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Phase transitions in isotropic quantum antiferromagnets are associated with the condensation of bosonic
triplet excitations. In three-dimensional quantum antiferromagnets, such as TlCuCl3, condensation can be either
pressure or magnetic field induced. The corresponding magnetic order obeys universal scaling with thermal
critical exponent φ. Employing a relativistic quantum field theory, the present work predicts the emergence of
multiple (three) universalities under combined pressure and field tuning. Changes of universality are signaled
by changes of the critical exponent φ. Explicitly, we predict the existence of two new exponents φ = 1 and 1/2
as well as recovering the known exponent φ = 3/2. We also predict logarithmic corrections to the power law
scaling.
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I. INTRODUCTION

Pressure and magnetic field induced condensate phases
in quantum magnetic systems have become instrumental to
our understanding of universal, critical phenomena. A great
effort (experimental, numerical, and theoretical) has been
devoted to uncovering and categorizing the universal features
of critical magnetic condensate phases. The present work
considers three-dimensional (3D) quantum antiferromagnets
(QAFs), where the combined interplay between pressure,
magnetic field, and temperature (p,B,T ) remains theoretically
unexplored, yet offers an exiting arena for theorists and
experimentalists alike to uncover new universal behavior. In
Fig. 1 we present the generic phase diagrams of dimerized
QAFs such as TlCuCl3, KCuCl3, and CsFeCl3. Figure 1(a)
shows the magnon Bose condensation (BEC) line in the field-
pressure diagram, and Fig. 1(b) shows the antiferromagnetic
(AFM) transition line in the temperature-pressure diagram.
It is also instructive to look at Fig. 2 which shows the 3D
(p,B,T ) phase diagram. The point of primary interest is the
critical field-critical temperature power law,

a: δBBEC ∼ T φ, b: δTN ∼ B1/φ. (1)

The shift of the BEC transition line at small temperature
is shown schematically in Fig. 1(a); while the shift of the
AFM/Néel transition line at small field is in Fig. 1(b).

It is widely believed that at p < pc, φ = 3/2 is the universal
BEC exponent, which can be obtained from the scaling
arguments on the dilute Bose gas [1,2] or explicitly for magnon
BEC [3,4]. For a review see [5]. On the other hand, experiment
(on TlCuCl3 and KCuCl3 [6–9]) and numerics [10] show
1.5 � φ � 2.3, depending crucially on which temperature
range is used for fitting [5,11]. We understand recent data
on 3D QAF CsFeCl3 [12], taken along the thick blue-red
solid lines in Fig. 2, as a hint for a significant and unexpected
evolution of the index φ along the line.

The primary goal of the present work is to derive the evolu-
tion of the critical index φ across the phase diagram. Another
goal is to explain why the index depends on the fitting range;
even if a priori the range seems to be very narrow. We will
show that answers to both questions are related to the quantum
critical point (p,B,T ) = (pc,0,0). Ultimately, the quantum

critical point (QCP) governs the evolution of the critical index
φ across the phase diagram. This is illustrated in Fig. 2.

Previous theoretical approaches were concentrated at the
BEC transition, p < pc. They employed a dilute Bose gas
model [4,5] and/or bond-operator technique [13]. In the
end, these techniques rely on the Hartree-Fock-Popov ap-
proximation, yet it is known that the Hartree-Fock-Popov
approximation breaks down in the vicinity of a critical
point [14]. In the present work we employ a quantum field
theory approach which naturally describes quantum critical
points.

II. METHODS

The quantum phase transition (QPT) between ordered and
disordered phases is described by the effective field theory
with the following Lagrangian [15,16]:

L = 1

2
(∂t �ϕ − �ϕ × �B)2 − 1

2
( �∇ �ϕ)2 − 1

2
m2

0 �ϕ 2 − 1

4
α0 �ϕ 4. (2)

The vector field �ϕ describes staggered magnetization, B is
an external applied field, and for now we set gμB = 1. We
now briefly outline the mean-field phase transitions captured
by this Lagrangian. Consider first B = 0, the pressure induced
QPT results from tuning the mass term m2

0 for which we take
the linear expansion m2

0(p) = γ 2(pc − p), where γ 2 > 0 is a
coefficient and p is the applied pressure. Varying the pressure
leads to two distinct phases. (i) For p < pc we have m2

0 > 0,
and the classical expectation value of the field is zero ϕ2

c = 0.
This describes the magnetically disordered phase, the system
has a global O(3) rotational symmetry, and the excitations
are gapped and triply degenerate. (ii) For pressures p > pc we
have m2

0 < 0, and the field obtains a nonzero classical expecta-

tion value ϕ2
c = |m2

0|
α0

. This describes the magnetically ordered,

antiferromagnetic phase. Varying m2
0 from positive to negative

spontaneously breaks the O(3) symmetry of the system.
Next consider nonzero B at fixed p < pc: For B < Bc =

m0 the system has O(2) symmetry, and the degeneracy of
the triplet modes is lifted by Zeeman splitting. The field
induced QPT results from tuning B2 > m2

0 = γ 2(pc − p), this
corresponds to the blue line in the (B,p) plane, Fig. 2. The

condensate field is given by ϕ2
c = B2−m2

0
α0

and always lies in the
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FIG. 1. Critical field and temperature power law shifts. (a) Shift of
critical field-pressure line with temperature δBBEC ∼ T φ . Solid blue
curve is at zero temperature, dashed blue at nonzero temperature.
(b) Shift of critical (Néel) temperature-pressure line with field
δTN ∼ B1/φ . Solid red curve is at zero field, dashed red at nonzero
field.

plane perpendicular to �B. At B = 0, p > pc and T < TN , the
AFM condensate (staggered magnetization) has an arbitrary
orientation. Application of a magnetic field, even vanishingly
small, acts to globally reorient the system such that the
AFM condensate is perpendicular to the applied field �ϕc ⊥ �B.
Without loss of generality, one may assume that the condensate
for p > pc, T < TN has a given orientation �ϕc, and that
the magnetic field is applied perpendicular to this predefined
direction. Of course, mathematically, this does not alter any
conclusions of the paper. To determine the order-disorder
(BEC or AFM) transition line one can approach the transition
starting from either the ordered or disordered phase. In this
work we start from the latter; all results are derived starting
from disordered phase. There are three magnetic excitations
with ladder polarization σ = −,0,+. The polarization is the
projection of angular momentum on the direction of magnetic
field. In Fig. 3 we summarize the results for the evolution of the
three mode gaps through the field and pressure quantum phase
transitions, separately. Explicit parameters correspond to those
found in Ref. [19] for TlCuCl3. Here we disregard the small
easy-plane anisotropy seen in TlCuCl3, which has been shown
to have negligible influence on the critical properties [19], see
also comment [20].

φ=1

φ=3/2

φ=1/2

FIG. 2. Multiple universalities in the (p,B,T ) phase diagram.
Blue curves correspond to the BEC transition lines; here p < pc and
the critical exponent is φ = 3/2. Red curves correspond to the Néel
transition lines; here p > pc and the critical exponent is φ = 1/2.
The dashed, black curve shows the critical pressure transition line,
with critical exponent φ = 1.
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FIG. 3. Excitation gaps 	σ : (Left) pressure driven at fixed field
B = 0.2 meV and T = 0. (Right) field driven at p = 0 kbar and
T = 1.5 K. Solid lines are theoretical results derived in this paper.
Markers indicate experimental data for TlCuCl3 [17,18].

Beyond mean field: Everywhere in the text m2
0 =γ 2

0 (pc−p)
and α0 represent the zero temperature mass tuning parameter
and coupling constant without quantum fluctuation correc-
tions. Taking into account quantum and thermal fluctua-
tion corrections due to interaction term 1

4α0 �ϕ 4, we will
denote the renormalized parameters m2

0 → m2

,σ and α0 →

α
. The explicit form for m2

,σ = m2


,σ (p,T ,B) depends
on the location within the phase diagram, and polarization
σ . Full details are presented in Appendixes B and C,
while expressions are presented below. The strength of
the coupling α
 determines the strength of all interactions
in the theory, and is dependent on the energy scale 
.
Generically, the one-loop renormalized coupling takes the
form [19,21]

α
 = α0

1 + 11α0/(8π2) ln(
0/
)
. (3)

Specifically for the problem at hand, the coupling runs with
scale 
 = max{m
,σ ,B,T }. Accordingly, there is just a single
point on the phase diagram at which all energy scales vanish

 → 0; the quantum critical point (pc,0,0), see Fig. 2. At this
point the coupling runs to zero α
 → 0 (asymptotic freedom).
The running of the coupling constant will play an essential
role in resolving our main goals/questions: Why the index φ

depends on the location within the phase diagram, and why
the expected index φ = 3/2 in the BEC regime depends on the
fitting range?

In the disordered phase the Euler-Lagrange equation
with (2) results in the following dispersion:

ωσ
k =

√
k2 + m2


,σ + σB, (4)

where m
,σ is the renormalized mass. Note that the σB

term is not renormalized. This is a consequence of a Ward
identity (Larmor theorem). While the stationary states (4) have
a fixed ladder polarization, technically it is more convenient
to calculate fluctuation corrections in the Cartesian basis �ϕ =
(ϕx,ϕy,ϕz). Let us denote by V the part of the Lagrangian (2)
independent of derivatives. Then, using a Wick decoupling of
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the interaction term 1
4α0 �ϕ 4, in the single loop approximation

we find

∂2V
∂ϕ2

x

= m2
0 − B2 + 3α0

〈
ϕ2

x

〉 + α0
〈
ϕ2

y

〉 + α0
〈
ϕ2

z

〉
,

∂2V
∂ϕ2

y

= m2
0 − B2 + α0

〈
ϕ2

x

〉 + 3α0
〈
ϕ2

y

〉 + α0
〈
ϕ2

z

〉
,

∂2V
∂ϕ2

z

= m2
0 + α0

〈
ϕ2

x

〉 + α0
〈
ϕ2

y

〉 + 3α0
〈
ϕ2

z

〉
, (5)

where 〈ϕ2
x〉 is the loop integral over the Green’s function of

field ϕx . An explicit calculation shows 〈ϕ2
x〉 = 〈ϕ2

y〉, hence
from Eqs. (A2), we have rather trivially satisfied the O(2)
Ward identity: ∂2V/∂ϕ2

x − ∂2V/∂ϕ2
y = 0. Further details are

presented in Appendix A.
Quantum corrections corresponding to (A2) come from

the scale 
 < q < 
0. Hence they must be accounted for
via single loop renormalization group (RG). The thermal part
of (A2) comes from q ∼ T , hence here the simple single loop
approximation is sufficient. All in all, calculations presented
in Appendix C give

∂2V
∂ϕ2

i

= m2

,±(T ) − B2,

∂2V
∂ϕ2

z

= m2

,0(T ), (6)

where ϕi = {ϕx,ϕy}, and the renormalized masses are

m2

,± = m2

0

[
α


α0

]5/11

+ T ,

m2

,0 = m2

0

[
α


α0

]5/11

+ α


∑
k

1/ω0
k

{
n(ω+

k )

+ n(ω−
k ) + 3n

(
ω0

k

)}
,

T ≡ α


∑
k

1/ω0
k

{
2n(ω+

k ) + 2n(ω−
k ) + n

(
ω0

k

)}
. (7)

Here n(ωk) = 1/(e
ωk
T − 1), and we introduce the function T

for brevity. Obviously expansions of Eqs. (7) in powers of B

contain only even powers. Interestingly these expansions are
different for m
,± and m
,0. Therefore the relation ω+

k − ω0
k =

ω0
k − ω−

k , which is exact at T = 0, does not hold at nonzero
T . At nonzero T the relation is valid only up to the linear in B

approximation.
In a magnetic field, the condition of condensation follows

from Eq. (4), m
,± − Bc = 0. Using (7) this equation can be
rewritten as

T = B2
c − m2

0

[
α


α0

]5/11

. (8)

III. RESULTS AND DISCUSSION

There are three distinct cases: (I) Above the critical
pressure, when Tc = TN , i.e., critical temperature equals the
AFM/Néel temperature; (II) exactly at the critical pressure
p = pc; and (III) below the critical pressure, when Tc = TBEC.
At zero magnetic field, the critical temperature in case (I),
Eq. (8), is identical to the equation for the Néel temperature
derived in Ref. [19].
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T K
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FIG. 4. Critical field vs temperature: Dashed yellow curves show
solutions to scaling equations (9), (11), and (12). The dashed maroon
curve shows a solution of (8) that accounts for thermal mixing
of noncritical modes, but does not account for running coupling;
coupling is at fixed value α
 → α	0 = 0.169 × 8π . Solid blue lines
are the solution to (8) with a full account of noncritical modes
and logarithmic running coupling. Blue points are experimental data
from [9,22,23].

Consider case (I): p > pc. In this case according to Eq.
(1b) the Néel temperature varies in a weak magnetic field. To
calculate T at B → 0 we take the critical line dispersions
ω+

k = ω−
k = ω0

k = k. Hence T = 5α


12 T 2, where T = TN0 +
δTN ; TN0 is the Néel temperature in zero magnetic field. Hence
using Eq. (8) we find

(I):δTN = 6

5α


B2

TN0
atB 
 TN0. (9)

So the critical index in Eq. (1b) is φ = 1/2.
In Ref. [19] the set of parameters describing TlCuCl3 was

determined:

pc = 1.01 kbar, γ = 0.68 meV/kbar1/2,

α0

8π
= 0.23, 
0 = 1 meV. (10)

When fitting experimental data in Ref. [19] the thermal
line broadening had been accounted for via ω = k → ω =√

k2 + ξ 2T 2, ξ = 0.15. Therefore, if we use the set of
parameters (10) to determine the value of the running coupling
constant α
, Eq. (3), the coefficient in (9) has to be corrected
accordingly: 6

5α

→ 1.14 6

5α

. In Fig. 4 we illustrate Eq. (9) by

a dashed yellow line originating from TN0 = 2.8 K. The cou-
pling constant is α
/8π = αTN0/8π = 0.107. For comparison,
the solid blue line originating from 2.8 K represents the exact
solution of Eq. (8) with a coupling constant running along the
line.

Consider case (II), tuning exactly to the quantum critical
point p = pc, TN0 = 0. Again, to calculate T at B → 0 we
have to take the critical line dispersions ω+

k = ω−
k = ω0

k = k

and hence again T = 5α


12 T 2. Substitution into (8) gives

(II): Bc =
√

5α


12
T at Bc 
 T . (11)
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The condition Bc 
 T is satisfied at sufficiently low tem-
peratures since the coupling constants decays logarithmically,
α
 ∝ 1/ ln (
0

T
). Hence in this case (II), the critical index of

Eq. (1) is φ = 1, and we find that, in addition to the exponent,
there is nontrivial logarithmic scaling. In Fig. 4 we illustrate
the asymptotic (11) by a dashed yellow line originating from
B = T = 0. The solid blue line originating from the same
point represents an exact solution of Eq. (8).

Finally we consider the BEC case (III), p < pc. In this
case only the ω−

k dispersion branch is critical, ω−
k ≈ k2

2	0
,

where 	0 = B0 is the gap at B = 0. The other two branches
are gapped. Calculation of T gives T = α


ζ (3/2)
π

√
2π

√
	0T

3/2,
where ζ is Riemann’s ζ function. Hence, using Eq. (8) we
find

(III):
δBc

	0
= α


ζ (3/2)

(2π )
3
2

(
T

	0

)3/2

at δBc 
 	0. (12)

As expected the critical index in Eq. (1a) is φ = 3/2. To
understand the region of validity of Eq. (12) we compare
with TlCuCl3 data [9,22,23]. The value of the gap at T =
p = B = 0 is 	0 = m
,± = 0.64 meV [24]. The BEC critical
field for T = p = 0 is B0 = 4.73 T [25]. Hence, we obtain
the g factor, which is defined as B → gμBB, g = 2.35 [20].
In Fig. 4 the dashed yellow line originating from B0 = 4.73 T
shows BBEC versus T at p = 0 calculated with Eq. (12). The
value of the coupling constant in this equation is obtained from
Eqs. (3) and (10), α
/(8π ) = α	0/(8π ) = 0.169. Experimen-
tal data [9,22,23] are shown by circles. We see that Eq. (12) is
valid only at T � 1 K.

There are two physical effects accounted for in (8), but
neglected in (12). These are (i) the influence of the noncritical
(gapped) modes ω+

k ,ω0
k; and (ii) the logarithmic running of α
.

To illustrate the importance of noncritical modes, the dashed
maroon line originating from 4.73 T in Fig. 4 shows a solution
of Eq. (8) with an account of all three modes, but with a fixed
coupling constant α	0/(8π ) = 0.169. Finally, the solid blue
line originating from 4.73 T shows a solution of (8) with an
account of both (i) and (ii). Agreement with experiment is
remarkable. We stress that there is no fitting in the theoretical
curve. The set of parameters (10) was determined in Ref. [19]
from data unrelated to magnetic field. To be consistent with
this set when generating the solid blue and dashed maroon
curves in Fig. 4 we use the same line broadening as in [19],

ωσ
k →

√
k2 + m2


,σ + �2
T + σB, �T = ξT , ξ = 0.15.

Regimes (I) and (II) have never been considered before.
On the other hand, the BEC regime (III) has been considered
in a number of publications using the Hartree-Fock-Popov
approximation for hard core bosons, from which simple T 3/2

dependence is predicted. Our conclusion is that such an
approximation is only valid at vanishingly small temperatures
and the region of validity shrinks to zero upon approaching
the critical pressure QCP. This is illustrated in Fig. 4 by
lines originating from points B0 = 4.73 T and B0 = 2.36 T
at T = 0. Our exact theoretical solutions (blue solid lines)
differ from the simple T 3/2 dependence (dashed yellow)
due to two effects: influence the noncritical excitations
and the running of the coupling constant. Both effects are
governed by the magnetic quantum critical point (pc,0,0)

p pc

p = pc p pc
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FIG. 5. Multiple universalities: Various curves show the critical
field Bc(T ) at various pressures ranging from p < pc, p = pc, to
p > pc. (a) Solutions to (8) with parameters for TlCuCl3. (b) Data
for quantum antiferromagnet CsFeCl3 [12].

and cannot be accounted for within a hard core boson
model; whether it be Hartree-Fock-Popov approximation or
even an exact solution. Including these effects, the present
analysis resolves the long standing problem of the BEC critical
exponent, which has been consistently reported at higher value
3/2 � φ � 2.3 [5–11].

The existence of three critical exponents φ = 3/2, 1, and
1/2, and even logarithmic corrections to these exponents, is
a readily testable result and constitutes our most important
prediction for experiment. Figure 4 provides predictions
directly for TlCuCl3. In Fig. 5(a) we plot the predicted critical
field in TlCuCl3 vs temperature at various pressures. For
comparison in Fig. 5(b) we present a similar experimental
plot for quantum antiferromagnet CsFeCl3 published very
recently [12]. Unfortunately we cannot perform exact quan-
titative calculations (including all prefactors) for CsFeCl3.
Existing data for this compound are not sufficient to per-
form analysis similar to [19] for TlCuCl3. However, the
data [12] supports the proposed multiple critical exponent
theory.

IV. CONCLUSION

In summary, employing a quantum field theoretic approach,
our work predicts multiple critical exponents, and their
corresponding logarithmic corrections, on the pressure, mag-
netic field, and temperature-phase diagram for 3D quantum
antiferromagnets in the vicinity of the quantum critical point.
For TlCuCl3 we demonstrate remarkable agreement with
existing data, and provide quantitative predictions for future
experiments. We also resolve the long standing problem
relating to the observed critical exponent in Bose-Einstein
condensation of magnons.
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APPENDIX A: GREEN’S FUNCTIONS AND PERTURBATIVE DECOUPLING

In the disordered phase we have the Lagrangian

L = −1

2

⎛
⎝ϕ1

ϕ2

ϕ3

⎞
⎠

T ⎛
⎝ω2 − k2 − (m2 − B2) −2iωB 0

2iωB ω2 − k2 − (m2 − B2) 0
0 0 ω2 − k2 − m2

⎞
⎠

⎛
⎝ϕ1

ϕ2

ϕ3

⎞
⎠ − α

4
�ϕ4,

L = −1

2
�ϕT Ĝ−1

D �ϕ − α

4
�ϕ4. (A1)

We choose to work with real fields, in the Cartesian basis �ϕ =
(ϕx,ϕy,ϕz) and therefore do not diagonalize the kinetic matrix
Ĝ−1. We are therefore left with anomalous Greens functions
Gxy , Gyx , but they do not contribute to loop corrections to first
order in α0. The matrix Ĝ gives the bare Greens functions. We
wish to calculate first order in α corrections to the mass gaps,
and in doing so find the Néel temperature curve, the order pa-
rameter ϕc, and full fluctuation corrections to the dispersions.
To obtain corrections, we use an effective potential denoted
by V , which is the part of the Lagrangian (A1) independent of
derivatives. Then, using a Wick decoupling of the interaction
term 1

4α0 �ϕ 4, in the single loop approximation we find

∂2V
∂ϕ2

x

= m2
0 − B2 + 3α0

〈
ϕ2

x

〉 + α0
〈
ϕ2

y

〉 + α0
〈
ϕ2

z

〉
,

∂2V
∂ϕ2

y

= m2
0 − B2 + α0

〈
ϕ2

x

〉 + 3α0
〈
ϕ2

y

〉 + α0
〈
ϕ2

z

〉
,

∂2V
∂ϕ2

z

= m2
0 + α0

〈
ϕ2

x

〉 + α0
〈
ϕ2

y

〉 + 3α0
〈
ϕ2

z

〉
, (A2)

where 〈ϕ2
x〉 is the loop integral over the Green’s function of

field ϕx : Gxx . An explicit calculation shows 〈ϕ2
x〉 = 〈ϕ2

y〉. The
bare Greens functions follow immediately from (A1), they are

Gxx(ω,k) = Gyy(ω,k) = ω2 − k2

[ω2−(ω+
k )2][ω2 − (ω−

k )2]
,

Gzz(ω,k) = 1[
ω2−(

ω0
k

)2] ,

Gxy(ω,k) = G∗
yx(ω,k) = 2iωB

[ω2−(ω+
k )2][ω2−(ω−

k )2]
, (A3)

with dispersions ωσ
k as defined in the main text (4).

APPENDIX B: RUNNING COUPLING CONSTANT

The four point vertex is calculated to second order in α, the
infrared cutoff 
 is given by the mass, the magnetic field, or the
temperature scale: max{m
,B,T }. We use a Callan-Symanzik
equation to find the Beta function

�(4) = α − 11α2
∫ 
c




d4k

(2π )4

1

k4
,

0 =
[

d

d ln(
c/
)
+ β(α)

d

dα

]
�(4),

α
 = α0

1 + 11α0
8π2 ln(
0/
)

, (B1)

where 
c is some momentum cutoff such as the inverse lattice
spacing, while 
0 is the “normalization” scale or point.

APPENDIX C: RUNNING MASS

Consider the corrections to the curvature (A2), under
renormalization, we replace the bare coupling with the running
running coupling α0 → α
, and now explicitly substituting
loop integrals (with i = {x,y})
∂2V
∂ϕ2

i

= m2
0 − B2 + 5α


∫
d3k

(2π )3

1

2ω0
k

+α


∫
d3k

(2π )3

1

ω0
k

{
2n(ω+

k ) + 2n(ω−
k ) + n

(
ω0

k

)}
,

∂2V
∂ϕ2

z

= m2
0 + 5α


∫
d3k

(2π )3

1

2ω0
k

+α


∫
d3k

(2π )3

1

ω0
k

{
n(ω+

k ) + n(ω−
k ) + 3n

(
ω0

k

)}
. (C1)

The coupling constant coefficient is the running coupling α
,
since the two point corrections are multiplicative with the four
point vertices. The integral first terms in (C1) renormalize the
bare mass term m2

0, such that m2
0 + 5α


∫
d3k

(2π)3
1

2ωk
→ m2


 has
logarithmic dependence on the energy scale 
. The second
integral terms, or the “thermal perturbations,” only contributes
to the logarithmic running via its influence on the infrared
cutoff. To make these statements more clear, consider zero
temperature such that only the first term contributes. We write
the two point function as (with forward substitution of running
mass m0 → m
)

�(2) ≡ ∂2V
∂ϕ2

z

∣∣∣∣
T =0

= m2

 + 5α


∫ 
c




d3k

(2π )3

1

2
√

k2 + m2



= m2

 − 5α


8π2
m2


 ln

(

c




)
= ∂2V

∂ϕ2
i

∣∣∣∣
T =0

+B2. (C2)

We note that the logarithmic correction is independent of
magnetic field B, which is essential to ensure that B is not
renormalized. We use the Callan-Symanzik equation to find
the (mass) Beta function

0 =
[

d

d ln(
c/
)
+ βm(
)

d

dm2



]
�(2),

βm(
) = 5α
m2



8π2
,
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dm2



d ln(
0/
)
= −5α
m2




8π2
,

m2

,σ = m2

0

(
α


α0

)5/11

. (C3)

In this last line we explicitly give an index σ to denote
the different polarizations. At zero temperature, the terms
m
,σ are equivalent for all polarizations σ . Including nonzero
temperatures does not change the form of the running coupling
nor mass Eqs. (B1) and (C3), but it does: (i) influence the
infrared cutoff from 
 = Max{m
,B,T }; and (ii) lifts the

degeneracy of the mass terms, which now explicitly becomes

m2

,± = m2

0

[
α


α0

]5/11

+α


∑
k

1

ω0
k

{
2n(ω+

k ) + 2n(ω−
k ) + n

(
ω0

k

)}
, (C4)

m2

,z = m2

0

[
α


α0

]5/11

+α


∑
k

1

ω0
k

{
n(ω+

k ) + n(ω−
k ) + 3n

(
ω0

k

)}
. (C5)
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