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First-order transition induced by topological defects in the O(3) principal chiral model
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Using Monte Carlo simulations, we study thermal and critical properties of two systems, in which domain
walls and so-called Z2 vortices as topological defects are presented. The main model is a lattice version of the
O(3) principal chiral model. We find a first-order transition and give qualitative arguments that the first order
is induced by topological defects. We also consider the model of frustrated antiferromagnet on a square lattice
with the additional exchange interaction between spins of the third range order. This model belongs to the same
symmetry class. In this model, a transition is of first order too.
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I. INTRODUCTION

Topological defects play a crucial role in the critical
behavior along with conventional perturbative fluctuations.
Moreover, one knows examples where a phase transition
is driven by topological defects directly. So, in type II
superconductors, a transition in the magnetic field is driven by
vortex tubes [1]. Another example called now as a topological
phase transition is the Berezinskii-Kosterlitz-Thouless (BKT)
transition, which occurs in the two-dimensional O(2) model
describing XY ferromagnets and which is driven by vortices
[2–5]. A less traditional example is a transition in the Ising
model. This model can be entirely reformulated in terms of
domain walls and their interaction. Domain walls are linelike
topological defects in a two-dimensional model with a discrete
order parameter space. So, a phase transition in such models
may be considered as a topological one.

In two dimensions, ordinary vortices appear if an order
parameter space has the form G/H = SO(2) ⊗ Gsc ⊗ Gd

where Gsc is a simple connected subgroup of a group G

and Gd is a discrete subgroup. In a more general case, the
criterion of vortices existence is the nontriviality of the first
homotopy group π1(G/H ) �= 0. We know a few classes of
physical systems with such properties of an order parameter
space, excluding the ordinary case π1(SO(2)) = Z. One of
such classes is nematics (with a nematic-isotropic transition)
described by the classical Maier-Saupe model [6,7]. This
model is based on the biquadratic interaction −J (Sx1 ,Sx2 )2,
where S is a classical N -component vector, so the order
parameter space is a real projective space RP N−1 with
π1(RP N−1) = Z2 when N � 3.

Another class of systems with π1(G/H ) = Z2 is the class
of frustrated spin systems with isotropic spins (N = 3) and
a noncollinear spin ordering. Such an ordering corresponds
to the fully broken symmetry of spin rotations SO(3). As a
manifold, the group SO(3) is similar to a three-sphere S3

with diametrical points being equivalent SO(3) ≈ RP 3 ≈ S3

Z2
.

Thus, in both classes, so-called Z2 vortices appear.
The investigation of thermal and critical properties of

two-dimensional systems with Z2 vortices has a quite long
story, since the early ’80s. In the works [8–13], the possibility
of a phase transition at finite temperatures in the RP N−1
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model has been discussed. At that, the analysis in work [9],
based on the mean field theory and Monte Carlo simulations,
excludes a transition of a finite order but does not exclude
a BKT transition. Similarly, the SO(3) case realized in the
model of antiferromagnet on a triangular lattice has been
considered in works [14–19] where a BKT-type transition has
been predicted. Most of the works (in both cases) use Monte
Carlo simulations and show the presence of a singularity in
thermal behavior typical to a phase transition.

However, there are arguments against the existence of a
phase transition at a finite temperature based on the σ -model
approach [20–22]. The σ model is the effective theory de-
scribing low-energy (weak) fluctuations, so it also describes a
low-temperature behavior. Due to the weakness of fluctuations,
an interaction between them depends only on a local geometry
of the order parameter space and does not feel a topology of
the space G/H [23,24]. Thus, the cases of G/H = SO(3) and
RP 3 are equivalent to the case G/H = S3 = O(4)/O(3) and
have the same low-temperature behavior as the O(4) model
[25–27]. In two dimensions, the σ model with a nonflat space
G/H predicts the absence of long-range (the Mermin-Wagner
theorem) or quasi-long-range orders at a finite temperature
and exponential decrease of the correlation length with
temperature increasing. So, a transition-like behavior observed
numerically can be explained only as a crossover between the
σ -model behavior and the high-temperature behavior with an
appreciable density of Z2 vortices [22]. In the recent work
[28], the crossover in the SO(3) principal chiral model has
been observed by the nonperturbative renormalization group
(RG) approach. Also, the Z2-vortex concept is used to explain
an anomalous behavior of some triangular antiferromagnets,
observed experimentally (see Refs. [29–31] and references
therein).

In this paper we consider the possibility of participation
of Z2 vortices in a bona fide topological phase transition.
Of course, for this we need to take a model with a more
complicated order parameter space. We investigate two models
with G/H = O(3) ≡ Z2 ⊗ SO(3). There are two types of
topological defects presented in this symmetry class, Z2-
vortices and domain walls. We expect that an interaction of
these defects allowsZ2 vortices to influence a critical behavior.

We have already known the case when an interaction
between two types of topological defects changes a critical
behavior, and this case has served us as a hint. This is the case
of the Ising-O(2) model with G/H = Z2 ⊗ SO(2), where
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(ordinary) vortices and domain walls are presented too (see
Ref. [32] for a review). Accurate analysis of numerical results
for different systems of this class allows us to formulate
two possible scenarios: Either a BKT transition occurs at
temperature below an Ising transition, or these transitions
occur at the same temperature as a first-order transition
[33–35].

Korshunov argued [35] that the first scenario is possible in
systems where fractional vortices are present in the spectrum
of topological defects. Fractional vortices appear as some
kinds of kinks propagating on domain walls. The logarithmical
interaction of these kinks is weaker than the interaction of
the conventional vortices and leads to a phase transition on
a domain wall at Tk < TBKT. At T > Tk, the domain wall
turns opaque for the correlations of the SO(2) parameter.
As a consequence, on approaching the continuous Ising-like
transition, the quasi-long-range SO(2) order has to break
down, and the BKT transition has to occur at TBKT < TIs.
Such fractional vortices are found for many models from the
class of the Ising-O(2) model: the fully frustrated XY model
[36,37], XY antiferromagnet on a triangular lattice [38], XY
helimagnets [39,40], etc.

The second scenario when two transitions coincide is
also observed in the Ising-XY model [41–45] and XY
J1 − J3 model on a square lattice [46]. (The N = 3 case of
the last model is considered in the current study, see the
description of the model below.) This single transition is of first
order.

Of course, the analogy with the case of the Ising-O(2)
model cannot be complete for two reasons. Firstly, the group
SO(3) is non-Abelian, so perturbative excitations cannot be
integrated out unlike to the Abelian SO(2) case, and we
cannot formulate the model in terms of topological defects.
Secondly, properties of Z2 vortices are very different from
usual vortices, in particular fractional vortices do not exist.
Nevertheless, in this paper we demonstrate that Z2 vortices
and domain wall interact and lead to a single first-order
transition.

In frustrated spin systems, the coset G/H = Z2 ⊗ SO(3)
as an order parameter space appears in several ways. Generally
speaking, a spin lattice model has the symmetry O(N ) ⊗ Gl ,
where Gl is a discrete lattice symmetry. If N = 3, one has
two possibilities. Firstly, a spin ordering is nonplanar, so the
full symmetry of spin rotations and inversion O(3) is broken.
Secondly, a spin ordering is planar, and an inversion symmetry
(of a spin space) remains unbroken, butZ2 subgroup of a lattice
group is also broken. The second case is often accompanied
by the “order from disorder” phenomenon.

A few models of frustrated spin system with the Z2 ⊗
SO(3) order parameter space have been considered in works
[47–52]. In the work [47], the J1 − J3 model on a square
lattice has been considered. (The expression J1 − J3 means
that we deal with a model of antiferromagnet with competing
interaction between nearest spins and spins of the third
range order.) The authors have found a second order phase
transition with exponents of the Ising model. In this work,
we also consider this model and find a first-order transition
that is discussed below. A second order transition has also
been found in a special case of the J1 − J3 model on a
triangular lattice [51]. But the rest of the works have shown

the first order of a transition in the J1 − J2 model on a
kagome lattice [48], and J1 − J3 model on a triangular lattice
[49,50]. Also, a first-order transition has been found in the
J1 − J2 model on a honeycomb lattice [52] belonging to the
similar (in a structure of the order parameter space) symmetry
class Z3 ⊗ SO(3) with the same spectrum of topological
defects.

Beside the J1 − J3 model on a square lattice, we consider
numerically two matrix models on a square lattice which
directly realize the Z2 ⊗ SO(3) and SO(3) order parameter
spaces. To reveal an interaction between vortices and domain
walls, the SO(3) case is also considered and compared with
the Z2 ⊗ SO(3) case.

II. MODELS AND METHOD

A nonplanar spin ordering is described by three orthog-
onal N -component vectors. Generally, a set of orientations
of P orthogonal vector in N dimensions is the Stiefel
manifold [53]

VN,P = O(N )

O(N − P )
, (1)

with the special cases

V1,1 = Z2, VN,1 = SN−1, (2)

VN,N−1 = SO(N ), VN,N = Z2 ⊗ SO(N ). (3)

We are interested in the cases N = 3 and P = 2, 3. The order
parameter is a 3 × P matrix composed of P orthogonal three
vectors

�(V3,2) = (S,k), �(V3,3) = (S,k,t). (4)

The discrete form of the σ model is [54]

H = −J
∑
x,μ

tr �T
x �x+eμ

, μ = 1, 2, (5)

where eμ is a unit vector of a square lattice, J > 0. In a general
case, the Hamiltonian is invariant under the group O(N ) ⊗
O(P ), where L and R mean the left and right action of a
rotation matrix on the order parameter �. When a ground state
configuration is chosen, the symmetry is broken to the O(N −
P )L ⊗ O(P )D subgroup with O(P )D acting simultaneously
both right and left (diagonal subgroup). Thus, one see that
the order parameter space is (1). In particular, the V3,3 Stiefel
model is equivalent to the O(3)L ⊗ O(3)R (principal) chiral
model.

In simulations we use the following definitions of the order
parameter

m =
∑

x

Sx, m̄ =
√

〈m2〉, (6)

k =
∑

x

kx, k̄ =
√

〈k2〉 (7)

for the SO(3) sector.

σ =
∑

x

σx =
∑

x

det �x, σ̄ =
√

〈|σ |〉 (8)
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for the Z2 sector of the V3,3 model. We monitor the first,
second, and fourth moments of the order parameters p =
m, k, σ and internal energy density E, to have information
on the specific heat C, susceptibilities χp, and higher order
cumulants, e.g. the Binder’s cumulant.

We also compute the helicity modulus, because at low
temperatures its size dependence is the most convincing
evidence for the validity of the σ -model prediction.

ϒμ,a = 1

L2

〈∑
x

[
Sb

x · Sb
x+eμ

+ Sc
x · Sc

x+eμ

]〉

− 1

T L2

〈(∑
x

[
Sb

x · Sc
x+eμ

− Sc
x · Sb

x+eμ

])2〉
, (9)

ϒμ = 1

3

∑
a

ϒμ,a, (10)

where L is a lattice size. Note that at zero temperature ϒμ,1 = 0
and ϒμ,2 = ϒμ,3 = 1.

The definition of Z2 vortices is following. It is known
that the group SO(3) is not simply connected, and its
(double) covering group is SU (2). So, an element � of SO(3)
corresponds to two elements of SU (2), namely U and −U .
Consider a changing of the order parameter along a closed
contour C

�xx′ = �−1
x �x′ . (11)

�C =
(

n∏
i=1

�xixi+1

)
�xnx1 = 1. (12)

Using the homomorphism f : SO(3) → SU (2), we define
Vxx′ ≡ f (�xx′) = f (�−1

x �x′) = f (�−1
x )f (�x′ ) = U−1

x Ux′ .
In particular, VC = ±1. A unitary matrix V (�) can be
constructed using the parametrization of an orthogonal matrix
� by Euler angles ϕ, θ, ψ , and then

V = e
i
2 ϕσ3e

i
2 θσ1e

i
2 ψσ3 . (13)

Therefore the vorticity inside a primitive cell is

vx = 1

2

(
1 − 1

2
Tr

∏
�

V

)
. (14)

The density (concentration) of vortices is

ρv = 1

L2

∑
x

vx. (15)

Note that the order parameter � of the V3,2 model can be easily
extended to a 3 × 3 matrix by adding the vector t = S × k. The
density of domain walls is defined simpler

wx,μ = 1

2
(1 − σxσx+eμ

), ρw = 1

2L2

∑
x,μ

wx,μ. (16)

For the density of topological defects, we also calculate the
analog of a susceptibility, called the topological susceptibility

χtd = L2(〈ρ2
td

〉 − 〈ρtd〉2), (17)

where the subscript “td” means topological defects—vortices
and domain walls. It is expected that this quantity has a
singularity at a critical point.

To study the models, we use extensive Monte Carlo
simulations based on the over-relaxed algorithm [55,56]. To
define the order of a transition, we use the histogram analysis
method. Thermalization is performed within 3 × 105 Monte
Carlo steps per spin, and calculation of averages, within
3.3 × 106 steps. We use periodic boundary conditions and
consider lattices with sizes 15 � L � 120.

III. V3,2 AND V3,3 STIEFEL MODELS

A. Low-temperature behavior

As we have announced above, the finite-size scaling
dependence of the helicity modulus al low temperatures may
be compared with the prediction of the σ model RG calculation
[57]

ϒ(L)

T
∼ 1

4Pπ
ln

(
ξ

L

)
, (18)

where the factor P appears due to us calculating the helicity
modulus only for the vector S without the vectors k and t. In
contrast to the O(2) model, where the helicity modulus remains
nonzero at all temperatures below a BKT transition and has
imperceptible finite-size scaling corrections, we find that this
quantity tends to zero with lattice size increasing (Fig. 1). This
indicates the absence of a quasi-long-range order in the SO(3)
parameter. The helicity modulus dependence on a size ϒ(L)
is in good agreement with formula (18) for the V3,2 model as
well as for the V3,3 model (Figs. 2 and 3).

In other words, these models have very similar low-
temperature behavior, in that the behavior is the same as in
the O(4) model, where there are no vortices or domain walls.

The σ -model behavior of the helicity modulus is observed
in a wide range of temperature (Fig. 3). But close to the
temperature of the transition or crossover, a character of
thermal and lattice dependence of ϒ drastically changes.

B. Crossover in the V3,2 Stiefel model

The crossover induced by Z2 vortices manifests as features
of the thermal dependence of thermodynamic quantities. We
have discussed the changes in the behavior of ϒ , which implies
a change in the thermal dependence of the correlation length
ξ , according to the formula (18). Similar features are observed
for other quantities at the same value of temperature

T

J
= 0.39(1). (19)

The specific heat and topological susceptibility have a peak
at the crossover temperature (see Fig. 4). This peak is not
evidence of a singularity. We expect that values of these
quantities remain finite in the thermodynamical limit L → ∞.

In fact, peaks (or very weak singularities) of these quantities
exclude the possibility that this crossover is a BKT transition,
since such features are not observed upon a genuine BKT
transition. Another difference consists of a fact that below the
crossover temperature the density of vortices and susceptibility
decrease much slower than that observed for the O(2) model.
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FIG. 1. Thermal dependence of the helicity modulus in the V3,2

and V3,3 Stiefel models

In other words, the process of association in the pair for Z2

vortices is much less noticeable than in the case of ordinary
vortices.

As an analogy, this crossover is reminiscent of a crossover in
a supercritical fluid in a liquid-gas phase diagram. Within this
analogy, the density of vortices serves as an order parameter.

C. First-order transition in the V3,3 Stiefel model

In contrast to the V3,2 model, the V3,3 model has the
additional discrete symmetry. No-go theorems forbidding a
spontaneously breaking of a global discrete symmetry in two
dimensions do not exist. Really, we observe the long-range
order in the parameter σ below the transition temperature,
σ̄ �= 0, while the SO(3) order parameters vanish m̄ = k̄ = 0
(in the limit L → ∞) at any nonzero temperature (Fig. 5).

At temperature

Tc

J
= 0.3201(5), (20)

the phase transition occurs. Our data favor the first order of
the transition. The specific heat (Fig. 5) has a singularity
stronger than it is expected upon a second order Ising transition
( α

ν
≈ 2 instead of α

ν
= 0). This observation applies also to

the topological (domain walls) susceptibility (Fig. 6). We

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
-1

0

1

2

3

4

ln L

/J

T/J=0.15
T/J=0.20
T/J=0.25
T/J=0.30
T/J=0.35
T/J=0.38

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-1

0

1

2

3

4

5

6

lnL

/J

T/J=0.1
T/J=0.15
T/J=0.2
T/J=0.25
T/J=0.3
T/J=0.32
T/J=0.33

FIG. 2. Lattice size dependence of the helicity modulus in the
V3,2 and V3,3 models.
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FIG. 3. Comparison of the lattice size dependence of the helicity
modulus in the V3,2 and V3,3 models with the σ -model result. The
gray line marks the value 1

4π
.
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FIG. 4. Thermal dependence of the specific heat, topological
density, and susceptibility in the V3,2 Stiefel model.

remind that in the pure Ising model on a square lattice, the
internal energy density relates to the domain walls density
as E = −2 + 4〈ρw〉, so the specific heat and topological
susceptibility have the same (logarithmical) singularity C ∼
χw ∼ ln(T − Tc), but Fig. 6 shows a more singular behavior.

The most important criterion for determining the first-order
transition is a jump of the order parameter and internal energy
at the critical temperature. In Fig. 7, we see a double-peak
structure of distributions for the energy and walls density.
Such a structure is typical for a discontinuous transition.

The valuable observation for us is that the transition in the
Z2 order parameter is crucial for the SO(3) sector of the model.
Instead of the V3,2 crossover, the V3,3 transition is a point where
quantities in the SO(3) sector change the thermal behavior
from the σ -model behavior to the high-temperature one. In
particular, this point corresponds to a jump of the vortices
density and to a singularity of the topological susceptibility
(Fig. 8).

An inverse influence is also evident. In the absence of the
SO(3) sector, we would see the critical behavior of the Ising
model universality class. So, if the order of the transition is
the first, it is induced by fluctuations and topological defects
of this sector.
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FIG. 5. Thermal dependence of the order parameters and specific
heat in the V3,3 Stiefel model.

IV. J1 − J3 MODEL

The J1 − J3 model on a square lattice belongs to the same
symmetry class as the V3,3 Stiefel model. It is described by the
Hamiltonian

H =
∑
x,μ

(
J1SxSx+eμ

+ J3SxSx+2eμ

)
, (21)

with J1, J3 > 0. When the coupling constants J1 and J3 relate
as J3 < J1/4, the ground state is conventional Néel order with
magnetic wave vector Q = (π,π ). For J3 > J1/4, the ground
state has the planar incommensurate helical order with a wave
vector Q = (q,q), where cos q = J1/4J3.

This model has been intensively studied in the quantum
case near the Lifshitz point J3 = J1/4 in the context of the in-
vestigation of a quantum spin-liquid state [47]. In the classical
case, the model is also interesting. So, at nonzero temperatures
and below the transition point, the model describes a phase
with a chiral long-range order without a magnetic long-range
or quasi-long-range orders. Such a phase is a classical spin
liquid. (See Refs. [58,59] for a review.)

The model has been considered in three dimensions [60–62]
as well as in two dimensions for the N = 2 case [46]. In all
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FIG. 6. Thermal dependence of the density of domain walls and
susceptibility in the V3,3 Stiefel and J1 − J3 model.

these works, a single first-order transition is found. However,
in the work of Ref. [47], a second order Ising transition is
observed for the two-dimensional N = 3 case, but our data
favor the first order of a transition.

As a model of helimagnets, the J1 − J3 model has a
specificity affecting Monte Carlo simulations. At first, we
deal with an incommensurate structure. Even if one chooses
a helix pitch commensurate with a lattice size at the ground
state, thermal effect increases a pitch, and a helix becomes
incommensurate. Thus one has troubles in choosing a periodic
boundary condition, and special algorithms should be used
(see, e.g. Ref. [63]). Secondly, a direct calculation of the
helicity modulus becomes problematic (a reason that has been
discussed in Refs. [46,64]). These difficulties are especially
evident near the Lifshitz point, where a helix vector is large,
but they can be partly ignored in a strongly frustrated case
J3 � J1/2. So, we consider the case J3 = J1/2.

In contrast to the simple model of helimagnet [64], the
J1 − J3 model has two chiral order parameters

kx,μ = Sx × Sx+eμ

sin q0
, (22)
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L=36,
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p( w)

w

FIG. 7. Energy and walls density distributions close to the
transition point in the V3,3 model.

where q0 is a helix vector length at zero temperature (q0 = 2π
3

when J3 = J1/2). One can return to notations of the V3,3 model

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tc

L=24
L=36
L=48
L=60
L=90
L=120

v

v

v

v

T/J

FIG. 8. Thermal properties of Z2 vortices in the V3,3 model.
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FIG. 9. Thermal properties of Z2 vortices in the J1 − J3 model.

if one chooses

k = k1, σ = sign(k1 · k2). (23)
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FIG. 10. Energy and vortices density distributions close to the
transition point in the J1 − J3 model.

TABLE I. Estimation of pseudoexponents in the finite-size
scaling (FSS).

ν β γ

Ising model 1 0.125 1.75
This work 0.72(5) 0.07(1) 1.38(10)
I order FSS 0.5 0 1

We find the first-order transition at temperature

Tc

J
= 0.305(2). (24)

In order to determine an order of the transition, we use the same
criteria as in the case of the V3,3 model. In Fig. 6 the singularity
of the topological (domain walls) susceptibility is shown, and
it is clearly stronger than logarithmic. Figure 9 demonstrates
a singular behavior of Z2 vortices at the transition point.
Jumps of the internal energy, order parameters and densities
of topological defects are also observed. These results are
partially shown in Fig. 10.

We also explore the possibility that the transition of a
weak first-order (close to a second-order), and a pseudoscaling
behavior may be observed. Our estimation of critical exponents
indicates those distinct from the universality class of the
Ising model. In particular, using the scaling relation α =
2 − 2β − γ , we obtain that the singularity of the specific heat
and domain walls susceptibly corresponds to the exponent
α
ν

≈ 0.67 (Table I).

V. DISCUSSION

We have considered the two spin systems, where the order
parameter space is Z2 ⊗ SO(3), and have found first-order
transitions. It is important that we observe at the transition
point a jump of density of topological defects (both domain
walls and Z2 vortices). Such a jump absents at an Ising and
BKT transition.

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
v (V3,2)

v (V3,3)

w (V3,3)

T/J

FIG. 11. Density of topological defects (walls and vortices) in the
V3,2 model with rescaled temperature and the V3,3 model for L = 120.
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FIG. 12. Shot of a simulation of the V3,3 model at T/J = 0.3.

Comparing the model V3,2 (without domain walls) with the
V3,3 model, we see the following picture (see Fig. 11). At low
temperatures, when appearing of domain walls is suppressed,
these models demonstrate the identical behavior of the vortices
density. With temperature increasing, the crossover occurs
in the V3,2 model, and then the vortices density increases
visibly. In the V3,3 model, before the crossover occurs, domain

walls start to appear in appreciable amounts. So then, a sharp
increase of the walls and vortices densities is observed, and
the first-order transition occurs.

The fact that the presence of Z2 vortices contributes to the
domain walls density increasing, and vice versa the appearance
of walls induces the vortices creation, we observe directly
during the simulation process. Figure 12 is the shot of a
lattice fragment at T/J = 0.3. It shows that domain walls
and vortices are associated with each other.

The influence of Z2 vortices on the Z2 sector of the V3,3

model leads to a change in the type of the critical behavior.
In other words, the first order of the transition is induced by
topological defects.

In the work of Ref. [48], it has been discussed that the
presence of Z2 vortices may not lead to a first-order transition,
if at the critical region vortices turn out heavier than walls
(and their density is negligible), and the transition is driven
by only domain walls, similar to the pure Ising model. We
cannot exclude such a possibility, i.e., we do not exclude that
a transition in a system with the Z2 ⊗ SO(3) order parameter
space is of a second order phase transition from the Ising model
universality class.
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