b)

where αji is the angle between �μj and �μi in the ordered and/or
field-induced state. In H = 0, due to their crystallographic
equivalence all ordered moments have the same magnitude
defined as μ0, in which case αji ≡ φji . The φji are given by
the assumed magnetic structure in either the AFM or PM state.

Using Eqs. (2) and (3), within MFT the Hamiltonian
associated with a representative spin including the H, Hexch,
and DS2

z terms is

H = −�μi · Bi − DS2
z = gμBS · Bi − DS2

z , (5a)

where

Bi = Hexch i + H (5b)

is the local magnetic induction at the position of spin i. The B
and H are normalized here according to

b ≡ gμBB
kBTNJ

, h ≡ gμBH
kBTNJ

, (6)

where TNJ is the Néel temperature for an assumed magnetic
structure in H = 0 that would occur due to the exchange
interactions alone as derived in Sec. II C below. In terms of
these reduced variables, one has

bi = hexch i + h. (7)

All energies are also normalized by kBTNJ , so the reduced
Hamiltonian obtained from Eq. (5a) is

H
kBTNJ

= S · bi − dS2
z , (8)

where the reduced anisotropy constant d is

d ≡ D

kBTNJ

. (9)

The 2S + 1 reduced energy eigenvalues of the Hamiltonian
(8) for a given spin S are denoted as

εn = En

kBTNJ

(n = 1, 2, . . . , 2S + 1), (10)

where

εn = εn(hα,d,S) (11)

and α = x or z here. Within MFT, the final expressions for
the energy eigenvalues are in general temperature dependent
due to the temperature dependence of the ordered and/or field-
induced moments contained in them that are solved for as
described for different cases in subsequent sections.

B. Magnetic moment operators and thermal-average
components of the magnetic moment

In this paper, we consider ordered moments lying either
along the z axis as in collinear magnetic ordering along this
axis, or in the x-z plane as when a perpendicular field Hx is
applied to a collinear AFM structure that is aligned along the
z axis in H = 0. The x-z plane ordered-moment alignment also
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applies to the spin-flop phase where in zero field the ordered
moments are aligned along the x axis and tilt towards the z

axis in the presence of a field Hz along the z axis. For collinear
moment alignments along the z axis, the exchange field Hexch i

seen by a representative spin i is also oriented along the z

axis, whereas for both the spin-flop phase and the AFM phase
with an easy z axis in a perpendicular H = Hx î , Hexch i has
components along both the x and z axes in general.

In general, the eigenvalues of Hamiltonian (5a) thus contain
both x and z components μix and μiz of the central ordered
moment �μi which must both be solved for. We therefore define
magnetic moment operators μ

op
nx and μ

op
nz in terms of the energy

eigenvalues En of Hamiltonian (5a) as

μop
nα = −∂En

∂Bα

(α = x,z), (12)

where Bx and Bz are the x and z components of the magnetic
induction B in Eq. (5b), respectively. It is convenient to define
dimensionless reduced magnetic moments

μ̄ = μ

μsat
, (13a)

where the saturation moment μsat is

μsat = gSμB. (13b)

In terms of the reduced variables in Eqs. (6), (10), and (13),
the magnetic moment operators (12) become

μ̄op
nα = − 1

S

∂εn

∂bα

. (14)

The thermal-average values μ̄α are calculated self-
consistently from the conventional expression

μ̄α = 1

ZS

2S+1∑
n=1

μ̄op
α e−εn/t = − 1

SZS

2S+1∑
n=1

∂εn

∂bα

e−εn/t , (15a)

where the reduced temperature t is

t = T

TNJ

(15b)

and the partition function is

ZS =
2S+1∑
n=1

e−εn/t . (15c)

If both μ̄x and μ̄z are nonzero, then Eq. (15a) becomes two
simultaneous equations in these two variables from which the
solutions to both μ̄x and μ̄z are obtained. If all moments
and fields are aligned along the z axis, then εn → ε(mS) and
the above sums over n become sums over the spin magnetic
quantum number mS = −S to S in integer increments.

C. Néel and Weiss temperatures from exchange
interactions only

The AFM transition temperature TNJ in H = 0 and the
Weiss temperature θpJ due to exchange interactions between

spins of the same magnitude are given by

TNJ = −S(S + 1)

3kB

∑
j

Jij cos φji, (16a)

θpJ = −S(S + 1)

3kB

∑
j

Jij , (16b)

where the sums are over all neighbors j of a given central
spin i and the subscript J on the left sides signifies that these
quantities arise from exchange interactions only, and φji is
the angle between moments j and i in the AFM structure at
T < TNJ . The exchange field component in the direction of
representative ordered moment �μi in H = 0 is

Hexch 0 = TNJ

C1
μ0 = 3kBTNJ

gμB(S + 1)
μ̄0, (17)

where the index i has been dropped because the exchange field
is the same for each spin since they are assumed to be identical
and crystallographically equivalent and the subscript 0 in
μ̄0 ≡ μ̄i means that it is a zero-field property. The dimen-
sionless reduced fields h and b associated with the field H and
B are defined as

h = gμBH

kBTNJ

, b = gμBB

kBTNJ

. (18)

Thus Eqs. (17) and (18) give the magnitude of the reduced
exchange field in the direction of each of the ordered moments
in any AFM state with H = 0 as

hexch0 = 3μ̄0

S + 1
(AFM state,H = 0). (19)

D. Two-sublattice collinear AFM structures

Magnetic structures are studied later consisting of equal
numbers of spins on two sublattices where all moments �μi

having the same magnitude and direction are on the same (s)
sublattice and the equal number of other moments �μj with
a different magnitude and direction are on the different (d)
sublattice. For the special case of a collinear AFM in H = 0
where the moments on the two sublattices s and d have the
same magnitude but are antiparallel in direction, Eqs. (16)
give

TNJ = −S(S + 1)

3kB

⎛
⎝∑

j

s
Jij −

∑
j

d
Jij

⎞
⎠, (20a)

θpJ = −S(S + 1)

3kB

⎛
⎝∑

j

s
Jij +

∑
j

d
Jij

⎞
⎠. (20b)

Solving Eqs. (20) for the two sums gives

∑
j

s
Jij = −3kBTNJ (1 + fJ )

2S(S + 1)
, (21a)

∑
j

d
Jij = 3kBTNJ (1 − fJ )

2S(S + 1)
, (21b)
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where we used the definition

fJ = θpJ

TNJ

. (21c)

Equations (21) allow replacement of the respective sums wher-
ever they occur by the more physically relevant parameters
TNJ and θpJ . One has −∞ < fJ < 1 for AFMs and fJ = 1
for FMs.

From Eq. (4a), the exchange field seen by central moment
�μi in H = 0 in a two-sublattice AFM is given in general by

Hexch i = − 1

g2μ2
B

⎛
⎝ �μi

∑
j

s
Jij + �μj

∑
j

d
Jij

⎞
⎠. (22a)

Then Eqs. (21) give

Hexch i = 3kBTNJ

2g2μ2
BS(S + 1)

[ �μi(1 + fJ ) − �μj (1 − fJ )]. (22b)

Using Eqs. (18), the reduced exchange field seen by �μi is
obtained from Eq. (22b) as

hexch i = 3

2gμBS(S + 1)
[ �μi(1 + fJ ) − �μj (1 − fJ )]

= 3

2(S + 1)
[ �̄μi(1 + fJ ) − �̄μj (1 − fJ )]. (22c)

For collinear AFM ordering along a principal axis in
H = 0, one has �̄μj = −�̄μi , yielding Eq. (19), whereas in the
paramagnetic (PM) state with �̄μj = �̄μi , Eq. (22c) yields

hexch i = 3fJ �̄μi

S + 1
(PM state). (22d)

This may be compared with Eq. (19) where the factor fJ does
not appear.

E. Magnetic susceptibilities

As noted above, we define μα as the thermal-average
moment per spin induced by an applied field Hα and/or
exchange field Hexch α in the α principal-axis direction
(α = z, x in this paper). The magnetic susceptibility per spin
χα for the α direction is rigorously defined for nonferromag-
netic materials as

χα = lim
Hα→0

μα

Hα

. (23)

For calculations with an infinitesimal Hα applied to a PM or to
an AFM-ordered spin system such as in the perturbation-theory
calculations outlined in Sec. II G below, one has

χα = μα

Hα

. (24)

We define dimensionless reduced susceptibilities χ̄α as

χ̄α ≡ χαTNJ

C1
=

(
3

S + 1

)
μ̄α

hα

, (25)

where C1 is the single-spin Curie constant in Eq. (1b) and TNJ

is given in Eq. (16a). The second equality is in terms of the
more convenient reduced parameters hα and μ̄α defined as in
Eqs. (6) and (13a), respectively.

F. Magnetic entropy, internal energy, Helmholtz free energy,
and heat capacity

As noted above, when an exchange field is present the
eigenenergies of the reduced MFT Hamiltonian (8) are tem-
perature dependent once the temperature-dependent ordered
and/or induced moment �μ values are determined as described
for various situations later. Therefore the standard statistical-
mechanical expression Smag = −∂Fmag/∂T to derive the
magnetic entropy Smag(T ) from the magnetic Helmholtz free
energy Fmag(T ) gives incorrect results. However, Smag, Fmag,
and the magnetic internal energy Umag are state functions
and can therefore be correctly calculated directly once the
temperature dependence of the ordered moments is calculated.
Then the magnetic heat capacity Cmag(T ) can be derived from
them.

After the exchange interactions between a representative
spin i and its neighbors are taken into account by approxi-
mating them by an effective exchange field within MFT and
�μi(t) is determined, the system can be considered to consist
of noninteracting spins. Then Smag(t) per spin for fixed d and
S can be calculated from the Boltzmann expression

Smag(t)

kB
= −

2S+1∑
n=1

Pn(t) ln Pn(t), (26a)

Pn(t) = 1

ZS(t)
e−εn(t)/t , (26b)

ZS(t) =
2S+1∑
n=1

e−εn(t)/t , (26c)

where εn(t) are the reduced eigenenergies of the reduced
Hamiltonian (8) and Pn(t) is the probability that a spin is in
eigenstate n at reduced temperature t . The reduced magnetic
internal energy umag per spin is obtained from

umag(t) ≡ Umag(t)

kBTNJ

= 1

ZS(t)

2S+1∑
n=1

εne
−εn(t)/t . (27)

Once numerical values of Smag(t) or umag(t) are calculated,
the reduced magnetic heat capacity per mole of spins can be
obtained from either

Cmag(t)

R
= t

d[Smag(t)/R]

dt
, (28a)

or

Cmag(t)

R
= dumag(t)

dt
, (28b)

where R is the molar gas constant. The reduced Helmholtz free
energy per spin fmag(t) is obtained from the above single-spin
results from either

fmag(t) ≡ Fmag(t)

kBTNJ

= −t ln ZS(t) (29a)

or

fmag(t) = umag(t) − t[Smag(t)/kB]. (29b)
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G. Generic perturbation theory for an infinitesimal
perpendicular magnetization

The parallel axis is assumed here to be the z axis and
the perpendicular axis is taken to be the x axis. We consider
a generic magnetic induction Bx seen by a representative
spin that can be comprised of either an exchange field or an
applied field or both and Bz which can arise from exchange
interactions. All spins respond identically to Bx because
they are identical and crystallographically equivalent by
assumption. The Hamiltonian associated with a representative
spin is

H = −�μ · B − DS2
z = gμB(BxSx + BzSz) − DS2

z . (30a)

The unperturbed and perturbed parts of the Hamiltonian
H = H0 + H′ are, respectively,

H0 = gμBBzSz − DS2
z , (30b)

H′ = gμBBxSx = gμBBx

2
(S+ + S−), (30c)

where S+ and S− are raising and lowering operators on the
z components of the basis states |S,Sz〉, which we abbreviate
as |Sz〉 for an assumed value of the spin S. The unperturbed
eigenenergies obtained from Eq. (30b) are

E0(mS) = gμBBzmS − Dm2
S, (31)

where mS is the spin magnetic quantum number. In order to
apply the theory given in the following to a specific case, one
must first derive the Hamiltonian per spin for that case and
from that obtain the expressions for Bx and/or Bz in Eqs. (30).

The perturbation theory for integer and half-integer spins
to second order is different in general, because for half-integer
spins the matrix elements 〈± 1

2 |H′|∓ 1
2 〉 are nonzero but the

unperturbed eigenenergies of the | 1
2 〉 and |− 1

2 〉 states are the
same if Bz in Eq. (31) is zero; hence these two states associated
with half-integer spins must then be treated by degenerate
perturbation theory. On the other hand, if Bz > 0, integer and
half-integer spins can be treated using the same formulas. In
the following two sections we discuss the perturbation theory
for these two cases separately. The generic theory presented
here in the context of MFT applies both to noninteracting
spins and to spins interacting by arbitrary sets of Heisenberg
exchange interactions.

1. Integer spins with Bz � 0 and half-integer spins with Bz > 0

The nonzero matrix elements of H′ are

〈mS ± 1|H′|mS〉 = gμBBx

2

√
S(S + 1) − mS(mS ± 1),

which are zero if mS = ±S, respectively. Hence the first-order
corrections to the eigenenergies are zero. The eigenenergies of
H′ at second order in Bx are

E2(mS) = −g2μ2
BB2

x

2
K(mS), (32a)

K(mS) = 1

2

[
S(S + 1) − mS(mS + 1)

gμBBz − D(2mS + 1)

− S(S + 1) − mS(mS − 1)

gμBBz − D(2mS − 1)

]
. (32b)

The magnetic moment operators μ
op
x (mS) associated with these

eigenenergies are obtained using Eq. (12) as

μop
x (mS) = −∂E2(mS)

∂Bx

= g2μ2
BBxK(mS). (33)

Since these μ
op
x (mS) operators are proportional to Bx , the

associated moments are all induced by this field.
Weighting the magnetic moments according to the Boltz-

mann distribution yields the thermal-average μx to first order
in Bx as

μx = 1

ZS

S∑
mS=−S

μop
x (mS)e−E(mS )/kBT

= g2μ2
BBx

ZS

S∑
mS=−S

K(mS)e−E0(mS )/kBT , (34a)

ZS =
S∑

mS=−S

e−E0(mS )/kBT , (34b)

where E0(mS) is given in Eq. (31). This is more compactly
written as

μx = g2μ2
BBxFx1,

Fx1 = 1

ZS

S∑
mS=−S

K(mS)e−E0(mS )/kBT . (34c)

In terms of the reduced variables introduced in Sec. II that
are more appropriate and useful when Heisenberg exchange
interactions are present, Eqs. (31), (32b), and (34c) become

ε0(mS) = bzmS − dm2
S, (35a)

K(mS) = 1

2

[
S(S + 1) − mS(mS + 1)

bz − d(2mS + 1)

− S(S + 1) − mS(mS − 1)

bz − d(2mS − 1)

]
, (35b)

μ̄x = bxFx1, (35c)

Fx1 = 1

SZS

S∑
mS=−S

K(mS) e−ε0(mS )/t , (35d)

ZS =
S∑

mS=−S

e−ε0(mS )/t . (35e)

If bz = 0, K(mS) in Eq. (35b) simplifies to

K(mS) = S(S + 1) + m2
S

d
(
4m2

S − 1
)

(bz = 0,integer spins only). (35f)

The definitions of the above variables are summarized as

ε0 = E0

kBTNJ

bα = gμBBα

kBTNJ

, d = D

kBTNJ

,

μ̄x = μx

μsat
, μsat = gSμB, t = T

TNJ

. (36)
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2. Half-integer spins with Bz = 0

For half-integer spins S = 3/2, 5/2, . . . with Bz = 0, we
first diagonalize the mS = ±1/2 subspace with respect toH′ in
Eq. (30c), which yields the symmetric (+) and antisymmetric
(−) eigenfunctions

|±〉 = 1√
2

[|1/2〉 ± |−1/2〉]. (37)

The nonzero matrix elements involving these |±〉 states are

〈±|S2
z |±〉 = 1

4
,

〈±|H′|±〉 = ±gμBBx

2

√
S(S + 1) + 1/4,

〈3/2|H′|±〉 = gμBBx

2
√

2

√
S(S + 1) − 3/4,

〈−3/2|H′|±〉 = ±gμBBx

2
√

2

√
S(S + 1) − 3/4, (38)

where the first and third sets of matrix elements are twofold
degenerate. The eigenenergies of the |±〉 states to second order
in Bx are

E(±) = −D

4
± gμBBx

2

√
S(S + 1) + 1/4

+ g2μ2
BB2

x

8

[
S(S + 1) − 3/4

D

]
. (39)

The magnetic moment operators for these states are

μop
x (±) = −∂E(±)

∂Bx

= ∓gμB

2

√
S(S + 1) + 1/4

− g2μ2
BBx

4

[
S(S + 1) − 3/4

D

]
. (40)

The first term corresponds to a permanent magnetic moment
and the second to a magnetic moment induced by Bx . The
thermal-average moments μx(±) of the |±〉 states to first order
in Bx are

μx(±) = 1

ZS

[
μop

x (+)e−E(+)/kBT + μop
x (−)e−E(−)/kBT

]

= g2μ2
BBxFx2,

Fx2 = eD/4kBT

2ZS

[
S(S + 1) + 1/4

kBT
− S(S + 1) − 3/4

D

]
,

(41)

where the partition function ZS is again given by Eq. (34b).
The contributions of the remaining mS = ±3/2,

±5/2, . . . ,±S states to μx are the same as those for integer
spins, given by Eq. (34c) as

μx(mS � 3/2) ≡ g2μ2
BBxFx3,

(42)

Fx3 = 2

ZS

S∑
mS=3/2

K(mS)e−E0(mS )/kBT ,

where K(mS) is given in Eq. (32b) and E0(mS) in Eq. (31).
Adding the two contributions (41) and (42) gives the total
thermal-average x-axis magnetic moment of representative
spin i as

μx = g2μ2
BBxFx4,

Fx4 = Fx2 + Fx3. (43)

When Heisenberg exchange interactions are present, the
above results in Eqs. (41)–(43) for half-integer spins are better
expressed in terms of reduced variables as

μ̄x = bxFx4, (44a)

Fx4 = Fx2 + Fx3, (44b)

Fx2 = ed/4t

2SZS

[
S(S + 1) + 1/4

t
− S(S + 1) − 3/4

d

]
, (44c)

Fx3 = 2

SZS

S∑
mS=3/2

K(mS)e−ε0(mS )/t , (44d)

where ε0(mS) and K(mS) are given in Eqs. (35a) and (35b),
respectively, and the variable definitions are summarized in
Eqs. (36).

III. MAGNETIC SUSCEPTIBILITY IN THE
PARAMAGNETIC STATE WITH D > 0

In the PM state the moments induced by a field in a principal
axis direction are parallel to each other and to the applied field.
The exchange field is also oriented in this direction.

A. Parallel susceptibility

Here we consider the case D > 0 with an infinitesimal field
aligned along the uniaxial parallel z-axis direction. According
to Eqs. (7) and (22d), the reduced magnetic induction seen by
each spin is given by

bz = 3fJ μ̄z

S + 1
+ hz. (45)

The reduced Hamiltonian (8) for each spin is diagonal with
reduced energy eigenvalues

ε(mS) =
(

3fJ μ̄z

S + 1
+ hz

)
mS − dm2

S. (46)

The operator μ̄
op
z is given by Eqs. (14), (45), and (46) as

μ̄op
z = − 1

S

∂ε(mS)

∂bz

= −mS

S
. (47)

The reduced thermal-average μ̄z is then obtained from
Eq. (15a) as

μ̄z = − 1

SZS

S∑
mS=−S

mSe
−ε(mS )/t , (48a)

ZS =
S∑

mS=−S

e−ε(mS )/t . (48b)

Equations (46)–(48) are valid for arbitrary values of hz > 0,
d and fJ < 1, but here we only consider infinitesimal hz and
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μ̄z. Using Eqs. (45) and (46), expanding Eqs. (48) to first order
in hz and μ̄z and then solving for μ̄z, gives

μ̄z =
(

S+1
3

)
hz

(S+1)t
3Fz

− fJ

, (49a)

Fz(d,t) = 1

SZS

S∑
mS=−S

m2
Se

dm2
S/t , (49b)

ZS =
S∑

mS=−S

edm2
S/t . (49c)

The reduced parallel susceptibility is obtained from Eqs. (25)
and (49a) as

χ̄‖ ≡ χzTNJ

C1
= 1

(S+1)t
3Fz

− fJ

(PM state). (50)

In the limit of high t , one obtains a Curie law with χ̄‖ = 1/t ,
irrespective of d, S, and fJ .

Converting Eq. (49a) to unreduced variables gives

χ‖ ≡ μz

Hz

= C1
T

F (d,t) − θpJ

, (51)

where C1 is the single-spin Curie constant in Eq. (1b). If d = 0
one obtains

χ‖ = C1

T − θpJ

, (52)

which is the Curie-Weiss law for Heisenberg exchange
interactions with no uniaxial anisotropy as required. At high
temperatures, Eq. (51) yields the Curie-Weiss law

χ‖ = C1

T − θp‖
(PM state), (53a)

θp‖ = θpJ + θpD‖, (53b)

θpD‖ =
(

D

kB

)
(2S − 1)(2S + 3)

15
. (53c)

The expression for θpD‖ arising from the single-ion anisotropy
is identical to that found in the Supplemental Material [19]
in the absence of exchange interactions. Thus the Weiss
temperatures from the exchange and single-ion anisotropies
are additive. This is also found to be the case for magnetic
dipole interactions combined with exchange interactions [4].
Equation (53c) yields θpD‖ = 0 if S = 1/2 as required.

Because the χ anisotropy tensor in the PM state arising from
single-ion anisotropy is traceless, one can immediately give the
expression for the Weiss temperature associated with χ⊥ that
is measured along an axis perpendicular to the parallel easy (z)
axis of a uniaxial collinear AFM. From Eq. (53c) one obtains

θpD⊥ = −θpD‖
2

= −
(

D

kB

)
(2S − 1)(2S + 3)

30
. (54)

This is confirmed by explicit calculations of the PM χ⊥(T ) in
the following section.

B. Perpendicular susceptibility

According to Eqs. (7) and (22d), the reduced magnetic
induction seen by each spin is in the x direction and contains
both exchange field and applied field parts, given by

bx = 3fJ μ̄x

S + 1
+ hx, (55)

where μ̄x is the reduced thermal-average moment in the x

direction.

1. Integer spins

To solve for χ⊥ we use Eqs. (35) and set bz = 0. The
expressions in Eqs. (35) appropriate to the present case are

ε0(mS) = −dm2
S, (56a)

K(mS) = S(S + 1) + m2
S

d
(
4m2

S − 1
) , (56b)

μ̄x = bxFx1, (56c)

Fx1 = 1

SZS

S∑
mS=−S

K(mS) edm2
S/t , (56d)

ZS =
S∑

mS=−S

edm2
S/t .

(integer spins). (56e)

The reduced x-axis moment per spin μ̄x is obtained from
Eqs. (55) and (56c) as

μ̄x = bxFx1 =
(

3fJ μ̄x

S + 1
+ hx

)
Fx1. (57)

Solving for μ̄x gives

μ̄x = (S + 1)hx/3
S+1
3Fx1

− fJ

. (58)

Using Eqs. (25) and (58), the normalized perpendicular
susceptibility is obtained as

χ̄⊥ ≡ χ⊥TNJ

C1
= 1

S+1
3Fx1

− fJ

. (59)

In the limit of low temperatures, we obtain

χ̄⊥(t → 0) =
[
d(S + 1)(2S − 1)

3
− fJ

]−1

, (60)

whereas in the limit of high temperatures a Curie law is
obtained, χ̄⊥ = 1/t . Carrying out a Taylor series expansion
of Eq. (59) to second order in 1/t yields a Curie-Weiss law (1)
with Weiss temperature

θp‖ = θpJ + θpD⊥, (61)

with θpD⊥ the same as previously inferred in Eq. (54).
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FIG. 1. Reduced parallel and perpendicular paramagnetic sus-
ceptibilities χ̄‖ with d = 0 and χ̄⊥ for the listed values of reduced
anisotropy constants d = D/kBTNJ for spins (a) S = 1 obtained from
Eq. (59) and (b) S = 7/2 obtained from Eq. (63).

2. Half-integer spins

Here we use Eqs. (44) since bz = 0. Utilizing Eq. (55) for
bx , Eqs. (44) yield

μ̄x = (S + 1)hx/3
S+1
3Fx4

− fJ

. (62)

Then Eqs. (25) and (62) give

χ̄⊥ = 1
S+1
3Fx4

− fJ

(half integer spins). (63)

At high temperatures χ⊥ follows the same Curie-Weiss law
as integer spins do. For t → 0 one also obtains the same
expression (60) as for integer spins.

Shown in Fig. 1 are the reduced parallel susceptibility χ̄‖
for d = 0 and the reduced perpendicular susceptibility χ̄⊥
versus reduced temperature t for the listed values of d for spins
S = 1 and 7/2 obtained using Eqs. (59) and (63). The value
χ̄‖(t = 0) = 1 is the same for all d and S. We thus find that
χ̄‖(t) is not very sensitive to the value of d (not shown), whereas
χ̄⊥(t) is quite sensitive to it as seen in Fig. 1. One also sees that
the χ̄⊥ curves for S = 7/2 in Fig. 1(b) are far more sensitive to

d than are those for the much smaller spin S = 1 in Fig. 1(a).
The regions in Fig. 1 at t � 1 are not observed in practice
because they are preempted by AFM ordering that occurs at
t � 1 for d � 0 as discussed in Sec. IV B.

IV. COLLINEAR z-AXIS AFM ORDERING
WITH D > 0 AND H = 0

When the anisotropy constant D > 0, z-axis AFM collinear
ordering is favored over collinear or coplanar AFM ordering in
the xy plane. When the ordered moment �μi and H and/or Hexch

are all aligned along the z axis, the Hamiltonian is diagonal
in the basis vectors |S,Sz〉. When h = 0 as assumed in this
section the reduced Hamiltonian (8) for representative spin i

is

H
kBTNJ

= bziSz − dS2
z . (64)

According to Eq. (19) one has

biz = hexch 0 = 3μ̄0

S + 1
, (65)

where we assume that the representative moment i is directed
in the +z direction and hence μ̄0 = μ̄iz. The reduced eigenen-
ergies obtained from Eq. (64) are thus

ε(mS) = 3μ̄0

S + 1
mS − dm2

S. (66)

A. Ordered moment

The reduced magnetic moment operator μ̄
op
z is obtained using

Eqs. (14), (65), and (66), which give the same expression as
for the PM state in Eq. (47). Using Eqs. (15a) and (47), the
reduced thermal-average z-component μ̄iz ≡ μ̄0 of moment
�μi is then obtained from

μ̄0 = − 1

SZS

S∑
mS=−S

mSe
dm2

S/t e−mSy, (67a)

where the partition function is

ZS =
S∑

mS=−S

edm2
S/t e−mSy, (67b)

the variable y is

y ≡ y0 = 3μ̄0

(S + 1)t
, (67c)

and the reduced temperature t is defined in Eq. (15b). We
define the function

GS(y) = − 1

SZS

S∑
mS=−S

mSe
dm2

S/t e−mSy (68)

so Eq. (67a) becomes

μ̄0 = GS(y0), (69)

which is analogous to μ̄0 = BS(y0) for noninteracting spins
with d = 0 where BS(y) is the Brillouin function and y =
gμBH/kBT .
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FIG. 2. Reduced ordered moment μ̄0 = μ0/μsat versus reduced
temperatures (a) t = T/TNJ and (b) T/TN for z-axis collinear
ordering in hz = 0 with spins S = 1 and reduced anisotropy constants
d = D/kBTNJ = 0, 1, and 2 obtained by solving Eq. (69).

From Eq. (68) one obtains

GS
′(y) ≡ dGS(y)

dy

= 1

SZS

⎡
⎣ S∑

mS=−S

m2
Se

dm2
S/t e−mSy

⎤
⎦ − SG2

S(y), (70)

which we will need later. For y � 1, a Taylor series expansion
of GS(y) in Eq. (68) to first order in y gives

GS(y) = yFz(d,t) (y � 1), (71)

where Fz(d,t) is defined in Eqs. (49).
Shown in Figs. 2(a) and 2(b) are plots of μ̄0 versus

t = T/TNJ and versus T/TN, respectively, for S = 1 and
d = 0, 1, and 2, that were obtained by solving Eq. (69) using
the FindRoot utility of Mathematica. A similar variation in the
curves with increasing D for S = 1 as in Fig. 2(b) computed
using MFT was previously reported [20]. Corresponding plots
for S = 7/2 with d = 0, 0.1 and 2 are shown in Figs. 3(a)
and 3(b). The Néel temperature TNJ arising from exchange
interactions alone is given by Eq. (20a) and the TN including

FIG. 3. Same as Fig. 2 except that here S = 7/2 and d = 0, 0.1,
and 2.

the influence of uniaxial anisotropy is calculated in the next
section. From Figs. 2(a) and 3(a) one sees that the TN values
(at which μ̄0 → 0) are strongly affected by d > 0. From
Figs. 2(b) and 3(b), the shapes of the curves are also seen
to be significantly affected upon varying d. The low-t limits of
μ̄0 in Figs. 2 and 3 are unity. Green function calculations for
S = 1 yield μ̄0(d → 0) = 0.92 and indicate that this quantity
increases with increasing d [12].

B. Néel temperature

As t approaches unity from below (T → T −
N ) one has

y0 � 1 in Eq. (67c) because μ̄0 becomes infinitesimally small.
Then setting

t = tN ≡ TN

TNJ

, (72)

Eqs. (67c), (69), and (71) give

μ̄0 = μ̄0

tN
Fz(d,tN). (73)

One solution is that the ordered moment μ̄0 is zero, which
corresponds to T � TN. Just below TN, μ0 > 0 and one can
divide it out. Then one has an expression from which tN(d)
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can be calculated, i.e.,

tN = Fz(d,tN), (74)

where Fz(d,t) is defined in Eqs. (49). This is consistent with
and is a generalization of Eq. (A.4) in Ref. [18] to include
arbitrary exchange interactions between arbitrary neighbors
of a given spin, to the extent that these interactions give a
classical z-axis collinear AFM structure as the ground-state
magnetic structure. One can express t = T/TNJ in terms of
T/TN according to

T

TN
= T

TNJ

TNJ

TN
= t

tN
, (75)

and using Eq. (74) thereby plot quantities versus T/TN instead
of t = T/TNJ if desired as done above in Figs. 2(b) and 3(b).

In general, Eq. (74) must be solved numerically. However,
for d � 1, one obtains

tN = 1 + d

15
(2S − 1)(2S + 3) (d > 0, d � 1, all S).

(76a)

Using the above definitions tN = TN/TNJ and d = D/TNJ ,
Eq. (76a) gives

TN = TNJ + D

15kB
(2S − 1)(2S + 3) (d > 0, d � 1, all S).

(76b)

A comparison of Eqs. (53) and (76b) shows that for d � 1,
the Néel temperature and Weiss temperature increase by the
same amount for a given d and S. For S = 1/2, there is no
influence of the anisotropy on the Néel temperature (i.e., TN =
TNJ , independent of d), as required. For d = 0 one obtains
TN = TNJ as also required.

The variations of tN versus (positive) d for S = 1 to S = 7/2
obtained using Eq. (74) are shown in Fig. 4(a). One sees that the
uniaxial anisotropy enhances tN above the value tN = 1 in the
absence of the anisotropy. However, increasing d indefinitely
does not increase tN indefinitely. In the limit of large d only
the mS = ±S terms in the sums in Eqs. (49) survive, yielding
from Eq. (74) the maximum tN for a given S given by

tmax
N (S) = 3S

S + 1
. (77)

Figures 4(b) and 4(c) show the variations in the ordering
temperatures for integer and half-integer spins, respectively,
versus d for x-axis ordering with d < 0 as derived and
discussed later in Sec. IX. For large |d|, one sees a qualitative
difference between tN(d) for integer and half-integer spins
which arises from the nonmagnetic and magnetic nature of the
ground states of these spin systems for negative d, respectively.

C. Magnetic entropy, internal energy, Helmholtz free energy,
and heat capacity in H = 0

The eigenenergies for collinear ordering along the z axis are
given above in Eq. (66), where μ̄0(t) is determined by solving
Eq. (69). Then the magnetic entropy Smag versus t is obtained
using Eqs. (26), where here the sums over eigenstates are sums
over mS . The reduced internal energy umag and free energy

FIG. 4. Reduced AFM ordering temperature tN = TN/TNJ versus
reduced anisotropy parameter d = D/kBTNJ for collinear ordering
(a) along the z axis calculated using Eq. (74) with d � 0 and
transverse x axis ordering for (b) integer spins and (c) half-integer
spins calculated using Eqs. (140) below with d � 0 for the spin S

values listed. In (b), AFM ordering does not occur for d � 3. z-axis
ordering is favored for d > 0 and x-axis ordering for d < 0.

fmag(t) are determined using Eqs. (27) and (29a), respectively.
Shown in Figs. 5 and 6 are plots of the zero-field molar
Smag/R, single-spin umag, and single-spin fmag versus reduced
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FIG. 5. Reduced magnetic (a) molar entropy Smag/R, (b) internal
energy per spin umag = Umag/kBTNJ , and (c) free energy per spin
fmag = Fmag/kBTNJ versus reduced temperature t in the collinear
antiferromagnetic phase aligned along the z axis for spins S = 1 with
the listed values of the reduced anisotropy parameter d = D/kBTNJ ,
obtained by solving Eqs. (26).

temperature t for spins S = 1 and S = 7/2, respectively.
The cusp in each plot occurs at the respective reduced Néel
temperature tN. Except for d = 0 for which tN = 1, the entropy
continues to increase above tN due to the uniaxial-anisotropy-
induced zero-field splittings of the energy levels.

FIG. 6. Same as Fig. 5 except that S = 7/2 and d = 0, 0.05, 0.1,
0.2, 0.5, and 1.

The molar Cmag(t) behaviors for H = 0 and spins S = 1 to
7/2 obtained using Eq. (28a) are plotted for d = 0, 0.2, and
1 in Figs. 7(a), 7(b), and 7(c), respectively. With increasing
d, the hump in Cmag(t) at t ∼ 1/4 for the larger S values is
progressively suppressed. The corresponding loss of entropy
is compensated by an increase of Cmag(t) at t � tN for small d.
For the largest d value shown, d = 1, one sees that a significant
amount of the entropy is present above tN due to the presence
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FIG. 7. Molar magnetic heat capacity Cmag/R versus reduced
temperature t in H = 0 for spins S = 1 to 7/2 with reduced
anisotropy constants d = D/kBTNJ of (a) 0, (b) 0.2, and (c) 1,
calculated using Eq. (28a).

of a Schottky anomaly as seen for noninteracting spins in
Figs. 34(a) and 35(a) in the Supplemental Material [19] for
S = 1 and S = 7/2, respectively. From Fig. 7, the relative
contribution above tN of the Schottky anomaly increases with
increasing d and S.

FIG. 8. Molar magnetic heat capacity Cmag/R versus reduced
temperature t for the listed reduced anisotropy parameters d and
spins (a) S = 1 and (b) S = 7/2.

The dependences of Cmag on t for variable d and fixed S = 1
and S = 7/2 are shown in Figs. 8(a) and 8(b), respectively.
Here one sees a strong increase in the influence of a given
d on Cmag(t) with increasing S due to the Schottky anomaly
contributions. Indeed, for d = 5 with S = 1 and d = 1 for
S = 7/2, the maxima of the Schottky anomalies are observed
at t > tN. Also, due to the increasing influence of d on Cmag

at t � tN, the heat capacity jump at tN first shows an increase
with increasing d, but then shows a decrease at the larger d

values for each S because the proportion of magnetic entropy
in the Schottky anomaly above tN progressively increases with
increasing d.

V. MAGNETIC FIELDS APPLIED ALONG THE UNIAXIAL
EASY AXIS OF COLLINEAR ANTIFERROMAGNETS

A. Magnetic susceptibility

Here we must distinguish the two sublattices in the
collinear AFM state with z-axis alignment because they have
different magnitudes in a finite applied field Hz. The ordered
moments on the same (s) sublattice have the same value as
a representative central spin �μi on that sublattice which is
assumed to point in the +z direction. The moments on the
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second different (d) sublattice �μj are pointed antiparallel to
�μi in the −z direction. When a small field dHz is applied in
the +z direction, in general the magnitude μi of �μi increases
slightly and that of �μj decreases by the same amount, so that

d �μj = d �μi. (78)

When the spins are aligned along the z axis, the differential of
the exchange field seen by �μi is given by Eq. (22b) as

dHexch i = 3kBθpJ

g2μ2
BS(S + 1)

d �μi, (79)

where we used Eqs. (21c) and (78). Taking the z components
of the vectors and introducing the reduced z-axis moment
definition

μ̄iz ≡ μiz

μsat
= μiz

gSμB
(80)

as in Eqs. (13), Eq. (79) gives

dHexch iz = 3kBθpJ

gμB(S + 1)
dμ̄iz, (81)

which in reduced form is

dhexch iz = 3fJ

S + 1
dμ̄iz, (82)

where the reduced field hz and the parameter fJ are defined in
generic Eq. (18) and in Eq. (21c), respectively.

In the present case, Eq. (69) becomes

μ̄i = GS(y) (83)

which is used to solve for μ̄i , where

y = hz

t
+ hexchiz

t
(84)

and the reduced temperature t is defined in Eq. (15b). Using
Eqs. (82) and (84) one obtains

dy = dhz

t
+ 3fJ

(S + 1)t
dμ̄iz. (85)

Expanding Eq. (83) in a Taylor series to first order in dμ̄iz

gives

dμ̄iz = GS
′(y0)dy, (86)

where GS
′(y) is given in Eq. (70) and y0 in Eq. (67c). Inserting

Eq. (85) into (86) and solving for dμ̄iz yields

dμ̄iz = dhz(S + 1)/3
(S+1)t

3GS
′(y0) − fJ

. (87)

Using Eq. (25) and (87) one obtains the reduced parallel
susceptibility χ̄‖ as

χ̄‖(t) ≡ χz(t)TNJ

C1
= 1

τ ∗(t) − fJ

, (88a)

where

τ ∗(t) = (S + 1)t

3GS
′(y0)

, y0 = 3μ̄0

(S + 1)t
, (88b)

and μ̄0(t) is calculated using Eq. (69).
Equations (88) are analogous to those for collinear AFM

ordering from Heisenberg interactions in the absence of

FIG. 9. Normalized parallel susceptibility χ‖(T )/χ‖(TN) versus
T/TN obtained using Eq. (90b) for the parameter fJ = θpJ /TNJ =
−1, the listed reduced anisotropy parameters d = D/kBTNJ , and
spins (a) S = 1 and (b) S = 7/2.

uniaxial anisotropy where here GS
′(y0) replaces the derivative

of the Brillouin function BS
′(y0) in that case [15,16]. As in

Refs. [15,16] for d = 0, we find here for nonzero d

τ ∗(T = TN) = 1, (89)

where TN is the Néel temperature including both exchange
interactions and single-ion anisotropy. Then Eqs. (88) and the
definition (72) for tN give

χ̄‖(t = tN) = 1

1 − fJ

(90a)

and
χ‖(t)

χ‖(t = tN)
= 1 − fJ

τ ∗(t) − fJ

. (90b)

Shown in Fig. 9 are plots of the normalized parallel
susceptibility χ̄‖ for spins 1 and 7/2 versus T/TN (not versus
t = T/TNJ ) for the listed values of d. One sees that these data
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FIG. 10. Normalized parallel susceptibility χ‖(T )/χ‖(TN) versus
T/TN obtained using Eq. (90b) for the listed values of fJ and spins
S = 1 (solid curves) and S = 7/2 (dashed curves) for (a) d = 0 and
(b) d = 0.5.

are more strongly influenced by changes in d for S = 7/2
compared with similar changes for S = 1. Figure 10 shows
how χ‖(T )/χ‖(TN) versus T/TN depends on fJ = θpJ /TNJ for
d = 0 and d = 1/2. These two figures show that χ‖(T )/χ‖(TN)
versus T/TN depends rather strongly for T < TN on fJ

compared with the dependences on S and d.

B. Magnetization in a high parallel field

In a finite Hz applied along the easy z collinear AFM
ordering axis, one must again define two sublattices 1 and
2 because the magnitudes of the ordered moments are not in
general the same on the two sublattices. In H = 0, sublattice
1 is defined to have μ1z > 0 and sublattice 2 then has μ2z < 0
with equal moment magnitudes.

Using Eq. (22b), the reduced exchange fields seen by spins
on sublattices 1 and 2 are, respectively,

hexch1z = 3

2(S + 1)
[μ̄1z(1 + fJ ) − μ̄2z(1 − fJ )],

hexch2z = 3

2(S + 1)
[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ )]. (91)

Thus there are now two simultaneous equations of the form of
Eq. (83), i.e.,

μ̄1z = GS(y1), μ̄2z = GS(y2), (92a)

where

y1 = hz

t
+ 3

2(S + 1)t
[μ̄1z(1 + fJ ) − μ̄2z(1 − fJ )],

y2 = hz

t
+ 3

2(S + 1)t
[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ )]. (92b)

By numerically solving these two simultaneous equations,
one obtains μ̄1z and μ̄2z as functions of t , hz, fJ , and d. We
solved Eqs. (92) iteratively. Setting the initial value μ̄1z ∼ 1,
μ̄2z was calculated. Then taking this value of μ̄2z, μ̄1z was
calculated. This cycle was iterated until the difference between
each of μ̄1z and μ̄2z and their respective subsequent iterations
was within 10−10.

We find that if fJ = −1, which coincides with Van Vleck’s
value when calculating χ‖(t) in the AFM state with Jij =
J and only nearest-neighbor interactions on a bipartite spin
lattice [8], then solutions to μ̄1z and μ̄2z have no first-order
transitions versus hz at fixed t , irrespective of the positive
value of d. According to Eqs. (92b), the criterion that fJ = −1
for second-order transitions is equivalent to requiring that y1

is only a function of μ̄2z and conversely that y2 is only a
function of μ̄1z. Shown in Figs. 11(a) and 11(b) are plots
for S = 1 and S = 7/2, respectively, of the field dependences
with d = 0.5 of μ̄1z, μ̄2z, the staggered ordered moment μ̄† =
(μ̄1z − μ̄2z)/2 which is the AFM order parameter, and the
average μ̄z = (μ̄1z + μ̄2z)/2 which is the quantity obtained
from uniform magnetization measurements along the z axis.
For T → 0, one sees from Fig. 11 that μ̄1z = 1, μ̄2z = −1,
μ̄† = 1, and μ̄z = 0, all as expected. For the two representative
temperatures shown for each spin, μ̄1z > 0 for all hz, whereas
μ̄2z continuously increases with increasing field from its initial
negative value to become positive, eventually meeting up with
μ̄1z at the reduced critical field hc which is the second-order
transition field from the AFM state to the PM state. With
increasing t the transition from the AFM state to the PM state
with increasing hz becomes less and less visible in plots of μ̄z

versus hz.
Plots of hc versus t for several values of d for fJ = −1 and

spins S = 1 and S = 7/2 are shown in Figs. 12(a) and 12(b),
respectively. The data for each spin show that hc increases with
increasing t from a spin-dependent finite hc(t = 0) to a broad
maximum at a temperature that increases with increasing d.
The curves in Fig. 12 form the boundary between the low-field
AFM and the high-field and/or high-temperature PM phases
in the Hz-T plane for a given d value. With increasing d,
for hz = 0 the system remains in the AFM state to increasing
temperatures t = T/TNJ because tN increases with increasing
d as shown above in Fig. 4(a). These observations do not take
into account the competition with the spin-flop phase discussed
in Secs. VI and VII below.

When fJ = θpJ /TNJ is in the range −1 < fJ < 1 where
the value fJ = 1 corresponds to a ferromagnet, plots such
as shown in Fig. 11 for fJ = −1 show first-order transitions
versus field. Such fJ values result from one or more ferromag-
netic Heisenberg interactions Jij between the central spin i and
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FIG. 11. Reduced z-axis magnetic moments μ̄1z and μ̄2z versus
reduced magnetic field hz = gμBHz/kBTNJ for z-axis collinear AFM
ordering for anisotropy parameter d = D/kBTNJ = 0.5 for spins (a)
S = 1 and (b) S = 7/2. Also plotted versus hz are the reduced
staggered moment μ̄†

z = (μ̄1z − μ̄2z)/2 (the AFM order parameter)
and the average moment μ̄z = (μ̄1z + μ̄2z)/2. Note the different
scales on the abscissas in (a) and (b).

its neighbors j in addition to the AFM interactions necessary
to yield collinear AFM ordering. Shown in Fig. 13 are plots
of the staggered moment μ

†
z versus reduced field hz at various

reduced temperatures t for spin S = 1 with reduced anisotropy
parameter d = 0.5 and fJ = −0.5,−0.25, and 0. One sees that
as fJ increases algebraically above −1, first-order transitions
occur for an increasing range of temperature.

The reduced critical field hc representing the transition from
the AFM to the PM phase is plotted versus reduced temperature
t for S = 1, d = 0.5, and five fJ values in the range −1 �
fJ � 0 in Fig. 14. The first- and second-order regions of each
transition curve with fJ = −0.75,−0.5,−0.25, and 0 are sep-
arated by a tricritical point as shown. As discussed above, the
curve for fJ = −1 represents second-order transitions only.
The tricritical point is seen to move to higher temperatures
with increasing values of fJ .

FIG. 12. Reduced z-axis critical fields hc for z-axis collinear
AFM ordering with fJ = −1 versus reduced temperature t for the
listed values of the anisotropy parameter d = D/kBTNJ for spins (a)
S = 1 and (b) S = 7/2.

VI. MAGNETIC FIELDS APPLIED ALONG THE
UNIAXIAL EASY AXIS: THE SPIN-FLOP PHASE

At sufficiently large Hz, the ordered moments in the
collinear AFM phase aligned along the z axis can flop to an
approximately perpendicular orientation, resulting in a canted
AFM phase with a lower free energy and a net moment along
the +z direction as shown in Fig. 15. Here we assume that the
spin-flop (SF) phase is coplanar, where the ordered moments
on the two sublattices are aligned within the xz plane, each at
an angle θ with the z axis.

A. Hamiltonian

From Fig. 15, the ordered moments on the two sublattices
are described by

�μi = μ[sin(θ ) î + cos(θ )k̂], (93a)

�μj = μ[− sin(θ ) î + cos(θ )k̂]. (93b)
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FIG. 13. Staggered z-axis moment μ†
z (AFM order parameter)

versus reduced field hz for the listed values of reduced temperature
t for spins S = 1 with reduced anisotropy parameter d = 0.5 and
parameter fJ = θpJ /TNJ given by (a) fJ = −0.5, (b) fJ = −0.25,
and (c) fJ = 0.

Substituting Eqs. (93a) into the general two-sublattice expres-
sion (22b) gives the exchange field seen by �μi as

Hexch i = 3kBTNJ μ̄

gμB(S + 1)
[sin(θ ) î + fJ cos(θ )k̂], (94)

FIG. 14. Reduced critical field hc separating the antiferromag-
netic phase from the paramagnetic phase versus reduced temperature t

for spin S = 1 with reduced anisotropy parameter d = 0.5 for several
values of the parameter fJ = θpJ /TNJ as shown. For fJ = −1 the
critical field curve corresponds to second-order transitions only on
crossing the curve and is duplicated from Fig. 12(a) for d = 0.5. For
fJ > −1 the transition is second order at high temperatures and first
order at low temperatures, where the two regions are separated by a
tricritical point for each such fJ as shown by the filled black circles.

where the definition of μ̄ is given in Eqs. (13). Using

μ̄x = μ̄ sin θ, μ̄z = μ̄ cos θ, (95)

Eq. (94) becomes

Hexch i = 3kBTNJ

gμB(S + 1)
(μ̄x î + fJ μ̄zk̂). (96)

Since the magnetic moment operator is �μi = −gμBS where
S is the spin operator for spin i, the part of the Hamiltonian
associated with spin i interacting with Hexch i in Eq. (96) is

Hexch i = −�μi · Hexch i = gμBS · Hexch i

= 3kBTNJ

S + 1
(μ̄xSx + fJ μ̄zSz). (97)

Using the dimensionless reduced parameters in Eqs. (9) and
(18), the normalized Hamiltonian for spin i in the SF phase
including the exchange field, the single-ion anisotropy, and the

FIG. 15. Geometry of two representative ordered moments �μi

and �μj on the two sublattices in the spin-flop phase. Both moments
make equal angles θ with respect to the z axis along which the applied
field H = Hzk̂ is aligned and have equal magnitudes μ at a given θ .
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applied field is

H
kBTNJ

= 3μ̄x

S + 1
Sx +

(
3fJ μ̄z

S + 1
+ hz

)
Sz − dS2

z

= bxSx + bzSz − dS2
z . (98)

Given S, fJ , and d, in general there are two unknowns μ̄x(t)
and μ̄z(t) to solve for at each t and hz. The PM state at high hz

corresponds to μ̄x = 0. In that high-field regime, the energy
eigenvalues of Hamiltonian (98) are identical to those already
given in Eq. (46) for the PM state.

B. Néel temperature in H = 0

Here we use the second-order perturbation theory described
generically in Sec. II G to calculate the reduced Néel temper-
ature tN for continuous (second-order) transitions of the SF
phase versus d in hz = 0. For hz = μ̄z = 0 for which θ = 90◦
in Fig. 15, the reduced Hamiltonian (98) for the SF phase can
be separated into unperturbed H0 and perturbed parts H′ as

H
kBTNJ

= H0

kBTNJ

+ H′

kBTNJ

,

(99a)
H0

kBTNJ

= −dS2
z ,

H′

kBTNJ

= bxSx,

where

bx = 3μ̄0

S + 1
(99b)

is the reduced exchange field for AFM ordering in Eq. (19),
assumed here to be infinitesimal. Also μ̄0 ≡ μ̄0x for the central
moment �μi under consideration that points in the +x direction.

For t → t−N , μ̄0 becomes infinitesimally small, as assumed
in the present perturbation theory treatment, and hence one
can set t = tN ≡ TN/TNJ in this limit. To first order in μ̄0, for
integer spins Eqs. (35) yield the expression from which tN can
be numerically solved for, given by

1 = 3

dS(S + 1)ZS

S∑
mS=−S

[
S(S + 1) + m2

S

4m2
S − 1

]
edm2

S/tN ,

ZS =
S∑

mS=−S

edm2
S/tN (integer spins), (100a)

where a multiplicative factor of μ̄0 on both sides of the
top equation has been divided out. Using Eqs. (44), tN can
be calculated for half-integer spins by solving for it in the
expression

1 = 3

S(S + 1)ZS

⎧⎨
⎩

2

d

S∑
mS=3/2

[
S(S + 1) + m2

S

4m2
S − 1

]
edm2

S/tN

+ ed/4tN

2

[
S(S + 1) + 1/4

tN
− S(S + 1) − 3/4

d

]⎫⎬
⎭

(half integer spins). (100b)

For numerical calculations of tN we used the FindRoot utility
of Mathematica.

FIG. 16. Reduced transition temperature tN of the spin-flop phase
versus reduced anisotropy parameter d calculated from Eqs. (100)
for the listed spin values. These data give the tN and d ranges for
second-order transitions of μ̄0 versus temperature. The missing part of
each curve gives the tN range for first-order transitions [see Fig. 17(a)
for S = 1 below].

One sees from Eqs. (100) that tN of the SF phase in H = 0
only depends on S and d and not on fJ . From its derivation,
the tN obtained from Eqs. (100) is for continuous (second-
order) transitions only. Plots of tN versus d for S = 1 to 7/2
in 1/2 increments obtained using Eqs. (100) are shown in
Fig. 16. All data sets have the correct limit tN(d → 0) = 1. One
also sees that second-order transitions only occur for d values
below an S-dependent maximum value to which a minimum
tN corresponds. This feature is reflected in plots of μ̄0(t) in
Fig. 17(a) below which show first-order transitions versus t

for S = 1 with d � 3/2 (cf. Fig. 16). One also sees that with
d > 0, tN is suppressed with respect to the value for d = 0.
This is opposite to the behavior for AFM ordering along the
z axis, for which d > 0 increases the Néel temperature. Related
to this feature, the stable phase for H = 0 is shown later to be
the AFM phase for all t ; i.e., the SF phase is unstable at all
temperatures in H = 0 as would have been anticipated.

C. Ordered moment versus temperature in zero field

For hz = μ̄z = 0 the reduced Hamiltonian for the SF phase
is again given by Eq. (99a), but where here μ̄0 is not assumed
to be small so perturbation theory cannot be used to calculate
it. The 2S + 1 eigenenergies of the nondiagonal Hamiltonian
are labeled εn. Using Eq. (14), the magnetic moment operator
is given by

μ̄
op
0n = − 1

S

∂εn

∂hexch 0
= −

(
S + 1

3S

)
∂εn

∂μ̄0
. (101)

The thermal-average μ̄0(t) is obtained by solving the self-
consistency equation

μ̄0 = −S + 1

3SZS

2S+1∑
n=1

∂εn

∂μ̄0
e−εn/t , (102a)

ZS =
2S+1∑
n=1

e−εn/t , (102b)
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FIG. 17. Reduced ordered moment μ̄0 of the spin-flop phase
in zero field for (a) S = 1 and (b) S = 7/2 for the listed values
of reduced anisotropy parameter d , calculated from Eqs. (102).
Several transitions in (a) are seen to be first order for sufficiently
large d , consistent with Fig. 16. The d values for S = 7/2 in
(b) are small enough that all transitions shown are second order
(cf. Fig. 16).

where μ̄0 on the right sides of these equations is contained
in each of the 2S + 1 expressions for εn. Equations (102) are
valid for both integer and half-integer spins.

Shown in Fig. 17 are plots of μ̄0 versus reduced temperature
t for S = 1 and S = 7/2 and several values of reduced
anisotropy parameter d as listed. For S = 1, plots with d � 3/2
are included for which no second-order transition exists for
which μ̄0 goes continuously to zero at the Néel temperature
according to Fig. 16. Thus for these values of d the transitions
are first order. Furthermore, for d > 0, the ordered moment
at t = 0 is less than unity. This occurs because the ground
state energy level has negative curvature (see Fig. 39 in the
Supplemental Material [19]), and because the exchange field
at t = 0 is finite.

D. High-field magnetization

Using the full reduced spin Hamiltonian (98) and the
magnetic moment operators

μ̄op
x = − 1

S

∂εn

∂bx

= −S + 1

3S

∂εn

∂μ̄x

, (103a)

μ̄op
z = − 1

S

∂εn

∂bz

∣∣∣∣
bz=3fJ μ̄z/(S+1)+hz

, (103b)

the thermal-average values of μ̄x and μ̄z are calculated for
each t and hz by solving the two simultaneous equations

μ̄x = − 1

SZS

2S+1∑
n=1

∂εn

∂bx

e−εn/t

= −S + 1

3SZS

2S+1∑
n=1

∂εn

∂μ̄x

e−εn/t , (104a)

μ̄z = − 1

SZS

2S+1∑
n=1

∂εn

∂bz

∣∣∣∣
bz=hz+3 fJ μ̄z

S+1

e−εn/t ,

ZS =
2S+1∑
n=1

e−εn/t . (104b)

These two equations for μ̄x and μ̄z were solved iteratively for
given values of S, fJ , d, t , and hz. First a starting value of
μ̄x ∼ 1 was inserted into Eq. (104b) and μ̄z solved for. This
value of μ̄z was inserted into Eq. (104a) and μ̄x solved for. This
procedure was iterated until the difference in each variable in
subsequent iterations was less than 10−10.

Shown in Fig. 18(a) are plots of θ = arctan(μ̄x/μ̄z) in
Fig. 15 versus reduced field hz calculated using Eqs. (104)
for different reduced temperatures t with S = 1, fJ = −1, and
d = 0.5. For each t one sees a second-order transition at which
θ (t) → 0 at the reduced spin-flop field hz ≡ hSF(t). The hSF for
S = 1, fJ = −1, and d = 0.5 is plotted versus t in Fig. 18(b).
Also shown in Fig. 18(b) is the AFM critical field hc versus t

for the same parameters, obtained from the data in Fig. 12(a).
The crossover between these two curves in Fig. 18(b) occurs
in part because a given value of d > 0 suppresses the tN of the
SF phase below unity whereas it increases the tN of the AFM
phase above unity.

The normalized thermal-average moment μ̄z ≡ μz/μsat for
the SF phase calculated using Eqs. (104) is plotted versus hz

in Fig. 19(a) for S = 1, fJ = −1, and d = 0.5 at the reduced
temperatures t indicated. The slopes of μ̄(hz) in the SF state
for given values of fJ , S, and d at t < tN are seen to be field
and temperature dependent. The black filled circles are the SF
to PM transition fields hSF for the respective temperatures. At
these values of hz, there are discontinuities in the slopes of μ̄z

versus t , indicative of the second-order nature of the SF-PM
transition as shown more clearly in the chordal slope μ̄z/hz

versus t data in Fig. 19(b).

094421-19



DAVID C. JOHNSTON PHYSICAL REVIEW B 95, 094421 (2017)

FIG. 18. (a) Angle θ between an ordered moment in the spin-flop
phase and the z axis versus hz for S = 1, fJ = −1, and d = 0.5 for
six values of the reduced temperature t . (b) Spin-flop transition field
hSF between the spin-flop (SF) and paramagnetic (PM) phases versus
t for S = 1, fJ = −1, and d = 0.5. This transition field is the field at
which θ → 0 with increasing hz such as obtained from the data in (a).
The data in (a) and (b) were calculated using Eqs. (104). Also shown
in (b) is the AFM critical field hc versus t for the same parameters,
obtained from Fig. 12(a).

VII. MAGNETIC FIELDS APPLIED ALONG THE
UNIAXIAL EASY AXIS: PHASE DIAGRAMS

Which of the AFM, SF, and PM phases at a given
temperature and field is more stable is determined by which
phase has the lowest free energy. Here we calculate the reduced
free energies fmag versus reduced z-axis field hz at a number
of reduced temperatures t for each of these phases for the same
parameters S = 1, d = 0.5, and fJ = −1. The free energy of
the PM phase appears as part of the calculations of those of
the AFM and SF phases versus t and hz.

In order to calculate the partition function ZS for the
AFM phase one must first calculate the t-dependent energy
eigenvalues using the t-dependent values of μ̄1z and μ̄2z from
Eqs. (92) such as those plotted in Fig. 11. The reduced energy
eigenvalues of the two sublattices 1 and 2 versus the respective
spin magnetic quantum numbers mS1 and mS2 of sublattices 1

FIG. 19. (a) Reduced ordered moment μ̄z of the SF phase versus
reduced field hz along the z axis for S = 1, fJ = −1, and d = 0.5
at the reduced temperatures t indicated. Also shown as filled black
circles are the SF to PM transition fields hSF for the respective t values
from Fig. 18(b). For t � tN(hz = 0) = 0.8935 the system is in the PM
state for all hz. (b) Chordal slope μ̄z/hz versus hz obtained from the
data in (a). The SF to PM phase transition at each t is characterized
by a discontinuity in μ̄z/hz versus t , again marked by a filled black
circle for each t shown. The temperature t = 0.9 is slightly above
tN(hz = 0) so there is no transition versus hz for this t .

and 2 are

ε(mS1,mS2) = (hexch 1z + hz)mS1 + (hexch 2z + hz)mS2, (105)

where the reduced exchange fields are given in Eqs. (91). Since
mS1 and mS2 are independent of each other, the energy of a
pair of spins with one spin on each sublattice is

ε(mS1,mS2) = ε1(mS1) + ε2(mS2),

ZS(t,hz) = ZS1(t,hz)ZS2(t,hz). (106)

The average free energy per spin is then obtained from
Eq. (29a) as

fmag(t,hz) = − 1
2 t ln ZS(t,hz). (107)

For the SF phase, the reduced Hamiltonian is given in Eq. (98),
where μ̄x(hz,t) and μ̄z(hz,t) are determined by solving
Eqs. (104) such as shown for μ̄z(hz,t) in Fig. 19(a). One inserts
these values into Eq. (98) and diagonalizes the Hamiltonian
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FIG. 20. Reduced magnetic free energy fmag versus reduced
applied field hz at the reduced temperatures t indicated for the (a)
antiferromagnetic phase and (b) spin-flop phase with S = 1, d = 0.5,
and fJ = −1. The cusps in the data in (a) occur at the critical fields hc

and those in (b) occur at the spin-flop transition fields hSF in Fig. 18,
as indicated in the figures for t = 0.5, respectively.

to obtain the t- and hz-dependent energy eigenvalues. Using
these, one then calculates the partition function and then
fmag(hz,t).

The fmag for the AFM and SF phases versus hz were
calculated for S = 1, d = 0.5, and fJ = −1 at various reduced
temperatures t as described above. Some of the results are
shown for the AFM and SF phases in Figs. 20(a) and 20(b),
respectively. By finding which of the AFM, SF, or PM phases
is stable versus hz and t the phase diagram was constructed as
shown in Fig. 21(a). The upper boundary of the SF phase is
part of the hSF(t) curve in Fig. 18(b) and the phase boundary
to the right of the AFM phase region is part of the hc(t)
curve in the same figure. The AFM/PM and SF/PM transitions
are inferred from our calculations to be thermodynamically
of second order because the free energy difference between
them changes continuously on crossing the respective phase
transition curve versus hz at fixed t . On the other hand,
the intrinsic first-order nature of the AFM/SF transition is
manifested by a discontinuous change in the free energy on

FIG. 21. Phase diagram for collinear antiferromagnetic ordering
along the z axis versus reduced temperature t and applied magnetic
field hz for spins S = 1 with reduced anisotropy parameter d =
D/kBTNJ = 0.5 and parameter fJ = θpJ /TNJ values of (a) −1,
(b) −075, and (c) 0. The phases in competition are the antiferromag-
netic (AFM) phase, the paramagnetic (PM) phase, and the spin-flop
(SF) phase. The AFM/SF transition is intrinsically first order and the
SF/PM and AFM/PM transitions are both second order for fJ = −1
and −0.75. For fJ = 0 one sees a reentrant spin-flop phase bubble and
a tricritical point in the high-field region of the AFM/PM transition
curve (cf. Fig. 14).
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traversing the transition curve versus field. The phase diagram
is qualitatively similar to phase diagrams from the literature for
fields applied parallel to the easy axis of a collinear Heisenberg
antiferromagnet with uniaxial anisotropy where no first-order
phase transitions occur between the AFM and PM phases
[21–23]. The XXZ model with uniaxial anisotropy in spin
space shows similar phase diagrams [24,25].

We also calculated the phase diagrams for S = 1, d = 0.5,
and two values of fJ > −1 in the same manner as for fJ =
−1. This increase in fJ = θpJ /TNJ from −1 corresponds to
including ferromagnetic interactions between a representative
spin and its neighbors. The phase diagram for fJ = −0.75
shown in Fig. 21(b) is similar to that for fJ = −1 in Fig. 21(a)
but with shifted transition curves. On the other hand, the phase
diagram for fJ = 0 shown in Fig. 21(c) has new features. First,
the AFM/PM transition curve at fields above the SF phase
region exhibits a tricritical point as already discussed with
respect to Fig. 14. Second, the spin-flop phase is reentrant,
appearing with decreasing field and then disappearing at a
lower field, resulting in a topological change to a spin-flop
bubble in the phase diagram. The AFM/PM phase transitions
are first order at all fields below the tricritical point including
fields lower than the minimum field for stability of the SF
phase.

VIII. MAGNETIC FIELDS APPLIED PERPENDICULAR
TO THE EASY AXIS

When a field is applied along the x axis, perpendicular to
the easy z axis for D > 0, in the AFM state below TN(d) the
ordered moments tilt towards the applied field as shown in
Fig. 22. According to Fig. 22,

�μi = μ[sin(θ ) î + cos(θ )k̂], (108a)

�μj = μ[sin(θ ) î − cos(θ )k̂], (108b)

where μ is the thermal-average magnitude of both �μi and
�μj . Inserting Eqs. (108) into (22b) and using the definitions
μ̄ = μ/gSμB as in Eq. (13a) gives

Hexch i = 3kBTNJ μ̄

gμB(S + 1)
[fJ sin(θ ) î + cos(θ )k̂]. (109)

FIG. 22. Geometry of two representative ordered moments �μi

and �μj in the AFM phase with a field applied along the perpendicular
x axis. Both moments have equal magnitudes and make equal angles
θ with respect to the easy z axis.

A. Perpendicular magnetic susceptibility

Here we consider infinitesimally small fields Hx to calculate
the perpendicular susceptibility χ⊥ ≡ χx and we use second-
order perturbation theory to obtain this quantity for arbitrary
values of d, fJ , S, and t . For infinitesimal angle θ , to first
order in Hx and θ the magnitude of each ordered moment is
the value μ0 in zero field. To first order in θ ∝ μx , Eqs. (108)
and (109) give

�μi = μ0(θ î + k̂), (110a)

�μj = μ0(θ î − k̂), (110b)

Hexch i = 3kBTNJ μ̄0

gμB(S + 1)
(θfJ î + k̂), (110c)

where μ̄0 is the temperature-dependent reduced ordered
moment in the AFM state at Hx = 0 as discussed in Sec. IV A.
We assume θ � 1 in Fig. 22 since hx � 1. Therefore

θ = μx

μ0
= μ̄x

μ̄0
, (111)

where μx is the thermal average of the x component of the
magnetic moment of a spin and μ0 is unchanged to first order
in θ as noted above. Substituting this into Eq. (110c) gives

Hexch i = 3kBTNJ

gμB(S + 1)
(fJ μ̄x î + μ̄0k̂). (112)

The part of the Hamiltonian associated with the exchange
field is then

Hexch i = gμBS · Hexch i = 3kBTNJ

S + 1
(fJ μ̄xSx + μ̄0Sz). (113)

Normalizing the Hamiltonian by kBTNJ and including the
anisotropy and applied field terms gives

H
kBTNJ

=
(

3fJ μ̄x

S + 1
+ hx

)
Sx +

(
3μ̄0

S + 1

)
Sz − dS2

z , (114)

where d is defined in Eq. (9) and according to Eq. (6) the
reduced applied field is

hx = gμBHx

kBTNJ

. (115)

To use second-order perturbation theory, we write Hamil-
tonian (114) as the sum of a diagonal unperturbed part H0 and
a perturbed part H′:

H
kBTNJ

= H0

kBTNJ

+ H′

kBTNJ

, (116a)

H0

kBTNJ

= bzSz − dS2
z , (116b)

H′

kBTNJ

= bxSx, (116c)

bx = 3fJ μ̄x

S + 1
+ hx, (116d)

bz = 3μ̄0

S + 1
, (116e)

where μ̄0(t) is calculated using Eq. (69). The perpendicular
magnetizations for both integer and half-integer S are cal-
culated using Eqs. (35) in Sec. II G. These equations hold
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for integer spins at all temperatures. For the temperature
range t � tN in which the ordered moment μ̄0 is zero, we
set bz = 10−6 for half-integer spins, with negligible error in
the derived perpendicular susceptibility.

To first order in bx , Eqs. (35) yield

μ̄x = bxFx1, (117)

where the function Fx1(d,bz,t) is given in Eq. (35d). Inserting
Eq. (116d) for bx into (117) and solving for μ̄x gives

μ̄x =
S+1

3 hx

S+1
3Fx1

− fJ

. (118)

Then using Eq. (25) gives the reduced perpendicular suscepti-
bility χ̄⊥ as

χ̄⊥ ≡ χ⊥TNJ

C1
= 1

S(S+1)
3Fx1

− fJ

(integer spins), (119)

where the single-spin Curie constant C1 is given in Eq. (1b).
We find χ̄⊥ to be finite at t = 0, given by

1

χ̄⊥(t = 0)
= 1 − fJ + d

3
(S + 1)(2S − 1). (120)

Expanding Eq. (119) to second order in 1/t for the high-
temperature behavior gives the Curie-Weiss law (1) with
reduced Weiss temperature

θp⊥
TNJ

= fJ − d

[
(2S − 1)(2S + 3)

30

]
. (121a)

Multiplying both sides of this equation by TNJ and using the
definitions fJ ≡ θpJ /TNJ and d = D/kBTNJ gives

θp⊥ = θpJ + θpD⊥, (121b)

θpD⊥ = − D

kB

[
(2S − 1)(2S + 3)

30

]
, (121c)

which is the sum of the contributions from the exchange
interactions θpJ and the uniaxial anisotropy θpD⊥. The latter
expression is identical to that found in Eq. (54) in the presence
of exchange interactions and in Eq. (154) in the Supplemental
Material [19] in the absence of these interactions. Thus the
Weiss temperatures from different interactions are additive as
noted previously.

Shown in Fig. 23 are plots of χ̄⊥ versus t for fixed
fJ = −1 and integer spins S = 1 to 7/2 in increments of 1/2
with d = 0.1 and d = 0.5 obtained using Eq. (119). Contrary
to MFT predictions for the exchange interaction with or with-
out a magnetic dipole anisotropy [4] or a generic anisotropy
field where χ̄⊥ is found to be independent of temperature for
T � TN, here we find that a uniaxial anisotropy with D > 0
causes χ̄⊥ to decrease with decreasing temperature below
TN. The χ̄⊥(t = 0) values in Fig. 23 are in agreement with
the general expression (120). A similar decrease in χ⊥ upon
cooling below TN was found in a MFT study for S = 2 in the
presence of single-ion anisotropy [26]. Figure 24 shows plots
of both χ⊥ and χ‖ versus t with fJ = −1 and d = 0, 0.1, and
0.5 for spins S = 1 and S = 3. One sees that χ⊥(t > 1) in
the PM state is increasingly suppressed relative to χ‖(t > 1)
with increasing d, and that this effect is accentuated with
increasing S.

FIG. 23. Normalized magnetic susceptibility χ̄⊥(T )≡χ⊥TNJ /C1

versus t = T/TNJ obtained using Eq. (119) for spins S = 1, to 7/2
with fJ = −1 and reduced anisotropies (a) d = 0.1 and (b) d = 0.5.

B. Torque on an integer-spin ordered moment due
to the axial anisotropy

In Fig. 22 above is shown a representative thermal-average
magnetic moment �μi that makes a polar angle θ with respect
to the uniaxial z axis. Intuitively, the DS2

z term in the spin
Hamiltonian with D > 0 may lead to a torque �τD on �μi that
tends to align �μi with the +z axis. Here we show that this is the
case and calculate �τD using a simple strategy. In equilibrium,
the sum of the torques due to the axial anisotropy �τD , the
applied field �τH , and the exchange field �τexch i on the thermal-
average moment �μi must be zero. We know how to calculate
the latter two torques. Hence we calculate �τD from

�τD = −(�τH + �τexch i). (122)

From that we calculate the lowest-order anisotropy energy

Ei = K1 sin2 θ ≈ K1θ
2 (θ � 1) (123)

and the corresponding anisotropy constant K1. Although
it has been stated that this is not a useful approach for
calculating K1 [18], our approach gives the same expression
for K1 at T = 0 as they obtain by a different route. The
temperature dependence of K1 is also calculated and found
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FIG. 24. Normalized magnetic susceptibilities χ̄ ≡ χTNJ /C1

where χ̄ = χ̄⊥ (solid curves) and χ̄ = χ̄‖ (dashed curves) versus
t = T/TNJ obtained using Eqs. (119) and (90a), respectively, with
fJ = −1 and d = 0, 0.1, and 0.5 for spins (a) S = 1 and (b) S = 3.

to be proportional to the square of the ordered moment in the
AFM state and therefore vanishes for T � TN.

Here we calculate the torques on �μi using the same
construct as used above to calculate χ⊥ with D > 0. We thus
calculate the torques only to first order in θ . From Eqs. (108a)
and (110c), one obtains

�τexch i = 3kBTNJ Sμ̄2
0

S + 1
θ (fJ − 1) ĵ. (124)

The torque on �μi due to H = Hx î is

�τH = μ0Hx ĵ. (125)

Referring to Fig. 22, these torques both tend to rotate �μi away
from the +z axis. From Eq. (122) and the definitions of the
reduced variables we thus obtain

�τD

kBTNJ

= −
[
Sμ̄0hx + 3Sμ̄2

0(fJ − 1)

S + 1
θ

]
ĵ. (126)

The direction of this torque tends to align �μi parallel to the
applied field in the k̂ direction.

In order to solve for K1 in Eq. (123) one needs to write hx

in Eq. (126) in terms of θ . We first express μ̄x in terms of hx .
Using Eq. (25) one obtains

μ̄x = S + 1

3
χ̄⊥hx. (127)

From Fig. 22 and using θ � 1 one has

θ = μx

μ0
= μ̄x

μ̄0
. (128)

Inserting Eq. (127) into (128) and solving for hx gives

hx = μ̄0θ
S+1

3 χ̄⊥
. (129)

Inserting this expression into Eq. (126) gives the torque from
the axial anisotropy for θ � 1 as

�τD(t)

kBTNJ

= −
[

3Sμ̄2
0(t)

S + 1

][
1

χ̄⊥(t)
+ fJ − 1

]
θ ĵ. (130)

Finally, the anisotropy energy is obtained from τD as

Ei

kBTNJ

=
∫ θ

0

τD(θ )

kBTNJ

dθ

=
[

3Sμ̄2
0(t)

S + 1

][
1

χ̄⊥(t)
+ fJ − 1

]
θ2

2
, (131)

and hence the anisotropy constant in Eq. (123) is

K1(t)

kBTNJ

=
[

3Sμ̄2
0(t)

2(S + 1)

][
1

χ̄⊥(t)
+ fJ − 1

]
. (132)

Since μ̄0 → 0 as T → TN, so does K1. From Eq. (132), in
general K1 is proportional to TNJ and hence depends on the
exchange interactions. However, as shown in the following
section, for t → 0 one finds, perhaps nonintuitively, that K1

only depends on S and D and not on the exchange interactions
explicitly.

Plots of K1(t)/kBTNJ and the normalized K1(t)/K1(0)
versus t are shown for integer spins S = 1, 2, 3, d = 0.5, and
fJ = −1 in Figs. 25(a) and 25(b), respectively. The shapes
of the curves do not depend strongly on S. The curves all
approach zero linearly as T → TN because μ̄0 ∼ √

1 − t on
approaching tN from below. The curve in Fig. 25(b) for S = 2
is similar to those calculated from MFT for S = 2 and two
values of d [27].

Anisotropy Constant K1 at T = 0

Inserting μ̄0(t = 0) = 1 and 1/χ̄ (t = 0) in Eq. (120) into
Eq. (132) gives

K1(t = 0)

kBTNJ

= dS

(
S − 1

2

)
. (133)

Then using the definition of d in Eq. (9) gives

K1(t = 0) = DS

(
S − 1

2

)
(θ � 1). (134)

The same result was given in Ref. [18] obtained using a
different approach. Here, K1 is obtained as the t = 0 limit
of the t-dependent K1 in Eq. (132). Indeed, the t → 0 limits
of K1(t)/kBTN in Fig. 25(a) are seen to agree with Eq. (133).
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FIG. 25. Normalized anisotropy constant (a) K1(t)/kBTNJ and
(b) K1(t)/K1(0) for integer spins S = 1, 2, and 3 and d = 0.5 versus
reduced temperature t obtained using Eq. (132).

C. High-field perpendicular magnetization and
perpendicular critical field

For the high-field behavior, it is convenient to use the same
axes as in Fig. 15. The only change to be made to calculate the
ordered moments in the parallel and perpendicular directions
compared to the solutions for the SF phase with field along
the z axis, is to change −dS2

z in the reduced spin Hamiltonian
(98) to −dS2

x . The field direction is still H = Hzk̂, which is
perpendicular to the easy x axis. In order to avoid confusion
with the earlier notation for the SF phase, here we will refer to
the z direction of the field as the ⊥ direction, so the induced
magnetization is then μ⊥(H⊥). The method of solution is the
same as given for the high-field magnetization of the SF phase
in Sec. VI D.

The dependence of μ̄⊥ on h⊥ for d = 0.5, fJ = −1, and
S = 1 is shown in Fig. 26(a) for several temperatures below
tN. The critical fields hc⊥ for the second-order transitions from
the canted AFM state to the PM state are denoted by filled
black circles. The chordal slope μ̄⊥/h⊥ is plotted versus h⊥
for the same temperatures in Fig. 26(b). The same type of plots
for S = 3 are shown in Fig. 27. These plots are qualitatively
similar to the perpendicular magnetization curves of the spin-
flop phase with S = 1, d = 0.5 and fJ = −1 in Fig. 19.

FIG. 26. (a) Reduced magnetization μ̄⊥ = μ⊥/μsat versus re-
duced field h⊥ for the listed values of reduced temperature t for
fJ = −1, d = 0.5, and S = 1. (b) Ratio of μ̄⊥/h⊥ versus h⊥ for the
same temperatures as in (a). The filled black circles in (a) and (b)
denote the normalized perpendicular critical fields hc⊥.

For plots as in Figs. 26(b) and 27(b), one defines the unre-
duced susceptibility as χ⊥ = limH⊥→0(μ⊥/H⊥). The reduced
susceptibility χ̄⊥ is defined as in Eq. (119) and can be written
in terms of μ̄⊥ and h⊥ as

χ̄⊥(t) ≡ χ⊥(t)TNJ

C1
= lim

h⊥→0

(
3

S + 1

)
μ̄⊥(t)

h⊥
. (135)

This relation is seen to be satisfied by comparing the low-field
data in Figs. 26(b) and 27(b) with the corresponding data in
Figs. 23 and 24.

The reduced perpendicular critical field hc⊥ at each tem-
perature is defined as the second-order transition field between
the canted AFM and the PM states. The hc⊥(t) is plotted versus
t in Fig. 28, obtained from data as in Figs. 26 and 27. For each
S, the hc⊥(t) curve separates the canted AFM state from the
PM state, as indicated in Fig. 28.

In contrast to the case for d = 0 [16], the magnitude of the
ordered moment in the canted AFM state

μ̄ =
√

μ̄2
‖ + μ̄2

⊥ (136)
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FIG. 27. Same as Fig. 26 except with S = 3 and a different set of
t values.

FIG. 28. Reduced perpendicular critical field hc⊥ versus reduced
temperature t for spins S = 1 and S = 3 with reduced anisotropy
parameter d = 0.5 and fJ = −1. These data were obtained from
data such as in Figs. 26 and 27.

FIG. 29. Dependence of the magnitude μ̄ on the reduced perpen-
dicular field h⊥ at the listed temperatures for spins (a) S = 1 and (b)
S = 3. The cusps in the data occur at the transition field between the
canted AFM state at the lower fields and the PM state at higher fields,
as indicated for t = 0.05 in each panel.

depends on the applied field, as shown in Fig. 29 for spins
S = 1 and S = 3.

IX. IN-PLANE COLLINEAR AFM ORDERING WITH D < 0

When the axial anisotropy parameter D < 0, AFM ordering
with ordered-moment alignments along the x axis, perpendic-
ular to the z axis, is favored over z-axis AFM ordering because
then the lowest-energy states have minimum values of 〈S2

z 〉.
In zero field, the magnetic induction Bi seen by our central
ordered moment �μi = μx î , assumed to be aligned in the +x

direction, consists only of the exchange field that is also aligned
in the +x direction and is given by Eq. (17) as

Bx = Hexch 0 = 3kBTNJ

gμB(S + 1)
μ̄0. (137a)

We use the definitions

μ̄x ≡ μ̄0 = μx

gSμB
, d = D

kBTNJ

, t = T

TNJ

, (137b)
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and utilize the second-order perturbation theory results for the
moment μx induced by a magnetic induction Bx described
generically in Sec. II G. As explained in that section, different
expressions are obtained for integer and half-integer spins.
Hence we expect and find the same dichotomy for the Néel
temperatures.

A. Néel temperature

For integer spins, substituting Eq. (137a) for Bx into
Eq. (34c) and using the above definitions gives

μ̄0 ≡ 3μ̄0

S(S + 1)d
Fx1 (integer S),

(138)

Fx1 = 1

ZS

S∑
mS=−S

[
S(S + 1) + m2

S

4m2
S − 1

]
edm2

S/t ,

where the partition function is

ZS =
S∑

mS=−S

edm2
S/t . (139)

For t → t−N , one can divide out μ̄0 on both sides of Eq. (138)
and abtain an equation from which to numerically solve for the
reduced ordering temperature tN = TN/TNJ versus d, given by

1 = 3

ZSS(S + 1)d

S∑
mS=−S

S(S + 1) + m2
S

4m2
S − 1

exp

(
dm2

S

tN

)

(integer S). (140a)

For half-integer spins, using Eq. (43) one obtains a different
expression for tN given by

1 = 3

ZSS(S + 1)d
(half integer S)

×
⎧⎨
⎩

1

2

[
S(S + 1) + 1/4

tN/d
− S(S + 1) + 3

4

]
exp

(
d

4tN

)

+ 2
S∑

mS=3/2

S(S + 1) + m2
S

4m2
S − 1

exp

(
dm2

S

tN

)⎫⎬
⎭. (140b)

For |d| � 1, one obtains

tN = 1 − dS(S + 1)

3
(d < 0, |d| � 1, integer S), (141a)

tN = 1 − d(2S − 1)(16S3 + 40S2 + 36S + 9)

96S(S + 1)

(d < 0, |d| � 1, half integer S), (141b)

which both yield tN = 1 if S = 1/2 as required. The expression
for integer S is quite different from that in Eq. (76a) for z-axis
ordering with integer S and d > 0. For both integer and half-
integer spins, one sees that a positive d suppresses tN whereas
a negative d enhances it, consistent with expectation for x-axis
ordering.

The variations of tN versus (negative) d for S = 1 to S =
7/2 are shown above in Figs. 4(b) and 4(c) for integer and
half-integer spins, respectively. One sees that with increasingly

negative values of d, tN initially increases for all values of S,
reaches a maximum at d ∼ −1 and then decreases. For integer
spins, tN decreases rapidly to zero at d = −3. The reason is
that the anisotropy energy is −dS2

z and for integer spins a
negative d means the ground state has Sz = 0 and is hence
nonmagnetic. For half-integer spins as in Fig. 4(c), the same
situation leads to the ground state having Sz = 1/2 even though
S � 3/2; hence the spin value is effectively diluted for large
negative d but in this case tN approaches a constant value for
large negative values of d. In the limit of large negative d, for
half-integer spins we obtain

tN(d → −∞) = 3

4

[
1 + 1

4S(S + 1)

]
. (142)

B. Ordered moment versus temperature

For hz = μ̄z = 0, the ordered moments are aligned along
the x axis and the reduced nondiagonal Hamiltonian for
in-plane AFM ordering is given by Eq. (98) with d � 0.
Then using Eq. (15a) with bx = hexch0 = 3μ̄0/(S + 1) from

FIG. 30. Reduced ordered moment μ̄0 = μ0/μsat versus reduced
temperatures (a) T/TNJ and (b) T/TN calculated using Eqs. (143)
for spins S = 1 with x-axis collinear AFM ordering with reduced
anisotropy parameters d = D/kBTNJ = 0, −1, −2, and −2.9.
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Eq. (19), the thermal-average ordered moment μ̄0(t) at each t

is obtained by solving

μ̄0(t) = −S + 1

3SZS

2S+1∑
n=1

∂εn

∂μ̄0
e−εn/t , (143a)

ZS =
2S+1∑
n=1

e−εn/t . (143b)

These equations are valid for both integer and half-integer
spins.

Plots of μ̄0 versus t and versus T/TN for S = 1 and S = 7/2
are shown in Figs. 30 and 31 for the listed reduced anisotropy
parameters d, respectively. For this in-plane orientation of
the easy axis, the normalized saturation moment does not
go to unity at T → 0 for d < 0, contrary to the case of
z-axis ordering with d > 0. On the other hand, with d > 0
a suppression of the ordered moment at T = 0 was found for
the spin-flop phase in Fig. 17, as with x-axis ordering with
d < 0 in Figs. 30 and 31.

From Fig. 30(a), one sees that with increasingly negative
values of d, tN for S = 1 first increases, then decreases,
and then strongly decreases for d → −3, consistent with the

FIG. 31. Same as Fig. 30 except for S = 7/2 and d =
D/kBTNJ = 0,−0.5, −2, and −4.

explicit calculation of tN(d) for S = 1 in Fig. 4(b) above.
On the other hand, with increasingly negative d, one sees
from Fig. 31(a) that tN(d) for S = 7/2 initially increases but
asymptotes to a constant value somewhat less than unity,
consistent with tN(d) for S = 7/2 in Fig. 4(c).

X. SUMMARY

Theory was presented to calculate the magnetic and thermal
properties of Heisenberg antiferromagnets with quantum
uniaxial anisotropy of −DS2

z type. The uniaxial anisotropy
was included exactly and the Heisenberg interactions
were treated within the unified molecular field theory in
which the various parameters are expressed in terms of
measurable properties. This feature facilitates comparison of
the theoretical predictions with experimental results compared
to previous treatments in which the magnetic properties were
expressed in terms of the Heisenberg exchange interactions
themselves in addition to D.

Once the basic theory was formulated in Sec. II, it was
applied to calculate many properties of these spin systems.
Of greatest interest are likely those associated with D > 0 for
which collinear AFM occurs along the z axis. The zero-field
properties calculated include the Néel temperature TN versus
D, the ordered moment versus D and temperature T , and
the magnetic entropy, internal energy, heat capacity, and free
energy versus D and T . In the absence of an ordered moment
above TN, the heat capacity is a Schottky anomaly arising
from the zero-field splittings of the energy levels. In addition
to calculating the parallel susceptibility, we also obtained the
perpendicular susceptibility using second-order perturbation
theory. The high-field uniform magnetization along the z axis
was calculated versus D and T , together with the average
staggered magnetization per spin (the ordered moment) which
is the AFM order parameter. A complete treatment of the
magnetic properties of the spin-flop (SF) phase was also
presented in which the applied field was along the z axis. We
also considered the influence of a perpendicular field along the
x axis on the magnetization and presented the perpendicular
critical field versus D and T for the resulting second-order
AFM/PM transition.

Together with the results for the paramagnetic (PM) and SF
phases, these results were used to construct phase diagrams in
the Hz-T plane for spin S = 1, a particular value of D, and for
three different values of fJ ≡ θpJ /TNJ . The value fJ = −1
is obtained, e.g., for a bipartite AFM spin lattice with equal
nearest-neighbor AFM exchange interactions and no further-
neighbor interactions. Upon algebraically increasing fJ , as
occurs if ferromagnetic interactions are present, the phase
diagrams evolve. For fJ = −1 and −0.7 the phase diagrams
are similar to previous calculations. However, for fJ = 0 we
find a topologically distinct phase diagram in which the SF
phase exists as a bubble at finite Hz and T . It would be very
interesting to extend the present work to a detailed study of
how the phase diagram evolves with increasing fJ at fixed D.

We also studied the magnetic properties of systems with
D < 0, which results in AFM ordering within the xy plane.
We considered the case of collinear AFM ordering for which
TN(D) and the ordered moment versus D and T were
calculated.
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It is interesting and useful to compare the magnetic and
thermal results on the above systems with corresponding
results on noninteraction spin systems with quantum uniaxial
anisotropy only. For this purpose such calculations were
carried out and plots of the results made, which are included
in the Supplemental Material [19,28,29].

Our treatment of the spin interactions in this paper by
MFT has a number of deficiencies when compared with
more rigorous treatments, as discussed previously [16]. These
include an exponential decay in the heat capacity at low T and
an exponential approach to saturation of the magnetization at
low T whereas spin-wave theory predicts power-law behaviors
for both quantities when anisotropy gaps in the spin-wave
spectra are negligible over the T range of interest. A more
fundamental deficiency of MFT is that the dimensionality
of the spin lattice exchange interaction connectivity and
associated strong quantum fluctuations in low-dimensional
systems are not taken into account which can strongly suppress
TN and the ordered moment at T = 0. Yet another significant
deficiency is that short-range AFM ordering effects above

TN are also not taken into account, which can result in a
suppression of TN compared with the MFT prediction (see,
e.g., Ref. [30]).

The main purpose of this work was to provide a conve-
nient and detailed framework to quantitatively estimate the
influence of uniaxial anisotropy on the measured thermal and
magnetic properties of real Heisenberg antiferromagnets from
measurements of the anisotropic properties of single crystals.
The influence of the magnetic dipole interaction in producing
such anisotropies was previously considered in detail for a
variety of spin lattices within the same unified MFT utilized
here [4].
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