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The dynamics of entanglement has recently been realized as a useful probe in studying ergodicity and its
breakdown in quantum many-body systems. In this paper, we study theoretically the growth of entanglement in
quantum many-body systems and propose a method to measure it experimentally. We show that entanglement
growth is related to the spreading of local operators in real space. We present a simple toy model for ergodic
systems in which linear spreading of operators results in a universal, linear-in-time growth of entanglement for
initial product states, in contrast with the logarithmic growth of entanglement in many-body localized (MBL)
systems. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo
in a composite system comprised of several copies of the original system, in which connections are controlled
by a quantum switch (two-level system). By measuring only the switch’s dynamics, the growth of the Rényi
entropies can be extracted. Our work provides a way of understanding entanglement dynamics in many-body
systems and to directly measure its growth in time via a single local measurement.
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I. INTRODUCTION AND RESULTS

In the past decade, quantum entanglement has emerged as
an indispensable tool for characterizing and classifying the
ground states of many-body systems; for example, in the field
of topological order [1,2].

Recently, it was realized that entanglement dynamics also
exhibits universality, providing a useful probe of ergodicity
and its breakdown in many-body systems. In particular, the
growth of entanglement following a quantum quench can be
used to distinguish between localized and ergodic phases.
For many-body localized (MBL) systems [3,4], emergent
local integrability [5–8] implies that entanglement grows
logarithmically in time, S(t) ∼ log t , following a quantum
quench from initial product states [9,10]. For generic quantum
ergodic systems, entanglement appears to grow universally
linearly [11]: S(t) ∼ t .

Previous works predicted linear growth S(t) ∼ t in inte-
grable systems, including (1 + 1)-dimensional CFTs [12,13],
while other works studied entanglement growth in nonin-
tegrable, higher-dimensional CFTs via holographic calcula-
tions [14,15]. However, an understanding of the entanglement
dynamics in generic quantum chaotic or ergodic systems is
lacking. One puzzling fact pointed out in Ref. [11] is that
energy transport in a quantum chaotic or ergodic many-body
system under a time-independent Hamiltonian is diffusive
(∼√

t), yet entanglement growth is linear (∼t)—clearly, the
mechanisms of particle and quantum information transport are
different, and so it is important to understand the dynamics of
the latter.

The purpose of this paper is to provide (1) a theoretical
description, and hence, a physical picture of the growth of
entanglement entropy (EE) in a many-body system, and (2)
a proposal to experimentally measure it. To be precise, we
consider the dynamics of the nth Rényi EE Sn(t) of pure states
|ψ〉 that are initially random product states, evolving unitarily
under a local, potentially time-dependent nonintegrable many-
body Hamiltonian:

H =
∑
X

HX. (1)

The Hamiltonian is defined on a lattice � of sites (labeled by
i) in d spatial dimensions so that the local Hilbert space Hi

is bounded: dim(Hi) = k < ∞, and X is a local region in �.
The nth Rényi EE of A, for a bipartition of the system into two
subregions A and B, is given by

Sn(t) = 1

1 − n
log Tr

[
ρn

A(t)
]
, (2)

with ρA(t) ≡ TrB(Ut |ψ〉〈ψ |U †
t ) being the reduced density

matrix of subsystem A, and Ut being the unitary time evo-
lution operator generated by H according to the Schrödinger
equation. The state, being initially a random product state, has
Sn(0) = 0, but Sn(t) > 0 for t > 0 and grows in general. Also,
Sn � Sm for any m > n; in particular, S2 is a lower bound for
S, the von Neumann entropy.

A summary of our results is as follows: We show that
the growth of entanglement as measured by S2(t) is directly
related to the measurement of basis operators of subregion A.
Under time evolution by a local Hamiltonian, a basis operator
physically spreads in real space and, as it grows, the value of its
measurement typically decreases, thus leading to entanglement
growth. Furthermore, we introduce a simple toy model for
ergodic many-body systems in which (1) operators spread at
some maximal velocity v, (2) delocalize completely within this
light cone r ∼ vt and show that S2(t) grows linearly in time
with a velocity related to v. We believe such a model captures
the salient features of the universal linear-in-time growth of
entanglement seen by Ref. [11].

We also propose a way to experimentally measure Sn(t)
via a local measurement. We introduce a quantum switch (a
two-level system) that allows tunneling between different parts
of a replicated system consisting of n disjoint copies of the
original system, depending on the state of the switch [16].
By preparing the replicated system and the quantum switch
appropriately, and by subsequently measuring σx(t) of the
quantum switch only, the entropy growth Sn(t) corresponding
to the entanglement entropy of the original system can be
measured; see Fig. 1.
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FIG. 1. Setup to measure the growth of the nth Rényi entropy
Sn(t). Here n = 3 and we have shown it for a d = 1 chain. There is a
quantum switch in the middle of the setup which governs tunneling
between different subsystems. (a) When the quantum switch is in the
state | ↑〉, tunneling between Ai and Bi is allowed while tunneling
between Ai and Bi+1 is prohibited. (b) When the quantum switch is
in the state | ↓〉, the allowed and prohibited tunnelings are swapped.
A composite state in an n-copy product state of the chains and in a
superposition of | ↑〉 and | ↓〉 of the quantum switch will have two
parts evolving in time differently according to the quantum switch;
measuring σ x(t) of the quantum switch gives the Loschmidt echo and
hence the nth Rényi entropy.

We refine and expound upon these ideas below. For clarity
of argument, we focus on the case of a spin- 1

2 system, so
dim(Hi) = 2, but our results are general and hold for systems
with bounded local Hilbert spaces of other dimensions [17].
We also choose subregion A to be a ball of radius rA with
volume γdr

d
A = NA in d dimensions [γd = πd/2/�(d/2 + 1)

is the volume of a unit d ball], but the analysis can be readily
adapted to other geometries.

II. LOCAL MEASUREMENTS OF BASIS OPERATORS
GIVES ENTANGLEMENT

We first show that the second Rényi entropy S2(t) is directly
related to measuring all time-evolved basis operators OA(t) =
U

†
t OAUt in the initial state |ψ〉, such that the operator OA at

t = 0 has support strictly in A (i.e., where it acts nontrivially
on the lattice). That is, for a spin- 1

2 system of NA sites, S2(t) =
− log TrA[ρ2

A(t)], with

TrA
[
ρ2

A(t)
] = 1

2NA

∑
OA

〈ψ |OA(t)|ψ〉2, (3)

where the sum goes over all operators OA with support strictly
in A, assumed to be Hermitian and independent as defined by
the Hilbert–Schmidt inner product: 1

2NA
TrA(O†

AO′
A) = δOA,O′

A
,

and which form a basis for all Hermitian operators on A.
A potential basis set is ⊗NA

i=1{Ii , σ
x
i , σ

y

i , σ z
i }, where Ii , σ

α
i

are the identity matrix and Pauli matrices acting on site i,
respectively, and we will use this basis for our subsequent
analysis. The proof of this statement is straightforward—one
notes that the reduced density matrix ρA(t) = TrB |ψ(t)〉〈ψ(t)|
is in particular a Hermitian operator, and so must be a linear
combination of OA operators with real coefficients given by

1
2NA

〈ψ(t)|OA|ψ(t)〉 = 1
2NA

〈ψ |OA(t)|ψ〉. Then, squaring ρA(t)
and using the orthonormality of OA under the inner product,
one obtains the claimed result.

III. PHYSICAL SPREADING OF BASIS OPERATORS
LEADS TO ENTANGLEMENT GROWTH

We now use the above result to understand why entan-
glement typically grows in many-body systems. We consider
the ensemble average of S2(t) over initial pure product states
|ψ〉 = | �σ1 �σ2 · · · �σN 〉, where �σi is the random direction that the
ith spin is pointing to on its Bloch sphere.

It is convenient to switch from an average over an ensemble
of initial states which are random product states to an
average over an ensemble of locally rotated Hamiltonians.
A given initial product state can be written as | �σ1 �σ2 · · · �σN 〉 =∏

i Vi | ↑1↑2 · · · ↑N 〉 where Vi is the local unitary that rotates
| ↑i〉 into |σi〉. We can rewrite Eq. (3) as

TrA
[
ρ2

A(t)
] = 1

2NA

∑
OA

〈↑↑↑ |Ũ †
t V†OAVŨt | ↑↑↑〉2

= 1

2NA

∑
OA

〈↑↑↑ |Ũ †
t OAŨt | ↑↑↑〉2, (4)

where V ≡ ∏
i Vi and Ũt is the time evolution operator

generated by the locally rotated Hamiltonian H̃ = V†HV .
This local rotation generates a new Hamiltonian H̃ that
has the same locality properties as the original Hamiltonian
H , i.e., H̃ = ∑

X H̃X, which implies that both H and H̃

have the same Lieb–Robinson (LR) velocities vLR [18–20],
bounds which govern the speed of information and operator
spreading quantum many-body systems. The second equality
arises from a straightforward statement of “basis invariance”
of measurements [17]. Thus, taking an ensemble average of
S2(t) over initial product states in Eq. (3) is equivalent to
taking an ensemble average over locally rotated Hamiltonians
H̃ in Eq. (4) with the measurement done in the particular state
| ↑↑↑〉.

We are now in a position to gain a physical understanding of
how entanglement grows in a many-body system: under time
evolution, a basis operator OA with support in A spreads on
the lattice to become OA(t) ≡ Ũ

†
t OAŨt (note the evolution

under H̃ ), which has not only larger support but is also
a complicated sum of other basis operators, although with
conserved “weight”; for example,

σx
i

t→ Ũ
†
t σ

x
i Ũt = cx

i σ
x
i + c

x,y

i,i+1σ
x
i σ

y

i+1 + cz
i−1σ

z
i

+ c
z,x,z
i−1,i,i+1σ

z
i−1σ

x
i σ z

i+1 + · · ·≡
∑
X,μ

c
μ

Xσ
μ

X ,

(5)

such that the total weight
∑

X,μ(cμ

X)2 = 1 for all times [17].
Then, the value of the measurement 〈↑↑↑ |OA(t)| ↑↑↑〉
typically decreases, as the complicated sum of operators will
have many “off-diagonal” operators, such as σx

i σ
y

i+1, etc., that
do not contribute, when only the “diagonal” operators which
are products of σ z

i do, leading to an increase in entanglement
entropy as calculated by Eq. (4). Thus we see that entanglement
growth in a many-body system is intimately related to the
physical spreading of basis operators in real space: in some
sense, EE increases because quantum information is “lost” in
the inability of the state | ↑↑↑〉 to measure the increasingly
complicated operator OA(t).
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IV. A TOY MODEL FOR EXPLAINING UNIVERSAL
LINEAR GROWTH IN ERGODIC SYSTEMS

Equations (3) and (5) are true regardless of the system in
question, be it ergodic or otherwise. The differences in en-
tanglement growth between different systems are completely
captured in how an operator spreads and is decomposed in
terms of other basis operators; cf. Eq. (5). Here, let us introduce
a simple toy model where operators completely “scramble” in a
linear light cone, which gives a linear growth of entanglement.
We believe that such a model captures the salient features of
universal linear entanglement growth in generic [21] ergodic
many-body systems, as seen by Ref. [11].

For local Hamiltonians with a bounded local Hilbert space,
the velocity at which basis operators spreads can be at most
linear, with an upper bound given by vLR . In other words, the
operator can only spread within the LR light cone r ∼ vLRt .
The precise distribution of the coefficients {cμ

X} in Eq. (5)
depends on the Hamiltonian in question. In our toy model,
we make a statistical statement about the distribution of
coefficients. Let us assume that, because of ergodicity, (1) a
basis operator spreads linearly at some fixed velocity v � vLR

(for all H̃ ) so that an initially local operator at i spreads to
become a sum of operators contained within a ball of radius
(vt)d centered at i, and (2) it is effectively scrambled in this
ball. Precisely, we assume that an initially localized basis
operator at i has a decomposition as in Eq. (5) under time
evolution, such that {cμ

X} is a unit random vector of 4γd (vt)d

coefficients, where X, the support of each basis operator in
the decomposition is contained entirely within a ball of radius
(vt)d centered at i. Such a picture is indeed supported by
Ref. [22], and we assume this behavior to be generically
true for ergodic systems. We note that such a scrambling
assumption, tied to ergodicity, will manifestly not hold for
MBL systems: basis operators that have significant overlap
with the local integrals of motions stay localized near site i,
invalidating the assumption.

Next, we estimate the measurement 〈↑↑↑ |OA(t)| ↑↑↑〉 in
Eq. (4). In principle, we have to sum over all operators OA,
but we can replace all OA → OA,typ., where OA,typ. is a typical
operator in subregion A having support of size L̄ = 3/4NA.
(Recall that the support of an operator are the sites where OA

acts nontrivially on; for example, OA = σ z
1 ⊗ I2 ⊗ σx

3 ⊗ I4 ⊗
· · · ⊗ INA

has support on sites 1 ∪ 3 and size 2.) The statement
of the size being L̄ = 3/4NA follows because, in constructing
some OA, there is a choice of three nontrivial operators
{σx

i ,σ
y

i ,σ z
i } compared with a choice of a single trivial operator

Ii for every site, so there are
(
NA

L

)
3L operators with support of

size L, a skewed binomial distribution, which gives the average
size L̄ = 3/4NA. Typicality follows because the standard
deviation of the size of an operator ∼√

NA � NA, coming
from the same skewed binomial distribution. Thus, OA(t) can
be replaced by OA,typ.(t) because the latter dominates the sum.

We now have to understand the time-evolution of OA,typ..
Considered as an operator on the subregion A, OA,typ. has
NA − L sites on which it acts trivially, i.e., with the identity
operator. We call groups of contiguous Ii “clusters”. A typical
cluster has size ∼O(1). Over time, each nontrivial single-site
operator that makes up the typical operator spreads, emitting
a spherical “wavefront”, and so the clusters quickly get filled

(a) (b)

FIG. 2. (a) The support of a typical basis operator OA. Here �

is a d = 2 square lattice, and the subregion A is a circle of radius rA

demarcated by the blue circle. Black sites represent the presence of
a nontrivial operator, σ x

i , σ
y

i , or σ z
i , while white sites represent the

presence of an identity operator Ii . One can see clusters of white sites
within the circle. A site within a cluster is ∼O(1) site away from
a black site. (b) Under time evolution, each black site spreads with
velocity v, and so the clusters quickly get filled up (red sites) in time
vt∼O(1), and simultaneously the operator also grows in physical size
to become a ball of radius rA + vt .

up after vt∼O(1). After such time, the resulting operator will
therefore have grown to become a complicated operator within
a ball of radius (rA + vt)d ; see Fig. 2. Following the previous
discussion, we assume that the vector of coefficients {cμ

X}
denoting the decomposition of a typical time-evolved operator
into the basis operators of the ball is also a random vector but
now with dimension 4γd (rA+vt)d .

Next, we estimate the measurement of a typical operator.
This is given by

〈↑↑↑ |OA,typ.(t)| ↑↑↑〉2 = 2γd (rA+vt)d

4γd (rA+vt)d
, (6)

which can be understood as follows: In the decomposition
OA,typ.(t) = Ũ

†
t OA,typ.Ũt = ∑

O cO(t)O, the only operators O
which give a nonzero overlap with | ↑↑↑〉 are the diagonal
operators I, σ z

i , σ z
i σ z

j , . . . . There are 2γd (rA+vt)d such operators
contained in a ball of radius (rA + vt)d . The coefficient cO that
accompanies such an operator is a random variable (which
follows from our scrambling assumption) and typical has
magnitude 1/

√
dim(Ball)(t) = [4γd (rA+vt)d ]−1/2. Furthermore,

since the coefficients cO(t) are independent random variables
for different operators O, the cross terms in the left-hand
side (LHS) of Eq. (6), [

∑
O cO(t)]2, vanish, reducing the

sum to
∑

O cO(t)2 = 2γd (rA+vt)d /4γd (rA+vt)d , the right-hand side
(RHS).

Finally, we arrive at the expression for S2(t) and obtain the
universal linear growth. Plugging the above result into Eq. (4)
and simplifying, we get

TrA
[
ρ2

A(t)
] = 2−γd [(rA+vt)d−rd

A]. (7)

This calculation is valid until vt � (21/d − 1)rA, at which
point TrA[ρ2

A(t)] ∼ 1/2NA . Then, the error from neglecting
the contribution of the global identity term IHA

becomes
non-negligible, since the identity operator never spreads under
time evolution and will always contribute a factor of 1/2NA .
Thus, the EE saturates to the maximum allowed for region A.
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The second Rényi EE is thus

S2(t) =
{
γd

[
(rA + vt)d − rd

A

]
log 2 for O(1)

v
< t � fd rA

v

γdr
d
A log 2 = NA log 2 for t � fd rA

v
,

(8)

where fd = (21/d − 1). For times t < 2rA/v(d − 1), S2(t) can
be approximated by a linear function

S2(t) ∼ [(
γddrd−1

A

)
vt

]
log 2. (9)

In fact, this linear approximation is always valid as long as
the S2(t) calculation is valid, since 2rA/v(d − 1) > fdrA/v

for all d. We see that the expression (9) for the dynamics of
entanglement has three terms: (1) a geometric factor γddrd

A

which gives the area of an entanglement “wavefront”, (2)
the speed of the wavefront v, and (3) a universal linear time
dependence t . Thus this has the interpretation of entanglement
spreading in a “tsunami”, similar to a view put forth in
Ref. [14].

V. PROPOSAL TO EXPERIMENTALLY MEASURE sn(t)
AND RELATION TO LOSCHMIDT ECHO

Here we propose a way to experimentally measure Sn(t)
via a local measurement. We consider an replicated system
consisting of n disjoint copies of the original system, each
with a similar bipartition Ai and Bi . We arrange them in a way
similar to Ref. [16]: a star geometry such that the boundaries
between subsystems Ai and Bi are placed near each other;
see Fig. 1. We then introduce a quantum switch (a two-level
system), which if in the |↑〉 state allows tunneling only
between subregions Ai and Bi such that the full Hamiltonian
on the composite system is H , while if in the |↓〉 state
allows tunneling only between subregions Ai and Bi+1 such
that the full Hamiltonian is H + V . Here H = ∑n

i=1 Hi =∑n
i=1 HAi

+ HBi
+ HAiBi

, where each Hi is a copy of the
Hamiltonian (1) acting on the ith copy of the Hilbert space
Hi = HAi

⊗ HBi
, and V is the local “reconnection” operator,

V = ∑n
i=1 HAiBi+1 − HAiBi

, with the cyclic condition n + 1 =
1, so that H + V = ∑n

i=1 HAi
+ HBi

+ HAiBi+1 . If we prepare
the state of the replicated system as |ψn〉 ≡ ⊗n

i=1|ψ〉i where
|ψ〉 is the initial product state of the original system and also
the quantum switch as a maximally entangled Bell state, so
that the full state is |�〉 = |ψn〉 ⊗ 1√

2
(|↑〉 + |↓〉), then under

unitary time evolution,

|�(t)〉 = 1√
2

(e−iH t |ψn ↑〉 + e−i(H+V )t |ψn ↓〉). (10)

Measuring σx(t) of the quantum switch, a local measurement
gives

TrA
[
ρn

A(t)] = 〈ψn|ei(H+V )t e−iH t |ψn〉 ≡ F(t), (11)

from which the nth Rényi entropy can be obtained: Sn(t) =
1

1−n
logF(t). Thus we see that the dynamics of entanglement is

indeed an observable local quantity if we work in an extended
system. See also Refs. [23,24] on other theoretical proposals
to measure EE and its growth. Additionally, Ref. [25] has
experimentally measured EE in a Bose–Hubbard system also
in a replicated setup. However, the difference of our proposal
with their experimental technique is that we only require

a single local measurement whereas Ref. [25] requires an
extensive number of measurements (namely, measuring the
parity on all sites).

The above claim is based on an alternative reformulation
of Sn(t), relating it to a Loschmidt echo F(t) [26–31] on
the replicated system. It is a well-known trick [17,23,32]
that the trace of the nth power of ρA can be calculated by
replicating n copies of the original Hilbert space H = HA ⊗
HB , and calculating the swap operator S that cyclically swaps
subregions Ai → Aimodn+1: if � = ρ⊗n is the n-replicated
density matrix, then TrA(ρn

A) = TrH⊗n (�S).
Now let us specialize to the case considered before: when

the initial state on one system is a random product state |ψ〉 =
|�σ1 �σ2 · · · �σN 〉 and ρ = |ψ〉〈ψ |. If each ρ evolves independently
under the Hamiltonian given by Eq. (1), then � evolves under
the composite Hamiltonian H = ∑n

i=1 Hi . Then,

TrA
[
ρn

A(t)
] = 〈ψn|eiHtSe−iH t |ψn〉. (12)

However, because the initial state is a product state, 〈ψn|S† =
〈ψn|, and since S†eiHtS = ei(H+V )t , we end up with the
claimed result (11), which is a Loschmidt echo F(t) with
“perturbation” V to H . Note that an analogous statement
also holds for time-dependent Hamiltonians even though the
unitary time evolution operator will not have the form e−iH t .

VI. CONCLUSION

We have provided a theoretical description and a physical
picture of the entanglement dynamics in a many-body system
by relating entanglement growth to the physical spreading of
basis operators on a lattice. We also introduced a simple toy
model where an initial basis operator effectively scrambles in
its light cone, thus producing a linear entanglement growth,
which we believe captures the salient features of the universal
linear-in-time growth of entanglement seen in ergodic many-
body systems. Furthermore, the entanglement growth in this
model has an interpretation of an “entanglement tsunami”:
there is a prefactor which depends on the geometry of the
subregion A, which propagates outwards in a wavefront at
speed v. We remark that, while entanglement growth in
MBL systems has been successfully explained through a
local integrals of motion picture, it is an interesting question
to explain this dynamics in terms of our operator-spreading
language.

We have also provided an alternative interpretation of the
growth of the nth Rényi entropies as a Loschmidt echo in a
composite system, subject to a perturbation that reconnects
different subregions. By using this reformulation, we have
proposed an experimental way of measuring the growth of the
Rényi entropies: one can effect the reconnection by using a
quantum switch and measure the state of the quantum switch
to extract the Loschmidt echo and hence the EE. This proposal
can be used, for example, to directly detect MBL phases by
measuring the logarithmic growth of entanglement.

Note added. Recent works [33,34] also studied entangle-
ment dynamics in chaotic many-body systems and argued
that entanglement growth speed is bounded from above
by the operator-spreading speed. In our operator counting
language picture, this can be accounted for in our toy model
by refining the scrambling assumption which gives rise to

094302-4



ENTANGLEMENT DYNAMICS IN QUANTUM MANY-BODY . . . PHYSICAL REVIEW B 95, 094302 (2017)

the measurement value (6): there will be a distribution of
coefficients that presumably depends upon the size of the

operators in the decomposition (5), which we leave for future
work to explore.
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[6] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 111,

127201 (2013).
[7] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B

90, 174202 (2014).
[8] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B 891, 420

(2015).
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