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We introduce a cluster extension of multipole moments to discuss the anomalous Hall effect (AHE) in both
ferromagnetic (FM) and antiferromagnetic (AFM) states in a unified framework. We first derive general symmetry
requirements for the AHE in the presence or absence of the spin-orbit coupling by considering the symmetry of the
Berry curvature in k space. The cluster multipole (CMP) moments are then defined to quantify the macroscopic
magnetization in noncollinear AFM states as a natural generalization of the magnetization in FM states. We iden-
tify the macroscopic CMP order which induces the AHE. The theoretical framework is applied to the noncollinear
AFM states of Mn3Ir, for which an AHE was predicted in a first-principles calculation, and Mn3Z (Z=Sn, Ge),
for which a large AHE was recently discovered experimentally. We further compare the AHE in Mn3Z and bcc
Fe in terms of the CMP. We show that the AHE in Mn3Z is characterized by the magnetization of a cluster
octupole moment in the same manner as that in bcc Fe characterized by the magnetization of the dipole moment.
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I. INTRODUCTION

The modern formalism of the intrinsic anomalous Hall con-
ductivity (AHC) provides profound insight into the anomalous
Hall effect (AHE) being closely related to the topology of
one-electron energy bands [1–3]. The AHE is usually observed
in ferromagnetic (FM) metals, but the AHE has been studied
also for certain noncollinear antiferromagnetic (AFM) states
[1,4–13]. In particular, a large AHC was recently discovered
for the AFM states in Mn3Z (Z = Sn, Ge), whose magnetic
geometry has no uniform magnetization [14–16]. The topo-
logical feature of these AFM states has also been investigated
based on the first-principles calculations [12,13,17].

The AHE requires not only the broken time-reversal sym-
metry but also a certain type of magnetic structure [18,19]. Fur-
thermore, the situation changes depending on the presence or
absence of the spin-orbit (SO) coupling. For instance, the AHE
requires the SO coupling in collinear FM states, characterized
by uniform magnetization. The crucial role of the SO coupling
for the AHE in the FM states has been discussed since its
pioneering study [20]. On the other hand, in AFM systems, two
types of AHE have been investigated. One is the AHE in non-
coplanar spin configurations where the AHE can be induced
even without the SO coupling. The AHE is characterized by the
scalar spin chirality [21] and studied intensively in the context
of the topological Hall effect [6,22]. The other is the AHE in
coplanar spin systems such as Mn3Sn [12,13,23]. In this case, it
is not well understood whether there is a macroscopic quantity
that characterizes the AHE such as the uniform magnetization
or scalar spin chirality. Moreover, there is no clear explanation
for what types of AFM structures induce the AHE.

The purpose of this paper is to provide comprehensive
understanding of the AHE in relation to the magnetic structure.
We propose an order parameter, which we call the cluster
multipole (CMP) moment, to measure the symmetry breaking
of commensurate noncollinear magnetic order. This systemat-
ically explains what types of AFM structures induce the AHE
and whether the AHE requires the SO coupling in that AFM
state.

The structure of this paper is as follows. In Sec. II, we derive
a symmetry condition for finite AHC in generic noncollinear
magnetic systems by considering the symmetry of the Berry
curvature in k space. We show that the AHE is forbidden to
emerge by some symmetry elements of the magnetic space
group, whose operations preserve the magnetic structure. The
derivation also leads to comprehensive understanding of the
requirement of the SO coupling for the AHE. In Sec. III,
we introduce CMP moments as order parameters defined for
a cluster of atoms, which is a natural generalization of the
local magnetic moments for atoms. The CMP characterizes
the noncollinear AFM structure as analogous to the atomic
magnetic multipole moments characterizing the local magnetic
distribution [24–29]. We show that the AHE of Mn3Ir and
Mn3Z is associated with the cluster octupole moments which
belong to the same symmetry as the magnetic dipole moments.
In Sec. IV, we calculate the electronic structure, Berry
curvature, and AHC for the AFM states of Mn3Z from first
principles. As a reference, we also calculate those properties
for the FM state of bcc Fe, which has been well investigated in
earlier works [30–32]. We show that the AHE of the FM and
AFM states can be discussed in the same framework in terms
of the CMP. Finally, a summary of the results is given in Sec. V.

II. SYMMETRY ASPECT OF ANOMALOUS HALL EFFECT

A. Symmetry of the Berry curvature in k space

The intrinsic AHC is expressed as the Berry curvature
integrated over the Brillouin zone (BZ) of one-electron bands
below the Fermi level [33,34]:

σαβ = −e2

h̄

∫
dk

(2π )3

∑
n

f [εn(k) − μ]�n,αβ(k), (1)

where n is the band index and α, β = x, y, z, with α �= β. The
Berry curvature for the AHC is defined as

�n,αβ (k) = −2Im
∑
m�=n

vnm,α(k)vmn,β(k)

[εm(k) − εn(k)]2
(2)
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TABLE I. Constraint on the Berry curvature in k space for some representative symmetries. Here, x, y, z express the Cartesian coordinates.
Cnμ indicates the n-fold rotation operator along the μ axis, P is the spatial inversion operator, and T is the time-reversal operator. The mirror
operation whose mirror plane is normal to the μ axis corresponds to PC2μ.

Unitary operators Antiunitary operators

C2z �x(−kx,−ky,kz) = −�x(kx,ky,kz) T C2z �x(kx,ky,−kz) = �x(kx,ky,kz)
�y(−kx,−ky,kz) = −�y(kx,ky,kz) �y(kx,ky,−kz) = �y(kx,ky,kz)
�z(−kx,−ky,kz) = �z(kx,ky,kz) �z(kx,ky,−kz) = −�z(kx,ky,kz)

PC2z �x(kx,ky,−kz) = −�x(kx,ky,kz) T PC2z �x(−kx,−ky,kz) = �x(kx,ky,kz)
�y(kx,ky,−kz) = −�y(kx,ky,kz) �y(−kx,−ky,kz) = �y(kx,ky,kz)
�z(kx,ky,−kz) = �z(kx,ky,kz) �z(−kx,−ky,kz) = −�z(kx,ky,kz)

C2[11̄0] �x(−ky,−kx,−kz) = −�y(kx,ky,kz) T C2[11̄0] �x(ky,kx,kz) = �y(kx,ky,kz)
�y(−ky,−kx,−kz) = −�x(kx,ky,kz) �y(ky,kx,kz) = �x(kx,ky,kz)
�z(−ky,−kx,−kz) = −�z(kx,ky,kz) �z(ky,kx,−kz) = �z(kx,ky,kz)

PC2[11̄0] �x(ky,kx,kz) = −�y(kx,ky,kz) T PC2[11̄0] �x(−ky,−kx,−kz) = �y(kx,ky,kz)
�y(ky,kx,kz) = −�x(kx,ky,kz) �y(−ky,−kx,−kz) = �x(kx,ky,kz)
�z(ky,kx,kz) = −�z(kx,ky,kz) �z(−ky,−kx,−kz) = �z(kx,ky,kz)

C3[111] �x(kz,kx,ky) = �y(kx,ky,kz) T C3[111] �x(−kz,−kx,−ky) = −�y(kx,ky,kz)
�y(kz,kx,ky) = �z(kx,ky,kz) �y(−kz,−kx,−ky) = −�z(kx,ky,kz)
�z(kz,kx,ky) = �x(kx,ky,kz) �z(−kz,−kx,−ky) = −�x(kx,ky,kz)

PC3[111] �x(−kz,−kx,−ky) = �y(kx,ky,kz) T PC3[111] �x(kz,kx,ky) = −�y(kx,ky,kz)
�y(−kz,−kx,−ky) = �z(kx,ky,kz) �y(kz,kx,ky) = −�z(kx,ky,kz)
�z(−kz,−kx,−ky) = �x(kx,ky,kz) �z(kz,kx,ky) = −�x(kx,ky,kz)

from the Kubo formula [30,35]. In these equations, εn(k) is
the eigenvalue, and

vnm,α(k) = 1

h̄

〈
un(k)

∣∣∣∣∣∂Ĥ (k)

∂kα

∣∣∣∣∣um(k)

〉
, (3)

where unk is the periodic-cell part of the Bloch states and
Ĥ (k) = e−ik·rĤ eik·r . For the convenience of our discussions,
we hereafter use the vector-form notations for the AHC
and Berry curvature, i.e., σ = (σx,σ y,σ z) ≡ (σyz,σzx,σxy) and
�n = (�x

n,�
y
n,�

z
n) ≡ (�n,yz,�n,zx,�n,xy).

From Eq. (1), the appearance of the AHC σα is governed
by the Berry curvature in k space �α(k). Thus, let us first
discuss the symmetry of the Berry curvature in k space. The
group velocity is expressed with the Berry phase correction as
follows [36,37]:

ṙ = 1

h̄

∂εn(k)

∂k
− k̇ × �n(k) . (4)

The transformation property of the Berry curvature with
respect to the symmetry elements of magnetic space groups
can be derived from this equation since the properties of
εn(k), ṙ, k, and k̇ are known. First, the Berry curvature is
not modified by any translation operations. Second, it is
transformed in the same way as ordinary vectors for rotation
operations in k space. Third, the space inversion brings �n(k)
to �n(−k). Thus, the Berry curvature �n(k) behaves as an
axial vector in k space. Finally, the time-reversal operation
transforms �n(k) to −�n(−k).

These transformation properties of the Berry curvature
define constraints on its structure in k space. The well-known
relations are �n(−k) = �n(k) for systems with the space-
inversion symmetry and �n(−k) = −�n(k) for systems with
the time-reversal symmetry. Some of other relations are listed
in Table I. These relations define further constraints on the
Berry curvature at some k points, related to the elements of

the group of k. A simple example is that the Berry curvature
is zero all over the BZ under both the space-inversion and
time-reversal symmetries since the successive transformation
of these operations results in �n(k) = −�n(k), leading to
�n(k) = 0. Another example is the magnetic systems which
have T C2z symmetry. In this case, �z(k) = 0 on the kz = 0
plane since �z(kx,ky,0) = −�z(kx,ky,0).

B. Symmetry condition of finite AHC

From Eq. (1), the symmetry of the Berry curvature in k
space, discussed in the previous section, determines whether
σα can be finite or not in a magnetic system. Since the Berry
curvature is not affected by any translation symmetries, it is
enough to take only the magnetic point group into account. If
the Berry curvature satisfies the condition �α(Rk) = −�α(k)
due to a magnetic symmetry, the corresponding AHC compo-
nent σα must be zero since the Berry curvature at k and Rk are
canceled out by the BZ integration [see Fig. 1(a)]. In this case,
�α(k) is zero when R is an element of the group of k, i.e., Rk =
k. Similarly, when a magnetic system has an n-fold rotation

FIG. 1. Transformation of the Berry curvature under the sym-
metry operators. (a) Operators which reverse the sign of the Berry
curvature and (b) the threefold rotation along the z axis.
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TABLE II. Complete list of symmetry operators and AHC components forbidden from being finite. The translation part of the operators,
which does not affect the results, is not shown. All the superscripts of the AHC are explicitly written such as σ 	

ij ≡ σ 	 = σij (i,j,	 = x,y,z).
Cn(ij ) indicate the n-fold rotation operators whose rotation axes are in the (ij ) plane; Cnμ are the n-fold rotation operators along the μ axis. The
mirror operator with the mirror plane normal to the μ axis is PC2μ. The operator C−1

nμ belongs to the same category as that of Cnμ in the list.
The integer in parentheses shows the number of Oh (D6h) magnetic-point-group elements.

AHC component Unitary Antiunitary

Cubic
σ k

ij Cn(ij ), PCn(ij ) (n = 2,4) (16) T Cnk, T PCnk (n = 0,2,4) (16)
σ [111] C2[11̄0], C2[011̄], C2[1̄01], T Cn[111], T PCn[111] (n = 0,3) (6)

PC2[11̄0], PC2[011̄], PC2[1̄01] (6)

Hexagonal
σ z

xy C2(xy), PC2(xy) (12) T Cnz, T PCnz (n = 0,2,3,6) (12)
σ x

yz Cnz, PCnz (n = 2,3,6) T Cnz, T PCnz (n = 0,3,6)
C2y, PC2y (12) T C2x , T PC2x (12)

σ y
zx Cnz, PCnz (n = 2,3,6) T Cnz, T PCnz (n = 0,3,6)

C2x, PC2x (12) T C2y,T PC2y (12)

symmetry, the Berry curvature is canceled out by the BZ
integration in Eq. (1) [Fig. 1(b)]. The components of σ normal
to the n-fold axis thus disappear. For example, σx and σy are
zero when the system has a rotation symmetry with respect to
the z axis. We provide a complete list of the relations between
the symmetry operators and the forbidden components of the
AHC in Table II. The AHC component can be finite when
the magnetic order breaks all of the corresponding symmetries
listed in Table II. Structures of the AHC tensors under all
the magnetic-point-group symmetries have been listed in
Refs. [18,19] by considering the transformation coefficients for
the operators of magnetic point groups. Table II is equivalent
to the lists in these previous works. Note that the symmetry
operators in Table II also forbid finite magnetization Mα . This
is because Mα and σα have the same transformation property
for the magnetic symmetry operations, which is a natural
consequence of the same transformation property of the Berry
curvature and that of the magnetic moment in k space with
respect to the operators of the magnetic space group.

C. SO coupling and AHC

The effect of SO coupling on the AHE has been one of the
fundamental issues since the pioneering work by Karplus and
Luttinger [20]. Here, we provide a comprehensive explanation
of the relation between SO coupling and the AHE in general
magnetic states. First, let us note that the symmetry group for
a nonmagnetic system without SO coupling is expressed as
Mnmag,nso = Mpara × SU (2), where Mpara = G × {E,T },G
is the ordinary space group of the crystal structure, and E is
the identity element of the space group. Magnetic order breaks
bothMpara and SU (2). However, in general, the symmetry of a
magnetic system without SO coupling is higher than that with
SO coupling for the following reason. The symmetry group of
a magnetic system without SO coupling, Mmag,nso, belongs to
a subgroup of Mnmag,nso, and that with SO coupling, Mmag,so,
belongs to a subgroup of Mpara because SO coupling breaks
all of the symmetries related to SU (2). Therefore, Mmag,so

is a subgroup of Mmag,nso. As discussed in Sec. II A, the
transformation property of the Berry curvature with respect
to magnetic symmetry operations is similar to that of spin in k

space; that is, it is transformed as an axial vector and reversed
by T . Meanwhile, the spin rotation Rs(θS,φS) does not affect
the Berry curvature in the absence of SO coupling. As a result,
the magnetic symmetries listed in Table II preserved by further
multiplying the spin rotations also forbid the corresponding σα

to be finite in magnetic systems without SO coupling.
An ordinary collinear FM system is the most fundamental

example in which SO coupling is required to induce the AHE.
The FM systems without SO coupling always preserve the
time-reversal symmetry with the spin rotations RS(θS,φS). The
RST symmetry preserved in the system without SO coupling
was referred to as “effective T symmetry” in Ref. [31].
Coplanar AFM spin configurations also require SO coupling
to induce the AHE due to the RST symmetry preserved in the
absence of SO coupling since T works as the 180◦ spin rotation
around the axis normal to the coplanar plane [Fig. 2(a)]. If
the spin moments rise up from the coplanar plane, the spin
configuration after operating T cannot be brought back with
the spin rotation RS due to the spin components normal to the
coplanar plane [Fig. 2(b)]. In this case, the noncoplanar spin

FIG. 2. Time-reversal operation and global spin rotation for (a) a
coplanar spin configuration and (b) a noncoplanar spin configuration
in the triangular system.
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system breaks the RST symmetry as well as T symmetry, and
the AHC therefore can be finite without SO coupling. This
idea also explains why scalar spin chirality can induce the
AHE [6] since finite scalar spin chirality always breaks the
RST symmetry.

Mn3Ir, Mn3Sn, and Mn3Ge undergo coplanar magnetic
order and require SO coupling to induce the AHE from the
above discussions. Indeed, the first-principles calculation for
Mn3Ir confirmed that a finite spin component normal to the
coplanar plane is required for finite AHC in the absence of SO
coupling [12].

III. CLUSTER MULTIPOLE MOMENTS IN AFM STATES

A. Definition of CMP

As discussed in Sec. II B, magnetic structures induce
finite AHC σα in the same symmetry condition for finite
magnetization Mα in the presence of SO coupling. This means
that magnetic systems having net magnetization always belong
to the symmetry which can induce the AHE with SO coupling.
On the other hand, finite magnetization is not necessary to
induce the AHE in AFM states. The question is then, is
there a macroscopic order parameter which characterizes the
AHE? To identify such an order parameter in generic magnetic
states, we here introduce the cluster multipole (CMP). With the
framework based on the CMP, we can quantify the symmetry
breaking due to commensurate noncollinear magnetic order.
Below, we provide a general theory of the CMP. A concrete
example is provided in Sec. III C for Mn3Ir and Mn3Z.

We first identify atom clusters for which we define the CMP
moments. In general, a crystal contains a number of atoms
which are inequivalent under the crystal symmetry. Each atom
cluster is defined as a set of atoms related to one another by
the crystal symmetry operators without space translation in the
magnetic unit cell. For simplicity, we here consider only the
case of the magnetic order characterized by the wave vector
q = 0, whose magnetic unit cell is the same as that of the
crystal unit cell [38]. A space group G, which describes the
symmetry of a crystal structure, is decomposed into the cosets
of the maximum symmorphic subgroup H as

G =
Ncoset∑
i=1

{Ri |τ i}H, (5)

where Ncoset is the number of the cosets and Ri and τ i represent
the point-group element and translation operator of the element
in space group G, respectively, with {R1|τ 1} ≡ {E|0} and
τ i �= 0 for i � 2. In Eq. (5), Ncoset = 1 for crystal structures
which belong to symmorphic space groups, and Ncoset > 1
for crystal structures which belong to nonsymmorphic space
groups. Therefore, nonsymmorphic crystal structures contain
multiple clusters related to one another by the symmetry
operators {Ri |τ i} in the unit cell. The origin of the cluster
is naturally defined as the point which satisfies all the point
symmetries for which the cluster is defined.

Analogous to the local multipole moments defined for an
atom [24,25,27], the rank-p CMP moment for the μth cluster

is defined here as follows:

M (μ)
pq ≡

√
4π

2p + 1

N
(μ)
atom∑

i=1

mi · ∇i(|Ri |pYpq(θi,φi)
∗), (6)

where N
(μ)
atom is the number of atoms of the μth cluster, mi is a

magnetic moment on the ith atom, ∇i ≡ ∂
∂ Ri

, Ri ≡ (Xi,Yi,Zi)
is the position of the ith atom, Ypq are the spherical harmonics,
and Ri, θi , and φi are the distance, polar angle, and azimuthal
angle, respectively, of the ith atom. Based on the Wannier bases
{wi,a}, the magnetic moment of the ith atom is calculated as
follows:

mi = μB

∑
n

∑
ab

∫
dk

(2π )3
f [εn(k) − μ]

×〈un(k)|wi,a〉〈wi,a|(� + 2s)|wi,b〉〈wi,b|un(k)〉, (7)

where μB = −|e|h̄/2m is the Bohr magneton and � and s
are the orbital and spin angular momentum operators. The
macroscopic contribution of the CMP moment can be defined
by the summation over the clusters in the magnetic unit cell:

Mpq = Nu
atom

N c
atom

1

V

Ncluster∑
μ=1

M (μ)
pq , (8)

where V is the volume of the magnetic unit cell, Nu
atom is the

number of atoms in the magnetic unit cell, N c
atom = ∑

μ N
(μ)
atom

is the total number of atoms in all of the clusters, and Ncluster

is the number of clusters in the unit cell, which is the same as
multiplying Ncoset by the number of atoms inequivalent under
the space-group symmetry.

B. Symmetry classification of CMP moments

The local multipole moments for f -electron systems are
classified according to the irreducible representations (IREPs)
of the point-group symmetry of the atomic site [24,26,27,39–
42]. Similarly, the CMP moments can be classified according
to the point-group symmetry of the atomic configuration.
For a crystal structure whose conventional crystal axes are
orthogonal, the CMP moments are classified according to the
IREPs of the Oh point group in Table III. For a crystal structure
with hexagonal conventional axes such as the hexagonal
and trigonal lattice systems, the CMP moments classified
according to the D6h IREPs should be used to reflect the point-
group symmetry. In Table IV, we provide a list of the D6h CMP
moments. These CMP moments are all odd with respect to the
time-reversal operator T . If the magnetic structure preserves
the inversion symmetry, only odd-rank CMP moments can be
finite due to the relation Mpq = (−)p+1Mpq in Eq. (6). Figure 3
shows noncollinear magnetic structures characterized by the
lowest-rank cluster octupole moments for the D6h IREPs.

Ordinary magnetization Mα (α = x,y,z) corresponds to the
macroscopic contribution of the cluster dipole moment Jα .
Meanwhile, magnetization of noncollinear AFM states without
net dipole magnetization is characterized by the macroscopic
contribution of CMP moments with ranks higher than 1. From
the discussion in Sec. II B, σα,Mα , and Jα are transformed in
the same manner as the operation of the magnetic-point-group
elements, which means that they belong to the same IREPs
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TABLE III. CMP moments up to rank 3 classified according to the IREPs of the Oh point group. The quadrupole CMP moments can be
finite only for magnetic structures without space-inversion symmetry (see text). Note that this table is analogous to the magnetic multipole
moments classified according to the Oh point group, and a similar list is provided for electric multipole moments in Ref. [39].

IREP CMP

Rank 1 T1g Jx ≡ 1√
2
(−M11 + M1−1)

(dipole) Jy ≡ − i√
2
(M11 + M1−1)

Jz ≡ M10

Rank 2 Eu Q3z2−r2 ≡ M20

(quadrupole) Qx2−y2 ≡ 1√
2
(M22 + M2−2)

T2u Qyz ≡ − i√
2
(M21 + M2−1)

Qzx ≡ 1√
2
(−M21 + M2−1)

Qxy ≡ i√
2
(M22 − M2−2)

Rank 3 A2g Txyz ≡ i√
2
(M32 − M3−2)

(octupole) T1g T α
x ≡ 1

4 [
√

5(−M33 + M3−3) − √
3(−M31 + M3−1)]

T α
y ≡ i

4 [
√

5(M33 + M3−3) + √
3(M31 + M3−1)]

T α
z ≡ M30

T2g T β
x ≡ − 1

4 [
√

3(−M33 + M3−3) + √
5(−M31 + M3−1)]

T β
y ≡ i

4 [
√

3(M33 + M3−3) − √
5(M31 + M3−1)

T β
z ≡ 1√

2
(M32 + M3−2)

of the Oh and D6h point groups. The conditions for the AHE
can now be concisely described with the symmetrized CMP
moments. The AHE is induced by the emergence of the finite
magnetization of the CMP moments which belong to the same
IREP of dipole moments, i.e., T1g (A2g and/or E1g) CMP
moments in the Oh (D6h) representation. Note that, in the
absence of SO coupling, the AHE requires RsT -symmetry
breaking as well as magnetization of these CMP moments, as
discussed in Sec. II C.

TABLE IV. CMP moments up to rank 3 classified according to
the IREPs of the D6h point group. Note that this table is analogous
to the magnetic multipole moments classified according to the D6h

point group. The quadrupole CMP moments can be finite only for
magnetic structures without space-inversion symmetry (see text).

IREP CMP

Rank 1 A2g Jz ≡ M10

(dipole) E1g Jx ≡ 1√
2
(−M11 + M1−1)

Jy ≡ − i√
2
(M11 + M1−1)

Rank 2 A1u Q3z2−r2 ≡ M20

(quadrupole) E2u Qx2−y2 ≡ 1√
2
(M22 + M2−2)

Qxy ≡ i√
2
(M22 − M2−2)

E1u Qzx ≡ 1√
2
(−M21 + M2−1)

Qyz ≡ − i√
2
(M21 + M2−1)

Rank 3 A2g T α
z ≡ M30

(octupole) E1g T γ
x ≡ 1√

2
(−M31 + M3−1)

T γ
y ≡ − i√

2
(M31 + M3−1)

E2g Txyz ≡ i√
2
(M32 − M3−2)

T β
z ≡ 1√

2
(M32 + M3−2)

B2g T ζ
x ≡ 1√

2
(−M33 + M3−3)

B1g T ζ
y ≡ i√

2
(M33 + M3−3)

C. CMP moment and AHE in Mn3Ir and Mn3 Z

Let us now apply the scheme discussed above to the AFM
spin configurations observed in Mn3Ir and Mn3Z, for which
the AHE in the AFM states has been studied [12,14–16]. Mn3Ir
crystallizes into the simple cubic structure which belongs to the
space group Pm3m (O1

h , space group 221), as shown in Fig. 4.
This crystal structure leads to Ncoset = 1 in Eq. (5) since the
space group is symmorphic. Here, we focus on the Mn atoms,
which have finite magnetic moments in the AFM state. The unit
cell contains three Mn atoms (Nu

atom = 3), and we can define a
Mn cluster, which contains six Mn atoms (Nc

atom = 6) related
to each other by the operation of the symmetry elements of the
Oh point group. In Fig. 4(b), we show the AFM structures

upper plane

lower plane

E1g (Tx
γ) E1g (Ty

γ) B2g (Tx
ζ) B1g (Ty

ζ)

A2g (Tz
α) E2g (Txyz) E2g (Tz

β)

a
b

c

b

a

FIG. 3. AFM structures characterized by the cluster octupole
moments of the D6h IREPs in Table IV.
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Tx
α=Ty

α=Tz
α Tx

β=Ty
β=Tz

β

(a)

(b)

Mn

Ir

FIG. 4. (a) Crystal structure of Mn3Ir. (b) The AFM structures
characterized by the cluster octupole moments of T1g CMP with the
relation T α

x = T α
y = T α

z , which has been recognized experimentally,
and of T2g CMP with T β

x = T β
y = T β

z in the Mn cluster of Mn3Ir.

characterized by the T1g octupole moment with the order
parameter T α

x = T α
y = T α

z , which has been recognized exper-

imentally, and the T2g octupole moment with T
β
x = T

β
y = T

β
z .

Following the discussion in Sec. III B, the AFM configuration
with T1g cluster octupole moments, which belong to the same
IREP as the dipole moment, can induce the AHE, as predicted
in the earlier work using first-principles calculations [12],
while that with T2g does not. The magnetic symmetries broken
by the T1g cluster octupole moment are completely the same as
those broken by the colinear magnetic dipole order along the
[111] direction. As a result, the magnetic space group (R3m′)
for the AFM state with the T1g CMP, whose symmetry elements
are listed in Table V, is the same as that for the FM state.

Mn3Z crystallizes into the Ni3Sn-type structure, as shown
in Fig. 5(a). The hexagonal structure of Mn3Z belongs to the

TABLE V. Magnetic symmetry operators preserved in the AFM
states of Mn3Ir and Mn3Sn. In Mn3Ir, the directions of the rotation
axes are expressed with the cubic (Cartesian) axis. In Mn3Sn, the
x and y axes are shown in Fig. 5(b), and the z axis is the normal
direction of the xy plane. τ represents the translation (0,0,c/2).

Spin structure Preserved symmetries

Mn3Ir {E | 0},{C+
3[111] | 0},{C−

3[111] | 0},
T {C2[11̄0] | 0},T {C2[011̄] | 0},T {C2[1̄01] | 0}
{P | 0},{PC+

3[111] | 0},{PC−
3[111] | 0},

T {PC2[11̄0] | 0},T {PC2[011̄] | 0},T {PC2[1̄01] | 0}
Mn3Sn AFM1 {E | 0},{C2x | 0},T {C2z | τ },T {C2y | τ },

{P | 0},{PC2x | 0},T {PC2z | τ },T {PC2y | τ }
Mn3Sn AFM2 {E | 0},{C2y | τ },T {C2z | τ },T {C2x | 0},

{P | 0},{PC2y | τ },T {PC2z | τ },T {PC2x | 0}

FIG. 5. (a) Crystal structure of Mn3Z (Z = Sn, Ge) with the Mn
clusters defined by the space group (see text). (b) Spin configuration
of the Mn atoms in Mn3Sn. The AFM1 and AFM2 spin structures
are experimentally realized depending on the direction of magnetic
fields along the x and y directions, respectively [45]. The lowest-rank
CMP moments characterizing the spin configurations are also shown
for each Mn cluster.

space group P 63/mmc (D4
6h, space group 194) [43,44]. The

nonsymmorphic space group P 63/mmc is decomposed into
the cosets of the symmorphic space group P 3̄m1 (D3

3d , space
group 164) as P 63/mmc = P 3̄m1 + {C2z|τ }P 3̄m1 (D3

3d +
{C2z|τ }D3

3d ), where τ = (0,0,c/2). Following the discussion
in Sec. III, Mn3Z contains four clusters, i.e., two clusters
related to each other by the operation of {C2z|τ } for Mn and
Z atoms in the magnetic unit cell [see Fig. 5(a)]. Each cluster
has the point-group symmetry of D3d . Since the magnetic
moments in Z atoms are negligible, we here ignore the
Z-atom clusters. The macroscopic contribution of the CMP
moment is calculated from Eq. (8) with Nu

atom/N c
atom = 1/2

since the unit cell of Mn3Z contains six Mn atoms (Nu
atom =

6) and two Mn clusters consist of six Mn atoms in each
cluster (N c

atom = 12), as shown in Fig. 5(a). The D3d point
group has six IREPs, A′

1g/u, A
′
2g/u, E

′
g/u, in which the prime

distinguishes the IREPs from those of the D6h point group. The
compatibility relations between the D3d and D6h IREPs are as
follows:

A1g/u↓D3d = B2g/u↓D3d = A′
1g/u,

A2g/u↓D3d = B1g/u↓D3d = A′
2g/u,

E1g/u↓D3d = E2g/u↓D3d = E′
g/u .

These relations mean, for instance, the A1g and B2g CMP
moments belong to the same IREP, A′

1g , in the cluster with the
D3d point-group symmetry.

Next, we identify the CMP moments which characterize the
AFM states of Mn3Z. We mainly focus on the AFM states of
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Mn3Sn, whose magnetic structures have been well established
experimentally [44–46]. Mn magnetic moments in Mn3Sn
form the so-called inverse triangular spin structure below the
Néel temperature of TN1 � 420 K [44,45] [Fig. 5(b)]. Mn3Sn
undergoes another phase transition at TN2 ∼ 50 K, but the
detailed magnetic structure for the low-temperature phase is
unknown. We therefore focus on the magnetic phase above
50 K. Interestingly, the inverse triangular spin structure rotates
following the direction of applied magnetic fields in the c plane
[46]. We refer to the magnetic structures under the magnetic
fields along the x and y directions as AFM1 and AFM2, respec-
tively, as shown in Fig. 5(b). The magnetic space groups of the
AFM1 and AFM2 magnetic structures belong to Cmc′m′ and
Cm′cm′, respectively, taking the primary, secondary, and ter-
tiary directions as the x, y, and z axes. The symmetry operators
in the magnetic space group are listed in Table V. The magnetic
space groups of the AFM1 and AFM2 states are the same as
those of the FM states with the magnetic moments along the x

and y directions, respectively. Furthermore, these AFM states
require SO coupling, like FM states, to induce the AHE from
the discussion in Sec. II C on the coplanar spin configuration.

Because of the geometry of the magnetic alignments on the
Mn atoms, there is no magnetization of the dipole moment
if all the atoms have the same size of local magnetic moment
[47]. Also, since the magnetic structures preserve the inversion
symmetry, only the odd-rank CMP moments are finite. Indeed,
the CMP moments calculated for the AFM states with Eq. (6)
are finite only for odd ranks higher than 1. The lowest-rank
CMP moments characterizing the AFM spin configurations
are thus cluster octupole moments.

For the symmetry operators in the D3d point group,
the AFM1 (AFM2) magnetic configuration of Mn3Sn has
the same transformation property as the magnetic structure
characterized by T

γ
x and Txyz (T γ

y and T
β
z ) in Fig. 3. Namely,

the magnetic modulation of AFM1 (AFM2) parallel to the xy

plane is characterized by T
γ
x (T γ

y ), and the three-dimensional
configuration is characterized by Txyz (T β

z ). The magnetic
configurations in the different clusters are related to each
other by the operation of T C2z (see Table V and Fig. 5).
The operation of T C2z preserves T

γ
x (T γ

y ) and flips the sign
of Txyz (T β

z ) due to the transformation property of each IREP.
As a result, T

γ
x and Txyz (T γ

y and T
β
z ) octupole moments have

ferromagnetic and antiferromagnetic alignments, respectively,
between the neighboring clusters. Therefore, only the T

γ
x (T γ

y )
octupole moment can have macroscopic magnetization in the
AFM1 (AFM2) state.

In Fig. 6, we show how the cluster octupole moments in
Mn3Sn and Mn3Ge change as a function of the local magnetic
moment [48]. Here, we assumed that all the Mn sites always
have the same size of local magnetic moment and Mn3Ge
has the same spin configurations as those of Mn3Sn. In this
situation, we can show from Eq. (6) that the octupole moments
are proportional to the local magnetic moments. Thus, the local
moment can also quantify the symmetry breaking associated
with the AHE. The local magnetic moment, however, cannot
characterize general AFM orders when inequivalent magnetic
atoms have different sizes of local moments. On the other
hand, even in such cases, the CMP moments work as the order
parameter quantifying the symmetry breaking.

 0
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FIG. 6. Local magnetic moment dependence of the cluster oc-
tupole moments for the Mn clusters in Mn3Sn and Mn3Ge. The
parameters for the crystal structures are described in Sec. IV A. T γ

x

and Txyz (T γ
y and T β

z ) are for AFM1 (AFM2) in Fig. 5.

IV. FIRST-PRINCIPLES ANALYSIS OF ANOMALOUS
HALL EFFECT

A. Method

We performed the first-principles calculations for the
AFM1 and AFM2 states of Mn3Z (Z = Sn, Ge) with the
QUANTUM ESPRESSO package [49] with the relativistic ver-
sion of the ultrasoft pseudopotentials using the exchange-
correlation functional of the generalized gradient approxima-
tion (GGA) proposed by Perdew, Burke, and Ernzerhof [50].
We used the lattice constants a = 5.665 Å, c = 4.531 Å and
the Wyckoff position of the Mn 6h atomic sites x = 0.8388
from the experimental results [43,44]. For Mn3Ge, the lattice
constants a = 5.34 Å, c = 4.31 Å from the experiment were
adopted [15], and the Wyckoff parameter of the Mn 6h atomic
sites was taken to be the same as that of Mn3Sn. The spin
configuration was set as in Fig. 5(b) for the AFM1 and AFM2
spin configurations. In the GGA calculations, we obtained the
local magnetic moment 3.39μB for Mn3Sn and 2.92μB for
Mn3Ge for both the AFM1 and AFM2 states. The calculations
were performed also for bcc Fe as a reference FM system. The
lattice constant 2.87 Å was used. The spin moment was set
to the +z direction. The magnetic moment obtained from the
GGA calculation is 2.22μB .

The realistic tight-binding models were obtained from the
first-principles band structures using the WANNIER90 program
code [51]. The tight-binding model for bcc Fe was generated
with 18 orbitals Fe s, p, and d orbitals, and that for Mn3Z was
generated with 88 orbitals using Mn s, d and Z s, p orbitals.
The energy band structures of the tight-binding models show
good agreement with those of the first-principles calculations,
as shown in Fig. 7. The Berry curvature and AHC were calcu-
lated within the tight-binding models with Eqs. (1), (2), and (3).

To discuss the magnetic-moment dependence of the AHC,
we also performed the calculations for nonmagnetic states
with SO coupling and obtained the tight-binding Hamiltonian
Hnmag as well as the Hamiltonian for the magnetic state
with SO coupling Hmag. We further generated the hopping
matrices obtained by interpolating or extrapolating these tight-
binding Hamiltonian matrices as Hλ = Hnmag + λ(Hmag −
Hnmag) (λ � 0). The Fermi level was determined to preserve
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FIG. 7. BZ and the energy bands for (a) the FM state of bcc Fe
and (b) the AFM1 state of Mn3Sn. The red and green lines are the
energy bands obtained from the first-principles calculations and from
the Wannier interpolation, respectively.

the electron number for each Hλ, and then the AHC was calcu-
lated for the obtained electronic structure and the Fermi level.

B. Ferromagnetic states of bcc Fe

Before proceeding to the first-principles analysis of the
AFM states of Mn3Z, we discuss the AHE in the FM states
of bcc Fe, which has been well investigated theoretically
[30–32,52]. Figure 8 shows the magnetic moment (cluster
dipole moment) dependence of the AHC for bcc Fe. The
AHC increases as the magnetic moment increases in the
small magnetic-moment region and makes a peak around
2.22μB , obtained in the GGA calculation, and then decreases.
Figures 9(a) and 9(b) show the spin density of states (DOS)
of the Fe d orbitals for the electronic structures with magnetic
moments 2.22μB and 2.86μB , respectively. The original
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FIG. 8. Local magnetic moment (cluster dipole moment)
dependence of the AHC in the FM states of bcc Fe. The solid line
indicates the local magnetic moment obtained by the first-principles
calculation.
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FIG. 10. Mn cluster T γ
x octupole moment dependence of the AHC

in AFM1 states of Mn3Sn and Mn3Ge. The solid and dashed lines
indicate the local magnetic moments obtained with the first-principles
calculations for Mn3Sn and Mn3Ge, respectively.

magnetic state with the magnetic moment 2.22μB has con-
tributions from both the majority- (up-) and minority- (down-)
spin DOSs at the Fermi level. Meanwhile, the DOS in Fig. 9(b)
shows that the spin-up states are almost fully occupied due
to the large spin moment and do not have weight at the
Fermi level. Figures 9(c) and 9(d) show the k dependence
of the Berry curvature summed over the occupied states,
�sum(k) = ∑

n f [εn(k) − μ]�n(k), on the ky = 0 plane. In
both states, �z

sum is positive in a large region of the BZ, leading
to negative σ z via the BZ integration. Meanwhile, we see that
the intensity of �z

sum(k) is much stronger in Fig. 9(c) than in
Fig. 9(d).

C. Antiferromagnetic states of Mn3Sn

Let us move on to Mn3Z. Here, we mainly focus on the
AFM1 state of Mn3Sn, whose crystal and magnetic structures
have been well established experimentally [44–46]. The local
Mn magnetic moment 3.39μB and σyz = 129 S/cm obtained
from the GGA calculation agree well with the experimental
measurement of the local magnetic moment 3μB and that
of the AHC ∼ 100 S/cm [14]. The calculated value is also
consistent with a recent study [23]. Figure 10 shows that the
AHC in Mn3Sn and Mn3Ge shows a similar CMP moment
dependence. The calculations also show that decreasing the
magnetic moments from the one obtained with GGA makes
the size of the AHC larger. In fact, for the electronic structure
obtained with the GGA calculation, the AHC (magnetization)
of Mn3Ge is larger (smaller) than that of Mn3Sn. This is
consistent with the recent experiments [14–16].

For the AFM states of Mn3Sn, we define the Mn cluster
spin bases as the two symmetrized spin configurations related
by the time-reversal symmetry [see the insets in Figs. 11(a)
and 11(b)]. The two spin configurations are characterized by
the positive and negative T

γ
x octupole moments. Then, we

can discuss the AHE in terms of the spin cluster, in analogy
with the majority- and minority-spin states in the FM systems.
Figures 11(a) and 11(b) show the projected DOS for each spin
cluster corresponding to T

γ
x = 11.8 Å2μB and 31.2 Å2μB ,

respectively. The magnetic state with T
γ
x = 11.8 Å2μB has a

large DOS contribution from both spin cluster components at
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FIG. 11. Projected DOS for the AFM states of Mn3Sn with the
Mn T γ

x CMP (local magnetic moment): (a) 11.8 Å2μB (1.28μB )
and (b) 31.2 Å2μB (3.39μB ), corresponding to λ = 0.20 and 1.0,
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the Fermi level. On the other hand, in the magnetic state with
the large T

γ
x moment, the spin-cluster states characterized by

the positive T
γ
x are almost fully occupied due to the large

octupole moment and have only small weight at the Fermi
level. Figures 11(c) and 11(d) show �sum(k) colored by the
�x

sum component on the kz = 0 plane. In both states, �x
sum is

negative in a large region of the BZ, leading to positive σx

via the BZ integration. The intensity of �x
sum(k) is stronger in

Fig. 11(c) than in Fig. 11(d), which is a situation similar to
that in Figs. 9(c) and 9(d).

V. SUMMARY

We showed that the symmetry breaking due to the
commensurate noncollinear magnetic order can be measured
with the CMP moment, which is defined for atomic clusters
in the crystal. We identified the degree of freedom responsible
for the AHE in generic magnetic systems as the macroscopic
contribution of T1g (A2g and/or E1g) CMP moments for

the Oh (D6h) point-group representation. The theoretical
framework was applied to the AFM states of Mn3Ir and
Mn3Z. The AFM1 (AFM2) state of Mn3Sn is characterized
by the T

γ
x and Txyz (T γ

y and T
β
z ) cluster octupole moments in

the D6h IREPs, and the AHE is induced by the macroscopic
contribution of T

γ
x (T γ

y ) with SO coupling. The AHC in the
FM states of bcc Fe and that in the AFM states of Mn3Sn
show similar dependence on the CMP moments. Thus, the
CMP makes it possible to discuss the FM and AFM states in
the same framework and is useful to search for another new
functional material with a large AHE.
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[13] J. Kübler and C. Felser, Europhys. Lett. 108, 67001 (2014).
[14] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature (London) 527,

212 (2015).
[15] N. Kiyohara, T. Tomita, and S. Nakatsuji, Phys. Rev. Appl. 5,

064009 (2016).
[16] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C.

Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler et al.,
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