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Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice
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The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and
explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture
of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the
electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE).
Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and
QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion
crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 · e2/h below and
with steps of 1 · e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign
change at the van Hove singularity. These unconventional features are deeply connected to the topology of the
structural lattice.
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I. INTRODUCTION

The quantum Hall effect (QHE) is one of the best known
phenomena in condensed matter physics. It was first discussed
for a two-dimensional electron gas in which the parabolic
dispersion of free electrons is “compressed” into dispersion-
less Landau levels (LLs) [1,2]. Even before its experimental
discovery [3] the QHE was described for various lattices in
terms of Hofstadter butterflies [4–8]: the quantized energy
levels become dispersive and the Hall conductivity σxy can
change sign when applying a bias voltage. However, most of
these manifestations of lattice topology remain to be verified
by experiments. As an exception, σxy of graphene has been
measured in a small energy window for half-filling [9]. The
observed unconventional quantization—a sign change of the
Hall conductivity for small variation of the bias—has been
understood in terms of Chern numbers of the LLs [10,11].

Skyrmions [12] have conquered the field of magnetism
since their theoretical [13–15] and experimental discover-
ies [16]. They are typically generated by the Dzyaloshinskii-
Moriya interaction [17,18] in chiral magnets, for example
in the noncentrosymmetric B20 materials, prominently rep-
resented by MnSi [16]. A skyrmion spin texture s(r) [arrows
in Fig. 1(a)] stands out from topologically trivial textures (e.g.,
collinear magnets or spin helices) by its topological charge

NSk = 1

4π

∫
xy

nSk(r) d2r,

nSk(r) = s(r) ·
[
∂s(r)

∂x
× ∂s(r)

∂y

]
,

which is a nonzero integer; nSk(r) is the topological charge
density. It gives rise to the topological Hall effect (THE)
[19–25]: the nontrivial magnetic texture causes an emergent
magnetic field Bem which acts on the propagating electrons by
its Lorentz force.

In this article we discuss an unconventional quantized THE
in skyrmion crystals (SkXs): the topological Hall conductivity
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exhibits a prominent change of sign as a function of bias
voltage. This sign change is assigned to the topology of
the structural lattice rather than to the nontrivial magnetic
topology of the skyrmions. For this purpose, we relate the
THE to the QHE as follows. The emergent field Bem is
inhomogeneous [central hexagon in Fig. 1(a)] because it is
proportional to nSk(r). By making Bem homogeneous, i.e.,
by redistributing the magnetic flux, the THE is mapped onto
a QHE on a structural lattice but in an homogeneous field
[lower hexagon in Fig. 1(a)]. As a result, the quantum Hall
conductivity σxy is quantized in the same way as for the THE:
in steps of 2 · e2/h below and in steps of 1 · e2/h above the van
Hove singularity (VHS). Most strikingly, it exhibits an abrupt
change of sign when the VHS is crossed in dependence of bias.
We attribute this unconventional behavior to the number and
the character (electron versus hole) of the Fermi pockets. Thus,
it is tightly related to the topology of the structural lattice.

The exceptional behavior, sketched in Fig. 1(b), calls for
experiments on samples exhibiting a SkX phase. The Hall
conductivity σxy in clean samples (mean free path of the
electrons is larger than the skyrmion size) should be extremely
sensitive to a gate voltage: the contribution of the THE to σxy

can change sign [red versus blue curve in Fig. 1(c)]. In the
following, we provide details supporting our claim.

II. ELECTRONS IN A SKYRMION CRYSTAL

Following Ref. [24] we describe the spin-dependent elec-
tronic structure by means of the tight-binding Hamiltonian

H =
∑
ij

tij c
†
i cj + m

∑
i

si · (c†i σci) (1)

with constant nearest-neighbor hopping tij = t (i, j sites of the
structural lattice). The electron spin is coupled to the skyrmion
magnetic texture {si} with strength m (measured in units of
t ; second sum). σ is the vector of Pauli matrices, and c

†
i

and ci are spin-dependent creation and annihilation operators,
respectively.
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FIG. 1. Core message of the paper. (a) A skyrmion (top hexagon)
generates an inhomogeneous emergent magnetic field (central
hexagon; blue: positive; white: zero; red: negative). By redistributing
this field such that it becomes homogeneous (lower hexagon), the
topological Hall effect is mapped onto a quantum Hall effect.
(b) Schematic bias dependence of the topological contribution σTHE

to the Hall conductivity σxy , exhibiting a sign change at the energy
of a van Hove singularity (purple). (c) Magnetic-field dependence of
σxy for a bias below (blue) and above (red) the van Hove singularity.
σxy can show a decrease (blue) as well as an increase (red) in the
skyrmion crystal phase which is present for 1 � B � 3 in arbitrary
units.

To model a SkX (a regular array of skyrmions), {si} is
assumed to be a triple-q state [26], that is, a coherent superpo-
sition of three spin spirals with a prescribed wavelength λ. In
the following, we consider a structural triangular lattice with
lattice constant a.

The intrinsic contribution to the Hall conductivity [27]

σxy(EF) = e2

h

1

2π

∑
n

∫
BZ

�(z)
n (q) f [En(q) − EF] d2q (2)

is given by a Brillouin-zone (BZ) integral of the Berry
curvature �(z)

n (q) = ∂qx
A

(y)
n (q) − ∂qy

A(x)
n (q). The Berry con-

nection An(q) = i 〈un(q)|∇q |un(q)〉 is determined from the
eigenvectors un(q) with energies En(q) of the Hamiltonian (1).
The sum runs over all bands n; e and h are the electron charge
and Planck’s constant, respectively, while f (E) is the Fermi
distribution function.

At zero temperature only states below the Fermi energy EF

contribute to the transport: if EF is located within the band gap
above the lth band, σxy is proportional to the winding number
wl = ∑

n�l Cn [28,29] which is the accumulation of the Chern
numbers

Cn = 1

2π

∫
BZ

�(z)
n (q) d2q. (3)

III. QUANTIZED TOPOLOGICAL HALL EFFECT

For zero coupling [m = 0 in Eq. (1)], the bands are spin
degenerate and we obtain the band structure of a triangular
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FIG. 2. Topological Hall effect in SkXs. (a) Electronic band
structure of a SkX with skyrmion size λ = 3a for coupling strength
m = 5t (a is a lattice constant). The alignment of the electron spin to
the magnetic skyrmion texture is indicated by color (parallel: blue;
antiparallel: red). (b) Topological Hall conductivity σTHE versus Fermi
energy for skyrmion sizes λ = 3a (green), 6a (blue), and 9a (red).
σTHE is normalized to the number n of atomic sites per skyrmion
unit cell (σ0 = e2/h conductance quantum). Energy regions with
electronlike (e−, blue background) and holelike (h+, red background)
behavior are indicated (see text).

lattice. The bottom of the band is at −3t , its top at +6t ; a VHS
shows up at EVHS ≡ −2t [Fig. 4(b)].

For finite coupling m, the electron spin aligns with the
skyrmion spin texture and the spin degeneracy is lifted. With
increasing m, the band structure is split into two blocks of
bands: one with spins parallel, the other with spins antiparallel
to the spin texture. In the limit m → ∞ both blocks exhibit
identical dispersion relations.

The band structure for m = 5t and λ = 3a is depicted in
Fig. 2(a). In each block, the energetically higher bands are well
separated and show considerable dispersion (right part of each
block). Close to the VHSs, that is at E = −2t ± m, the bands
become very narrow.

The separation into blocks is reflected in the conductivity
σxy [Fig. 2(b)]. Since both blocks produce similar features,
except for a change of sign, it is sufficient to discuss the
block with lower energy. Starting from the band bottom, σxy is
negative and decreases with energy in quanta of 2 · e2/h. Close
to the VHS (E ≈ −2t − m = −7t), the conductivity increases
abruptly to positive values. At larger energies σxy drops again
but in steps of 1 · e2/h until it reaches zero conductance.
This “quantization” region [label in Fig. 2(b)] shows up most
pronounced for small skyrmions; cf. λ = 3a (green data set).
Recall that there the bands are well separated by gaps, the
associated states carry Chern number −1.

The sawtooth shape of σxy becomes more pronounced the
larger the skyrmion size λ: the steps as well as the jump become
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energetically more narrow because there are more bands within
the same energy range [compare the green, blue, and red data
sets in Fig. 2(b)].

A. Transformation to the emergent field

In the strong-coupling limit m � t , the electron spin is
fully aligned with the skyrmion texture and the two blocks of
bands are identical but rigidly shifted in energy by the Zeeman
term in the Hamiltonian. Consequently, each individual block
can be discussed in terms of spinless electrons. However, the
skyrmion texture has to be taken into account by a local
gauge transformation into the reference frame of its mag-
netic moments [24,30,31]. The gauge field A(r) defines the
emergent magnetic field Bem(r) = ∇ × A(r) with B(z)

em(r) ∝
nSk(r) [30], which is collinear (along z) but inhomogeneous
[central hexagon in Fig. 1(a)]. The gauge transformation
recasts the coupling of the electron spin to the skyrmion texture
to a fictitious field acting on the electron charge. Of course,
both descriptions yield identical results for the THE.

In the tight-binding model, the gauge field A(r) leads to
effective complex hopping strengths [24]

teff
ij ≡ t cos

θij

2
eiaij (4)

that enter the Hamiltonian of the quantum Hall effect

HQH =
∑
ij

teff
ij d

†
i dj . (5)

d
†
i (di) is a creation (annihilation) operator and θij is the angle

between the spins at sites i and j . With the polar angles φi and
φj of these spins the phase in Eq. (4) is written as [24]

tan aij = − sin(φi − φj )

cos(φi − φj ) + cot θi

2 cot θj

2

. (6)

B. Topological Hall effect as quantum Hall effect

The reformulation of the THE as QHE requires us
to redistribute the inhomogeneous emergent field B(z)

em(r)
into a homogeneous field with strength B. The topological
charge of each skyrmion is conserved by the constraint
(4πh̄)−1

∫
uc B(z)

em(r) d2r = NSk (uc is the unit cell of the SkX).
The hopping strengths in Eq. (4) and especially the phases aij

[Eq. (6)] have to be adjusted accordingly [24],

teff
ij = t exp

(
−ie/h̄

∫ rj

r i

A(r) · d l
)

. (7)

d l points along the hopping path (r i → rj ) and A is the vector
potential of the homogeneous magnetic field with B = ∇ × A.
For our calculations we used A(r) = B ex(y − x/

√
3).

It is illustrative to compare the band structures for the
inhomogeneous and the homogeneous emergent field (Fig. 3).
The total bandwidth for the inhomogeneous emergent field (a)
is increased if the term cos θij /2 in Eq. (4) is approximated
by 1 (b); however, the shapes of the individual bands remain
almost unchanged. The total bandwidth in (b) is very close
to that of the LLs (c). On top of that, there is a one-to-one
correspondence between the bands in (b) and the LLs (c).
This is most obvious for large energies where the Chern

FIG. 3. Electronic band structure of a skyrmion crystal and
Landau levels. (a) Band structure of a skyrmion crystal (skyrmion size
λ = 3a, 12 sites per unit cell). (b) As (a) but with the approximation
cos θij /2 → 1 in Eq. (4). (c) Landau levels for a homogeneous
emergent magnetic field. The five topmost bands in (a)–(c) carry
Chern number −1. The energy of the van Hove singularity is indicated
by the purple dashed line.

numbers (−1) are identical as well. Hence, we conclude
that the redistribution of the emergent field merely causes
bandwidth broadening but conserves the topology.

We now corroborate the close relation of THE and QHE
further. Constant-energy cuts (CECs) through the original band
structure of the triangular lattice [(α), . . . ,(δ) in Figs. 4(a)
and 4(b)] at elevated energies are circular because there the
band is parabolic [cf. CEC (α)]. Separating occupied states in
the outside from unoccupied states in the inside of the CEC, a
circle is a hole pocket with negative curvature (for t > 0). The
LLs in this energy region are dispersionless, as expected for
free electrons.

Constant energy cuts closer to the VHS show increased
hexagonal warping [cf. CEC (β)]. At the VHS the CEC is a
hexagon [cf. CEC (γ )]. Having no curvature, (γ ) features an
infinite effective mass, with the consequence that electrons
at the VHS are not affected by the emergent field. These
electrons behave as in a continuum [32]; the associated band
exhibits oscillations in the reduced zone scheme [Fig. 3(c)],
thereby resembling the band structure of the triangular lattice
[Fig. 4(b)]. Constant-energy cuts at energies below the VHS
exhibit two electron orbits [cf. CEC (δ)].

Landau levels with energies larger than that of the VHS
carry Chern number −1 [red peaks in Fig. 4(c)] because
there is a single holelike Fermi contour [(α) and (β) in
Fig. 4(a); the number of enclosed states is ζh]. In contrast,
Landau levels below the VHS appear in pairs because there
are two electronlike Fermi lines, each enclosing ζe states
[see (δ)]. Thus, each pair carries twice the Chern number of
free-electron-like LLs, i.e., −2 (blue peaks).

To explore the Hall conductivity in detail, we utilize an
approximate construction. Onsager’s quantization scheme [2]
allows us to deduce LLs directly from the CECs of the original
band structure of the triangular lattice [Fig. 4(b)]: if a LL con-
tains ζ0 states, the associated CEC encloses (j + 1

2 )ζ0 states (j
integer). This means for CECs with two electron orbits that the
total number of enclosed states reads 2 · (j + 1

2 )ζ0. The char-
acter of the pockets is respected by assigning positive numbers
to ζh for holelike pockets (red in Fig. 4) but negative numbers to
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FIG. 4. Quantum Hall effect on the triangular lattice for n = 24 sites in the unit cell. (a) and (b) The band structure for the triangular lattice
without magnetic field is depicted in (b). Cuts at selected energies are labeled (α), . . . ,(δ) and are shown in (a). The numbers ζe and ζh of
enclosed states in the Brillouin zone (black hexagons) has to obey Onsager’s quantization scheme. At the van Hove singularity [EVHS = −2t ,
cut (γ )] the constant-energy contours exhibit a Lifshitz transition. (c) Density of states (DOS) of the band structure in (b) depicted by light
smooth curves. The associated Landau levels are shown by dark colors; their Chern numbers C are indicated. (d) Number of enclosed states ζe

and ζh before (light smooth curves) and after Landau quantization (dark). (e) Transverse quantum Hall conductivity in units of σ0 = e2/h. In
all panels, the character of the constant-energy pockets is indicated by color (blue: electronlike; red: holelike).

ζe for electronlike pockets (blue in Fig. 4) [33,34]. At the van
Hove singularity which separates holelike from electronlike
pockets the constructed conductivity changes sign [Fig. 4(d)].

The conductivity constructed from the number of enclosed
states is remarkably similar to the quantum Hall conductivity
σxy that has been explicitly computed from Eq. (2) for
the LLs [Figs. 4(d) versus 4(e)]. The Chern numbers are
proportional to the number of pockets and appear as steps in the
constructed curve, although they are never explicitly used for
the construction. Both curves deviate near the VHS at EVHS =
−2t , that is, where lattice effects are prominent; recall that
the latter are neglected in Onsager’s quantization scheme. The
Landau levels in this energy range show oscillations [Fig. 3(c)].
Thus, the sign change of σxy is not located exactly at the VHS
but is associated with the oscillating LL closest to the VHS.

This particular LL is composed of states with energies
below and above the VHS; corresponding constant-energy
cuts are taken below and above the cut (γ ) [Figs. 4(a) and 4(b)],
which features an open orbit with infinite mass. The distinction
of the number of enclosed states and of their character—two
holelike pockets below the VHS but a single electronlike
pocket above the VHS—dictates a mismatch of Chern
numbers. The result is a large Chern number of C = n − 1 for
this particular LL [magenta peak in Fig. 4(c) with C = +23
for n = 24] [10,11,33,35]. The outstanding Chern number
compensates the sum of all other Chern numbers. This result
is clearly a manifestation of the van Hove singularity. It is
thus caused by the topology of the structural lattice: the large
Chern number and the associated jump of the transverse Hall
conductivity would occur at VHSs for every lattice.

The energy dependence of the quantum Hall conductivity
σxy shows striking similarity to that of the topological Hall
effect in skyrmion crystals. Both conductivities—σxy of one
block in Fig. 2(b) and σxy in Fig. 4(e)—feature steps of
−2 · e2/h below the VHS, the substantial jump near the

VHS, and steps of −1 · e2/h above the VHS. Accordingly,
topological and quantum Hall effect are essentially equivalent.
A difference is that in the case of the THE the inhomogeneity of
the emergent field “adds” dispersion to the bands [cf. Figs. 3(b)
and 3(c)]. To reiterate, the effects ascribed to the topology of
the structural lattice—quantization and the jump of σxy—are
transferred from the THE to the QHE and vice versa. In
general, topological Hall conductivities would rise abruptly
at VHSs on every lattice.

IV. SUGGESTION FOR EXPERIMENTS

The established relation of lattice topology and bias
dependence of the topological Hall conductivity calls for
experimental verification. The quantized topological Hall
effect can be studied in metals which exhibit a SkX phase,
e.g., MnSi [16], Fe1−xCoxSi [36], and FeGe [37]. A necessary
prerequisite is that the mean free path of the electrons is larger
than the skyrmion size.

In samples with insignificant anomalous Hall effect, the
Hall conductivity σxy increases with B, if B is small. A
transition from a topologically trivial magnetic phase to a
SkX phase would cause an abrupt change of σxy because the
THE provides an additional contribution to σxy [Fig. 1(b)].
The application of a gate voltage, which allows us to scan
the energy dependence of σxy , can make this variation either
a decrease or an increase, depending on whether the Fermi
energy lies below or above a VHS [red and blue lines in
Fig. 1(c)].

The change of sign in σxy is preferably studied for
large skyrmions: the sawtooth-shaped variation of the Hall
conductivity becomes cultrate with increasing skyrmion size
[green, blue, and red curves in Fig. 2(b)]. This behavior
is, however, limited by the finite sample size because an
experiment measures a conductance rather than a conductivity.
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Therefore, a compromise between signal strength (favored by
small skyrmions) and sharpness of the sawtooth-shaped feature
(favored by large skyrmions) has to be made.

In real samples, the Hall conductivity is due to two
contributions: the topological Hall effect and the anomalous
Hall effect. The THE contribution to the Hall conductivity
is attributed to the nontrivial topology in reciprocal space
that arises from the real-space topology of the magnetic
texture; spin-orbit coupling is not required. The contribution
of the anomalous Hall effect relies on a nonzero Berry
curvature as well but is solely induced by intrinsic spin-orbit
coupling and a topologically trivial magnetic texture (like a
ferromagnet); a topologically nontrivial magnetic texture is

not required. Both anomalous and topological contributions
to the Hall conductivity would vary with gate voltage. Thus,
the dominating contribution of the two effects should be iden-
tified in advance [38]. As real materials exhibit complicated
band structures and feature intrinsic spin-orbit interaction, a
combined analysis of the anomalous and the topological Hall
effects seems to be worthwhile in the future.
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[17] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[18] T. Moriya, Phys. Rev. 120, 91 (1960).
[19] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz,
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