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Critical properties of the Anderson localization transition and the high-dimensional limit
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In this paper we present a thorough study of transport, spectral, and wave-function properties at the Anderson
localization critical point in spatial dimensions d = 3, 4, 5, 6. Our aim is to analyze the dimensional dependence
and to assess the role of the d → ∞ limit provided by Bethe lattices and treelike structures. Our results strongly
suggest that the upper critical dimension of Anderson localization is infinite. Furthermore, we find that dU = ∞
is a much better starting point compared to dL = 2 to describe even three-dimensional systems. We find that
critical properties and finite-size scaling behavior approach by increasing d those found for Bethe lattices: the
critical state becomes an insulator characterized by Poisson statistics and corrections to the thermodynamics
limit become logarithmic in the number N of lattice sites. In the conclusion, we present physical consequences
of our results, propose connections with the nonergodic delocalized phase suggested for the Anderson model on
infinite-dimensional lattices, and discuss perspectives for future research studies.
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I. INTRODUCTION

Anderson localization (AL) is one of the most fundamental
quantum phenomena. A system of noninteracting disordered
electrons can be driven (e.g., by increasing the disorder
strength or the energy) through a transition between a metallic
(delocalized) phase and insulating (localized) phase, where
diffusive transport is completely suppressed due to quantum
interference [1]. After more than half a century of research [2],
the subject is still very much alive as proved by recent
experimental observation of AL in 1d [3] and 3d [4] atomic
gases and for classical sound elastic waves in 3d [5].

The properties of AL in low-dimensional systems are by
now very well established and understood. As predicted by
the scaling theory of localization [6], all states are localized in
1d [7] and 2d (for system with orthogonal symmetry) by an
infinitesimal amount of disorder. In fact, dL = 2 is the lower
critical dimension of the problem, where the so-called “weak
localization” takes place [8].

During the last 40 years, a field theoretical approach [9]
based on the replicated nonlinear σ model (NLσM) has
been developed, and a perturbative ε expansion in d =
2 + ε dimensions has been pushed up to five loops [10].
These advances culminated in a functional (perturbative)
renormalization group analysis [11] of the NLσM, which
allowed computing the multifractal spectra of wave-function
amplitudes at the AL critical point in d = 2 + ε.

Nonetheless, despite about 60 years of intense research,
there is still (almost) no available analytical approach for AL
away from the low-dimensional limit and much less is known
in higher dimensions. The main reasons for that are as follows:

(1) The absence of a small parameter: The critical disorder
is of the same order (or even larger) than the bandwidth already
in three-dimensional systems.

(2) The fact that AL is not associated with a conventional
spontaneous symmetry breaking. Indeed, the order parameter
which naturally arises in the field theoretical description is
a function: the probability distribution of the local density of

states (DOS) which develops heavy tails in the insulating phase
due to very large and rare resonances. The average DOS instead
does not show any sign of discontinuity at the transition.

These unconventional properties represent a challenge for
analytical approaches. As a consequence numerical methods
are still at the core of the advances in this topic [12].

AL in three dimensions was analyzed by many authors
using numerical techniques for increasing system size, with the
use of various scaling analyses and of different observables re-
lated both to transport properties [13,14] and to the statistics of
energy levels [15,16] and wave-function coefficients [17,18].
In Ref. [19] the phase diagram in the energy-disorder plane
was also calculated. For the model described in the next
section (spinless electron in a uniformly distributed disordered
potential) and for E = 0 (middle of the band) a localization
transition is found at a critical value of the disorder Wc � 16.5,
separating a metallic phase, where wave functions are extended
over the whole volume, from an insulating phase, where wave
functions are exponentially localized around some particular
sites. The quantity ϒ2 = ∑

i |〈n|i〉|4 (where 〈n|i〉 denotes the
value of the eigenfunction |n〉 on site i), called the inverse
participation ratio (IPR)—averaged over the disorder and over
all eigenstates around E = 0—is often used to distinguish
between these two regimes as ϒ2 ∼ C/Ld in the extended
phase and stays of O(1) in the localized phase. Diffusion
is completely suppressed in the insulating regime and the
conductivity σ vanishes in the thermodynamic limit, while
it stays finite in the metallic phase. The localization length,
measuring the spatial extent over which wave functions are
localized, diverges at the transition coming from the insulating
phase. At present, the most precise numerical estimate of
the critical exponent ν describing this divergence in 3d—
for systems with orthogonal symmetry—is ν = 1.58 ± 0.01
[14,17].

AL had a very strong impact also on random matrix theory
(RMT). As a matter of fact, in the delocalized phase the level
statistics on the scale of the mean-level spacing is expected
to be described by RMT and generally corresponds to the
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Gaussian orthogonal ensemble (GOE), whereas instead in the
localized phase it is determined by Poisson statistics because
wave functions close in energy are exponentially localized on
very distant sites and hence do not overlap; thus, contrary to
the GOE case, there is no level repulsion and eigenenergies
are distributed similarly to random points thrown on a line.
These ideas have been confirmed by numerical simulations in
3d [16].

Right—and only—at the critical point, level statistics is
neither GOE nor Poisson [15,20] (it is instead characterized by
a universal distribution which depends on the dimensionality)
and wave-function amplitudes show a multifractal spec-
trum [18]—the critical eigenstates being neither extended nor
localized reveal large fluctuations of wave-function amplitudes
at all length scales.

A few recent accurate results are also available in 4d and 5d

[21], based on the study of transport properties only. However,
there are very few results on level statistics above dimension
three [22] and no exact results for transport properties for
d > 5 [23]. As we will discuss in the following, the reason
for that is that running times of numerical algorithms increase
very rapidly with the size of the system [more precisely, as
L3d for exact diagonalization (ED) and as L3d−2 for transfer
matrix (TM) techniques]. This sets a very severe limitation on
the system sizes which can be simulated as dimensionality is
increased.

For these reasons, some basic questions of AL remain
unanswered or debated. For instance, the existence of an upper
critical dimension dU is still an issue. Although several obser-
vations seem to indicate that dU might be infinite [22,24,25],
different propositions corresponding to dU = 4, 6, and 8 have
been put forward [26,27].

Another important and highly debated aspect is the relation
with the infinite-d limit, corresponding to AL on treelike struc-
tures [28] and to other random matrix models with long-range
hopping [29]. On the one hand, these models allow for an exact
solution, making it possible to establish the transition point
and the corresponding critical behavior [29–31]. On the other
hand, however, the properties of the delocalized phase are very
unusual, since they are affected by dramatic—and somehow
unexpected—finite-size effects (FSEs) even very far from the
critical point, which produce a strong nonergodic behavior
in a crossover region where the correlation volume is larger
than the accessible system sizes [29,32–37]. This makes the
finite-size analysis of numerical data highly nontrivial [35,37],
and has been interpreted by some authors [32–34] in terms of
the existence of a new intermediate delocalized but nonergodic
phase—which might be characterized by nonuniversal level
statistics, anomalous scaling exponents of the IPR, and
multifractality [38]—in a broad interval of disorder strength
between the metallic (fully ergodic) phase and the insulating
one.

This possibility is clearly very intriguing (although it
appears to be in conflict with the analytical predictions of
the SUSY formalism [31]), especially due to its relationship
with many-body localization (MBL) [39], a fascinating new
kind of phase transition between a low-temperature nonergodic
phase—a purely quantum glass—and a high-temperature
ergodic phase. Theoretical work strongly suggests that this
phenomenon takes place for several disordered isolated

interacting quantum systems, in particular disordered elec-
trons [39] (it was also independently investigated in [40] to ex-
plain the quantum ergodicity transition of complex molecules).
MBL can be pictorially interpreted as localization in the Fock
space of Slater determinants, which play the role of lattice sites
in a disordered (single-particle) Anderson tight-binding model.
A paradigmatic representation of this transition [39–43] is
indeed AL on a very high dimensional lattice, which for
spinless electrons consist of an N -dimensional hypercube of
2N sites.

All the open questions presented above motivated us to thor-
oughly analyze AL in high spatial dimensions. In the following
we present a detailed study of the critical properties of AL in
dimensions from 3 to 6 based on “exact” numerical methods
(ED and TM techniques) and on an approximate strong-
disorder renormalization group (SDRG) approach [44,45]. We
focus on both the statistics of energy levels and wave-function
coefficients and on transport properties. Our aim is to shed
new light on the critical properties of AL and provide new
insights to develop alternative analytical approaches to tackle
this problem.

Our results support the idea that the upper critical dimension
of AL is infinite. For instance, the critical exponent ν smoothly
evolves from ν → ∞ in d = 2 to the value ν = 1/2 in d → ∞
predicted by the SUSY approach [46], showing no sign of
saturation. Moreover, we find that the infinite-dimensional
limit is a very good quantitative and qualitative starting point
to describe AL even down to three dimensions. Expansions
around the lower critical dimension, dL = 2, instead give
poorer results (even up to five loops). The higher the dimension
the more AL is well described by a strong-disorder limit, as
signaled by the fact that the critical values of all observables
smoothly approach the ones of the localized phase as the
dimensionality is increased—in d → ∞ the critical states
seem to correspond to an insulator, for which the statistics of
energy levels is of Poisson type, and the multifractal spectrum
of wave-function amplitudes takes its strongest possible form.
Another strong indication of this fact is that the SDRG
approach gives very accurate results in estimating the critical
parameters in all dimensions d � 3.

We also show that FSEs become anomalously strong as
d is increased. When d becomes large the scaling variable
controlling finite-size scaling (FSS) is |W − Wc|L1/ν and the
leading corrections to FSS turn out to be proportional to Ly .
Both ν and y depend weakly on the dimensions and tend to a
constant when d → ∞: ν → 1/2 and y stays roughly constant
and close to −1. When reexpressed in terms of the system
size N = Ld these results suggest that corrections become
logarithmic-like in N in the d → ∞ limit. This behavior is
drastically different from the one observed in conventional
phase transitions, for which exists an upper critical dimension
dU such that for d > dU finite-size effects are governed by the
scaling variable |T − Tc|N1/νdU with corrections of the order
of Ny ′

(with some negative exponent y ′ independent of d).
The paper is organized as follows: In Sec. II we introduce

the model and some basic definitions. In Sec. III we present
our numerical results based on exact diagonalization and
transfer matrix methods for dimensions from 3 to 6. In
Sec. IV we discuss the SDRG approach, focusing especially
on the properties of the flow close to criticality. In Sec. V
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we give a brief summary of the results found and discuss
their possible implications on the unusual properties of the
delocalized phase observed in the Anderson model on treelike
structures, which can be interpreted in terms of the extreme
“quasilocalized” character of the AL critical point in d → ∞,
and of anomalously strong FSEs. Finally, in Sec. VI we present
some concluding remarks and perspectives for future work.

II. THE MODEL

The model we focus on consists of noninteracting spinless
electrons in a disordered potential:

H = −t
∑
〈i,j〉

(c†i cj + c
†
j ci) −

N∑
i=1

εic
†
i ci , (1)

where the second sum runs over all N = Ld sites, and the
first sum runs over all dLd links of nearest-neighbor sites
of the d-dimensional hypercubic lattice; c

†
i , ci are fermionic

creation and annihilation operators, and t is the hopping kinetic
energy scale, which we take equal to 1 throughout. The on-site
energies εi are i.i.d. random variables uniformly distributed in
the interval [−W/2,W/2]:

p(ε) = 1

W
θ

(
W

2
− |ε|

)
, (2)

W being the disorder strength. The model (1) has time
reversal (and spin rotation) symmetry (also called orthogonal
symmetry in the context of RMT). The common belief,
supported by the scaling theory of localization [6], is that the
transition is universal; i.e., it does not depend on microscopic
details of the model such as the probability distribution of the
on-site energies. However, it depends on the dimension and on
the physical symmetry of H.

In terms of RMT, the model (1) can be thought of as a sum
of two matrices, H = C(d) + E (i.e., a Schrödiger operator
with random on-site potential): C(d) is the (deterministic)
connectivity matrix of the d-dimensional hypercube; C(d)

ij =
−t if sites i and j are connected and zero otherwise. E is a
diagonal random matrix corresponding to the on-site energies,
Eij = εiδij .

In the following we will focus only on the middle of the
spectrum, E = 0.

III. NUMERICAL RESULTS IN d = 3, . . . ,6

In this section we present our numerical results in dimen-
sions from 3 to 6 obtained from ED and a TM approach. We
will focus first on transport properties and then on the statistics
of energy gaps and wave-function amplitudes.

A. Transport properties

We consider a very long (length Lx) quasi-one-dimensional
bar of cross section Ld−1, as sketched in Fig. 1. The system is
open along the x direction, while periodic boundary conditions
are enforced along the transverse directions. Such system,
being quasi-1d, is always localized at any arbitrarily weak
value of the disorder. The localization of electrons on this bar
can be studied using the TM method. To this aim, we introduce

L

x
FIG. 1. Sketch of the quasi-one-dimensional bar along the x

direction of cross section L(d−1).

the resolvent matrix,G = [zI − H]−1, where z = E + iη with
η → 0+ being the imaginary regulator, and express its matrix
elements in terms of a Gaussian integral over a real auxiliary
field:

Glm = − i

Z

∫ N∏
i=1

dφi φlφm eS[φi ], (3)

where the action is given by

S[φi] = i

2

N∑
i,j=1

φi(zδij − Hij )φj

= i

2

∑
i

(E + iη + εi)φ
2
i + i

∑
〈i,j〉

tijφiφj , (4)

and the “partition function” reads

Z =
∫ N∏

i=1

dφi e
S[φi ]. (5)

We set E = 0 throughout, which corresponds to the band
center. We set a finite positive value of η at x = 0 and η = 0
elsewhere inside the bar, at x > 0. This mimics putting the
left boundary of the quasi-1d bar of Fig. 1 in contact with a
thermal bath, and we study how dissipation propagates through
the sample. The quasi-1d localization length, ξ1d , can be easily
measured from the exponential decay of the typical value of
the imaginary part of the Green’s function, exp[ln ImG(x)], as
a function of x, averaged over all the sites of the xth layer and
over several realizations of the disorder:

ln ImG(x) � const. − x

ξ1d

. (6)

Since Eq. (4) is a Gaussian action, in order to compute the
left-hand side of Eq. (6) one can—at least formally—integrate
over all the sites on a given layer x in Eq. (3), yielding an
exact recursive relation expressing the Green’s function on the
subsequent layer, x + 1, in terms of the Green’s function on
the layer x in the absence of layer x + 1 (a kind of cavity
equation for the whole layer):

[G(x + 1)]−1
ij = εx,iδij + tC(d−1)

ij − t2Gij (x), (7)
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FIG. 2. ln ImG(x) as a function of x in 6 dimensions, for
L = 6 and for several values of the disorder, showing that ξ1d can
be measured from Eq. (6) by linear fitting of the data at large enough
x.

where the index i runs over all the sites of layer x, εx,i is the
random on-site energy on site i belonging to layer x, and C(d−1)

is the connectivity matrix of the transverse layers, i.e., the
(d − 1)-dimensional hypercube. This equation can be solved
numerically by iteration, starting from the following initial
condition at x = 0:

[G(0)]−1
ij = (ε0,i + iη)δij + tC(d−1)

ij . (8)

In order to do this we need to invert the matrix G(x) layer
by layer, which can be done by LU decomposition. Since
the computer time required to perform this operation is
proportional to the third power of the total number of sites
of the matrix, L3(d−1), the running time of the TM algorithm
scales as LxL

3d−3 ∼ L3d−2.
As an example, in Fig. 2 we plot ln ImG(x) as a function

of x in 6 dimensions, for L = 6 and for several values of the
disorder W , showing that ξ1d can be measured using Eq. (6) by
linear fitting of the data at large enough x. This is equivalent
to the following definition of the quasi-1d localization length
via the transmission coefficient [13,47]:

ξ−1
1d = − lim

Lx→∞
1

2(Lx + 1)
ln Tr|〈0|G|Lx〉|2,

where 〈0|G|Lx〉 denotes the Ld−1-dimensional matrix of the
resolvent between the site states in the 0th and Lx th slice of
the system (i.e., Tr|〈0|G|Lx〉|2 is the probability for an electron
to go from a site on the layer 0 to a site on the layer Lx).
One can then work out the asymptotic behavior of ξ1d : In
the localized regime one expects that for L large enough ξ1d

saturates to the actual value of the localization length ξ of the
d-dimensional system. Conversely, in the extended regime the
wave traveling along the bar is evenly spread over the whole
bar. The effective disorder seen by the wave in each layer is
thus a statistical average over the disorder in the layer. One can
show that the results of perturbation theory for 1d are also valid
here, with the modified disorder W̃ 2 = W 2/Ld−1 [47]. As a

30 35 40
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)
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-50 0 50
(W-Wc)L

1/ν

-2

-1

0

ln
(λ

1d
)

-50 0 50
(W-Wc)L

1/ν

0

0.4
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FIG. 3. Left panel: λ1d as a function of the disorder W in 4d for
several system sizes L from 2 to 18. The vertical dashed line spots the
position of the critical point, Wc � 34.5. Top-right panel: Finite-size
scaling of the same data for L from 10 to 18, showing data collapse for
ν � 1.11. Bottom-right panel: ψf1 = (λ1d − f∞)/Ly as a function of
the scaling variable (W − Wc)L1/ν for different sizes L from 2 to 7,
showing data collapse for the same value as before of Wc and ν and
for y � −1.

result, one expects that in the metallic phase ξ1d grows as Ld−1,
i.e., the number of (open) channels in the transverse direction.
(Note that in this case the correlation length ξ is related to the
resistivity of the d-dimensional system via σ ∝ 1/ξd−2 [47].)

Hence, the good scaling variable is the dimensionless
quasi-1d localization length, defined as λ1d = ξ1d/L. This
quantity is the inverse of the smallest positive Lyapunov
exponent γ , and behaves as

λ1d �
⎧⎨
⎩

(L/ξ )d−2 ∝ σLd−2 for W < Wc,

λc for W = Wc,

ξ/L for W > Wc.

The left panels of Figs. 3, 4, and 5 show the behavior of (the
logarithm of) the dimensionless quasi-1d localization length
λ1d as a function of W for several system sizes in dimensions
4, 5, and 6, respectively. As expected, for small (resp. large)
values of the disorder λ1d grows (resp. decreases) as L is
increased; for large enough sizes, the curves corresponding to
different L cross at the critical point. However, the figures show
the presence of systematic FSEs due to practical limitations on
the system sizes: In 4d the crossing point shifts towards higher
values of W by about 2.5% as L is increased from 2 to 18, while
in 5d it moves towards lower values of the disorder (again by
about 2.5%) when L goes from 2 to 9. FSEs become very
strong in 6d, where the crossing point shifts systematically
to lower values of W by about 10% when L varies from 2
to 6. This gives a first qualitative indication of the fact that,
differently from conventional phase transitions, FSEs for AL
get stronger as the dimensionality is increased.

Such finite-size corrections must thus be taken into account
in order to get accurate estimations of the critical values of
the disorder strength and of the critical exponent. This can be
done considering the presence of irrelevant scaling variables.
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FIG. 4. Left panel: λ1d as a function of the disorder W in 5d for
several system sizes L from 2 to 9. The vertical dashed line spots the
position of the critical point, Wc � 57.5. Top-right panel: Finite-size
scaling of the same data for L from 6 to 9, showing data collapse for
ν � 0.96. Bottom-right panel: ψf1 = (λ1d − f∞)/Ly as a function
of the scaling variable (W − Wc)L1/ν for different sizes L from 2 to
6, showing data collapse for the same value as before of Wc and ν

and for y � −1.2.

More precisely, we follow [14,21] and suppose that the
dependence of λ1d on W and L can be described in terms
of a scaling function:

λ1d (W,L) = F (wL1/ν,ψLy), (9)

where w = (W − Wc)/Wc is the (dimensionless) distance
from the critical point, ν is the critical exponent, ψ is the
leading irrelevant scaling variable, and y is the smallest (in
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FIG. 5. Left panel: λ1d as a function of the disorder W in 6d for
several system sizes L from 2 to 6. The vertical dashed line spots the
position of the critical point, Wc � 83.5. Top-right panel: Finite-size
scaling of the same data for L equal to 4, 5, and 6, showing data
collapse for ν � 0.84. Bottom-right panel: ψf1 = (λ1d − f∞)/Ly as
a function of the scaling variable (W − Wc)L1/ν for different sizes L

from 2 to 5, showing data collapse for the same value as before of Wc

and ν and for y � −1.4.

absolute value) irrelevant critical exponent (consistently, we
should find y < 0 if ψ is irrelevant). For finite L there is no
phase transition and F is a smooth function of its arguments.
Hence, assuming that the irrelevant scaling variable is not
dangerous (and for L large enough), one can expand Eq. (9)
up to first order in ψLy :

λ1d (W,L) = f∞(wL1/ν) + ψLyf1(wL1/ν). (10)

In order to estimate Wc, ν, and y we then proceed in the
following way:

(1) Since FSEs are negligible for L large enough, we
suppose that one can obtain an approximate evaluation of the
function f∞(x) by performing a cubic fit of the numerical
data for the largest available system sizes (in practice we use
L = 18 and 16 in d = 4, L = 9 and 8 in d = 5, and L = 6
in d = 6). Note that the validity of this assumption must be
verified a posteriori, since it depends on the value of the
irrelevant exponent y, on Lmax, and on the form of the scaling
function f1.

(2) We plot the difference between the numerical data for
L < Lmax and the function f∞ estimated in step (1), divided
by Ly , as a function of the scaling variable (W − Wc)L1/ν .
We determine the values of Wc, ν, and y that give the best
data collapse of the curves corresponding to different values
of L (see bottom-right panels of Figs. 3, 4, and 5), yielding an
approximate estimation of (ψ times) the scaling function f1

(which can also be approximated by a cubic fit).
(3) We plot λ1d as a function of (W − Wc)L1/ν for the

largest sizes only, checking that our estimation of the critical
parameters give a good data collapse (see top-right panels of
Figs. 3, 4, and 5).

(4) Having estimated the scaling function ψf1 and the
critical parameters Wc, ν, and y in the previous steps, we can
iteratively improve the estimation of f∞ obtained in step (1) by
performing a cubic fit of λ1d (W,Lmax) − ψL

y
maxf1(W,Lmax),

which takes into account finite-size corrections also for the
largest system size in a self-consistent way. One can then
repeat the whole process until it converges.

This analysis yields the following values for the critical
parameters:

d = 4 d = 5 d = 6
Wc = 34.5 ± 0.2 Wc = 57.5 ± 0.2 Wc = 83.5 ± 0.4
ν = 1.11 ± 0.05 ν = 0.96 ± 0.06 ν = 0.84 ± 0.07
y = −1 ± 0.1 y = −1.2 ± 0.1 y = −1.4 ± 0.2

(11)

The results in 4d and 5d are in excellent agreement with
the recent accurate estimations of [21], while our analysis
provides the first direct calculation of the critical parameters
for AL in six dimensions [48]. We also applied this method in
3d (not shown), yielding Wc = 16.35 ± 0.1, ν = 1.57 ± 0.02,
and y = −1 ± 0.1, in excellent agreement with the results of
Refs. [14,17]. Remarkably, the leading irrelevant exponent y

seems to depend very weakly on the spatial dimension at least
up to 6d.

It is remarkable that finite-size corrections are governed by
scaling variables [(W − Wc)L1/ν and Ly] in which the linear
size L enters raised to exponents (ν and y) that seem to have
a finite limit when d → ∞. This suggests a very different
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behavior from conventional phase transition where scaling
variables instead are naturally expressed in terms of N = Ld .
We will come back to this point in the conclusion.

B. Statistics of level spacings and of wave-function coefficients

In order to analyze the statistics of energy gaps and of wave-
function amplitudes we have diagonalized the Hamiltonian (1)
for dimensions from 3 to 6, for several system sizes L (with
periodic boundary conditions), and for several values of the
disorder strength W . For each L and W , we have averaged
over several realizations of the on-site quenched disorder.
Since we are interested in E = 0, we only focused on 1/16
of the eigenstates centered around the middle of the band (we
have checked that taking 1/32 or 1/64 of the states does not
affect the results, but yields a poorer statistics). The computer
time required for ED grows as the third power of the total
number of sites of the matrix, L3d . As a consequence, we
can access slightly smaller system sizes with respect to the
TM method. Still, one can simulate rather large values of L

for low enough dimensions (e.g., Lmax = 30 for d = 3 and
Lmax = 13 for d = 4), whereas one is instead limited to very
small sizes as dimensionality is increased (Lmax = 8 for d = 5
and Lmax = 5 for d = 6). Note, however, that ED algorithms
are faster if one only is interested in the eigenvalues and not in
the eigenvectors. For this reason, in d = 6 we have been able
to obtain some data for the statistics of energy gaps, for which
the knowledge of the eigenfunctions is not necessary, also for
Lmax = 6.

We have studied the statistics of level spacings of neigh-
boring eigenvalues: sn = En+1 − En � 0, where En is the
energy of the nth eigenstate in the sample. In the extended
regime level crossings are forbidden. Hence the eigenvalues
are strongly correlated and the level statistics is expected to be
described by RMT (more precisely, several results support a
general relationship between delocalization and the Wigner’s
surmise of the GOE). Conversely, in the localized phase
wave functions close in energy are exponentially localized
on very distant sites and do not overlap. Thus there is no level
repulsion and eigenvalues should be distributed similarly to
random points thrown on a line (Poisson statistics). In order to
avoid difficulties related to the unfolding of the spectrum, we
follow [49] and measure the ratio of adjacent gaps,

rn = min{sn,sn+1}
max{sn,sn+1} ,

and obtain the probability distribution �(r), which displays
a universal form depending on the level statistics [49]. In
particular �(r) is expected to converge to its GOE and Poisson
counterpart in the extended and localized regime [49,50],
allowing us to discriminate between the two phases as r

changes from rGOE � 0.5307 to rP � 0.3863, respectively.
The GOE-Poisson transition can also be captured by

correlations between nearby eigenstates such as the mutual
overlap between two subsequent eigenvectors, defined as

qn =
N∑

i=1

|〈i|n〉||〈i|n + 1〉|.
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FIG. 6. r (top left) and q typ (bottom left) as a function of the
disorder W in 3d for several system sizes L from 4 to 30. The
horizontal dashed lines correspond to the reference GOE and Poisson
asymptotic values. The vertical dashed line spots the position of
the AL transition, Wc � 16.35. Finite-size scaling of the same data
(top-right and bottom-right panels) showing data collapse obtained
for ν � 1.57. Finite-size corrections to Eq. (12) are observed at small
sizes (open symbols), and can be described by Eq. (10) with y � −1.

In the GOE regime the wave-function amplitudes are i.i.d.
Gaussian random variables of zero mean and variance 1/N

[51]; hence q converges to qGOE = 2/π . Conversely in the
localized phase two successive eigenvector are generically
peaked around very distant sites and do not overlap, and there-
fore qP → 0 for L → ∞. At first sight this quantity seems to
be related to the statistics of wave-function coefficients rather
than to energy gaps. Nonetheless, in all the random matrix
models that have been considered in the literature up to now,
one empirically finds that q is directly associated with the
statistics of level spacings. The best example of that is provided
by the generalization of the Rosenzweig-Porter random matrix
model of [38], where there is a whole region of the parameter
space where wave functions are delocalized but multifractal
and strongly correlated, while the statistics of neighboring
gaps is still described by the GOE ensemble. In this case one
numerically finds that q converges to its GOE universal value
2/π irrespective of the fact that wave-function amplitudes
are not i.i.d. Gaussian random variables of variance 1/N .

In Figs. 6, 7, and 8 we show the behavior of the average
value of the ratio of adjacent gaps, r , and of the typical
value of the mutual overlap between subsequent eigenvectors,
q typ = exp[ln q], as a function of the disorder W , for several
system sizes L, and for d = 3, 4, and 5 respectively. As
expected, for small (resp. large) enough disorder we recover
the universal values rGOE � 0.5307 and q

typ
GOE = 2/π (resp.

rP � 0.3863 and q
typ
P → 0) corresponding to GOE (resp.

Poisson) statistics. Data for different system sizes exhibit a
crossing point around the critical points Wc, which coincide,
within our numerical accuracy, with that obtained in the pre-
vious subsection from the analysis of the Lyapunov exponent,
and are in good agreement with the ones reported in the
literature [14,17,21]. One also finds that for large enough L the
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FIG. 7. r (top left) and q typ (bottom left) as a function of the
disorder W in 4d for several system sizes L from 3 to 13. The
horizontal dashed lines correspond to the reference GOE and Poisson
asymptotic values. The vertical dashed line spots the position of
the AL transition, Wc � 34.5. Finite-size scaling of the same data
(top-right and bottom-right panels) showing data collapse obtained
for ν � 1.11. Finite-size corrections to Eq. (12) are observed at small
sizes (open symbols), and can be described by Eq. (10) with y � −1.

whole probability distribution �(r) converges to its GOE and
Poisson counterparts for W < Wc and W > Wc, respectively.
In the right panels of Figs. 6, 7, and 8, we show that for the
largest accessible system sizes the dependence of r and q typ on
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FIG. 8. r (top left) and q typ (bottom left) as a function of the
disorder W in 5d for several system sizes L from 3 to 8. The horizontal
dashed lines correspond to the reference GOE and Poisson asymptotic
values. The vertical dashed line spots the position of the AL transition,
Wc � 57.5. Finite-size scaling of the same data (top-right and bottom-
right panels) showing data collapse obtained for ν � 0.96. Finite-size
corrections to Eq. (12) are observed at small sizes (open symbols),
and can be described by Eq. (10) with y � −1.2.

W and L can be described in terms of the scaling functions:

r(W,L) = g∞(wL1/ν),

q typ(W,L) = h∞(wL1/ν),
(12)

with w = (W − Wc)/Wc. The values of ν are consistent,
within our numerical incertitude, with the ones estimated
using the TM method in the previous subsection, and are
in perfect agreement with Refs. [14,17,21]. Deviations from
Eq. (12) due to FSEs are clearly visible at small L, and
can be described in terms of systematic corrections to the
one-parameter scaling due to the presence of irrelevant scaling
variables as explained above [see Eq. (10)]. The numerical
values of the exponent y describing finite-size corrections to
scaling for r and q typ are compatible, within our numerical
precision, with the ones reported in Eq. (11), confirming
that the same sets of critical parameters describe the critical
properties of level statistics and transport properties.

As already pointed out above, FSEs get stronger as
dimensionality is increased. This effect is even more visible
when level statistics is considered. In the left panel of Fig. 9 we
show the behavior of r as a function of the disorder strength
W , for L from 2 to 6 in six dimensions, showing dramatic
FSEs: The crossing point shifts towards smaller values of W

from about W ∼ 130 to W ∼ 86 as L is increased from 2
to 6, and it has not converged yet to Wc even for the largest
available system size. Nevertheless, taking care carefully of
finite-size corrections as explained in Sec. III A, one is able to
show that the same set of critical parameters found from the
analysis of the Lyapunov exponent (Wc � 83.5, ν � 0.84, and
y � −1.5) yield a reasonably good finite-size scaling. This is
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FIG. 9. Left panel: r as a function of the disorder W for several
system sizes L from 2 to 6 in 6d . The horizontal dashed lines
correspond to the reference GOE and Poisson asymptotic values.
The vertical dashed line spots the position of the AL transition,
Wc � 83.5. Top-right panel: Finite-size scaling of the same data for
the largest system sizes only, L = 4, 5, and 6, showing data collapse
for ν � 0.84. Bottom-right panel: ψg1 = (r − g∞)/Ly as a function
of the scaling variable (W − Wc)L1/ν for different sizes L from
2 to 5, showing a reasonably good data collapse for the same value
as before of Wc and ν, and for y � −1.4.

094204-7



E. TARQUINI, G. BIROLI, AND M. TARZIA PHYSICAL REVIEW B 95, 094204 (2017)

demonstrated by the top-right and bottom-right panels of
Fig. 9, where the scaling functions g∞ and (ψ times) g1 are
found from the data collapse of the numerical data in terms
of the scaling variables (W − Wc)L1/ν . (We were not able to
repeat the same analysis for q typ, since numerical data for the
overlap between subsequent eigenvectors are available only
up to L = 5.)

Analyzing fluctuations of eigenfunctions, we also focused
on the (averaged) inverse participation ratio. The IPR of the
eigenfunction |n〉 is defined as ϒ

(n)
2 = ∑Ld

i=1 |〈i|n〉|4. In the
full extended regime wave functions are uniformly spread
over all the volume; thus 〈i|n〉 are random variables of order
1/

√
Ld , due to normalization, and ϒ2 vanishes as C/Ld for

L → ∞—the prefactor C depends on the disorder strength
W , approaching its GOE value equal to 3 deep in the metallic
phase. Conversely in the localized phase wave functions are
localized on O(ξd ) sites and ϒ2 approaches a constant value
in the thermodynamic limit (in the infinite-disorder limit,
W → ∞, one has that ϒ2 → 1).

From the wave-function amplitudes obtained via ED, we
have computed the typical value of the IPR, defined as ϒ

typ
2 =

exp[ln ϒ2], for several values of the disorder strength and of
the system size L, and for dimensions from 3 to 5. The flowing
fractal exponent β describing the scaling of ϒ

typ
2 with L can

then be approximately evaluated as

β(W,L) = − ln ϒ
typ
2 (W,L) − ln ϒ

typ
2 (W,L − 1)

d[ln L − ln(L − 1)]
. (13)

In Fig. 10 we plot the numerical results for the exponent β as a
function of W for several system sizes in four dimensions,
showing a similar—although much less clean—behavior
compared to the one found for the statistics of energy gaps:
For W < Wc one observes that β grows with L; its behavior
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FIG. 10. Left panel: Flowing fractal exponent β describing the
scaling of the typical value of the IPR with the system size for d = 4.
The vertical dashed black line corresponds to the critical disorder
Wc � 34.5. Right panel: Finite-size scaling of the same data showing
a reasonably good data collapse obtained for ν � 1.11. Strong finite-
size corrections to the one-parameter scaling are observed at small
sizes (open symbols), and can be described by Eq. (10) with y � −1.

is compatible with an approach towards 1 for L large enough,
corresponding to full delocalized wave functions. Conversely,
for W > Wc the exponent β decreases as the system size is
increased, and seems to approach 0 for large L, implying that
ϒ

typ
2 → constant, as expected for localized eigenstates. For the

largest available sizes, the curves corresponding to different
values of L cross approximately around Wc � 34.5. Although
β is affected by much larger fluctuations and stronger FSEs
compared to r and q typ, the same set of critical parameters
found before (Wc � 34.5, ν � 1.11, and y � −1) yields a
reasonably good data collapse of numerical data, as shown
in the right panel of Fig. 10. Similar results are also found
in dimensions 3 and 5 (not shown). This analysis cannot be
performed in six dimensions, due to the fact that the IPR can
be measured only up to Lmax = 5, which is not sufficiently
large to take care in an accurate way of the strong FSEs.

IV. STRONG-DISORDER RG

In this section we present our results based on the strong-
disorder RG approach for AL recently introduced in [44,45].
The SDRG is an efficient real-space decimation procedure,
consisting in integrating out iteratively the largest coupling
constant in the Hamiltonian. The ideas behind this method
reside in the seminal work of Ref. [52], and have been
successfully applied to describe the critical and near-critical
behavior of the random transverse-field Ising model and other
random magnetic transitions [53], and have also been recently
used in electronic systems [54].

In the case in which the strongest energy scale happens to
be the on-site energy |εa| on site a, as sketched in the top panel
of Fig. 11, one can perform the Gaussian integral over φa in
Eq. (5), obtaining a RG transformation for the on-site energies
on all the neighbors i of a and for the hopping amplitudes
between all possible pairs of neighbors (ij ) of a:

εi → εi − t2
ai

εa

,

atai

i

tij

a b

tab

i

tij

FIG. 11. Sketch of the SDRG decimation procedure for a site
(top), and a bond (bottom) transformation. Dotted blue lines represent
preexisting hopping amplitudes before decimation. Solid blue lines
represent new or renormalized bonds. The on-site energies of all the
neighbors of the decimated sites (blue circles) are renormalized as
well.
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tij → tij − tai taj

εa

. (14)

Similarly, if the strongest energy scale is the hopping amplitude
|tab| between sites a and b, as sketched in the bottom panel of
Fig. 11, performing the Gaussian integrals over φa and φb in
Eq. (5) yields the following RG transformation for the on-site
energies on all the neighbors i of a and b and for the hopping
amplitudes between all possible pairs of neighbors (ij ) of a

and/or b:

εi → εi − εat
2
bi − 2tabtai tbi + εbt

2
ai

εaεb − t2
ab

,

tij → tij − εatbi tbj − tab(tai tbj + taj tbi) + εbtai taj

εaεb − t2
ab

. (15)

Note that Eqs. (15) can be obtained using Eqs. (14) twice to
eliminate first site a and then site b.

Equations (14) and (15) are in fact exact RG transforma-
tions, as it was first shown in [55]. However, the number of
nonzero matrix elements grows very rapidly under RG due
to the proliferation of new bonds (except, of course, in 1d

[45]). This makes the numerical analysis unpractical. Several
procedures have been proposed to solve this problem, which
is also encountered in similar SDRG schemes for electronic
systems [54] as well as for other disordered models such as
the random transverse-field Ising model [53]. In this work we
follow [44] and set a maximum coordination number kmax

per site, throwing away most of the weak couplings. The
rationale behind this procedure is that—at least in high enough
dimension—the critical properties of AL are controlled by
a strong-disorder limit, and the weak-coupling constants
generated under RG are in fact “irrelevant”.

In order to check whether or not this assumption is correct,
it is important to analyze the accuracy of the results obtained
using the SDRG and study their convergence with kmax. We
first focus on the average DOS, ρ = −Tr ImG/(πLd ).

We define the following quadratic form �[φi ; {ωi,σij ,κ}]
of the auxiliary fields φi :

�[φi ; {ωi,σij ,κ}] =
∑

i

ωiφ
2
i +

∑
i<j

σijφiφj + iκ, (16)

in terms of which the average DOS can be written as

ρ = i

πLdZ
Im

∫ N∏
i=1

dφi

×�[φi ; {ωi = 1,σij = 0,κ = 0}] eS[φi ], (17)

where Z is defined in Eq. (5). When a site or a bond is integrated
out under the RG transformations, some of the coefficients of
� (i.e., those involving the neighboring sites of the decimated
variables) must then be renormalized as well. Hence, although
at the level of the initial conditions one has that ωi = 1 for
all i, σij = 0 for all (ij ), and κ = 0 [see Eq. (17)], in order to
compute the average DOS one needs to keep track of the flow
of all the coefficients of � under RG. For example, when a
given site, say site a, is decimated out, one has to renormalize
the coefficients ωi of all sites i neighbors of a, the coefficients
σij of all possible pairs of neighbors (ij ) of a, as well as the
value of the constant κ . This can be easily done by Gaussian

integration:

ωi → ωi + ωat
2
ai

ε2
a

− taiσai

εa

,

σij → σij + 2ωatai taj

ε2
a

− taiσaj + taj σai

εa

,

κ → κ + ωa

εa

. (18)

Similarly, when the hopping amplitude between sites a and b

is eliminated, one can determine analogous RG relations for
the coefficients of Eq. (16) using Eq. (18) twice, first on site
a and then on site b. At the end of the RG, when all sites
have been integrated out, ρ can be then obtained from Eq. (17)
as (minus) the imaginary part of the final value of κ divided
by πLd .

We have computed the average DOS around the AL critical
points for dimensions from 3 to 6 using this method for several
values of kmax, and compared its numerical value with the one
obtained from ED, finding an excellent agreement even at
small values of kmax. In practice, already for kmax � 60 the
average DOS obtained via the SDRG coincides within error
bars and sample-by-sample with the one computed from ED
for all the accessible system sizes and in all dimensions.

We turn now to transport properties. In particular, in the
following we compare the results for the dimensionless quasi-
1d localization length computed from the TM approach as
described in Sec. III A, with the ones obtained using the SDRG
with different values of kmax. More precisely, we consider the
quasi-1d bar of Fig. 1 and instead of solving Eq. (7) exactly via
LU decomposition, we apply the SDRG to invert the matrix
[G(x)]−1 in an approximate way, as explained in the following:

(1) We start from the layer at x = 0 which is in contact
with an electron bath (η > 0) and integrate out progressively
all the sites of the layer using Eqs. (14) and (15), eliminating
iteratively the strongest energy scale, until no sites are left on
the layer.

(2) In such a way, at the end of step (1) we end up with an
approximate expression for the matrix element of the inverse
cavity Green’s function on the layer x = 1, [G(x = 1)]−1

ij (in
the absence of the layer at x = 2). Then, knowing the left-hand
side of Eq. (7), one can infer the matrix elements of the (cavity)
Green’s function on the layer x = 0, Gij (x = 0), and compute
the typical value of the imaginary part of its diagonal elements,
ln ImG(x = 0).

(3) We then integrate out progressively all the sites of the
layer x = 1 using Eqs. (14) and (15) to eliminate iteratively
the strongest energy scale, yielding the matrix elements of the
inverse cavity Green’s function [G(x =2)]−1

ij on the layer x =2
in the absence of the subsequent layer (x = 3), and use Eq. (7)
“backwards” to infer Gij (x = 1). We measure ln ImG(x = 1)
and repeat the whole process until the layer x = Lx is
reached.

This procedure allows us to compute the dimensionless
quasi-1d localization length in a considerably faster way
compared to exact LU decomposition. In Fig. 12 we plot
the results for λ1d at the AL critical point in dimension
6 (Wc � 83.5) for different values of kmax and for L = 3
and 6, showing that for kmax � 240 the numerical values
of λ1d obtained via the SDRG approach converge, within
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FIG. 12. Quasi-1d dimensionless localization length, λ1d , ob-
tained using the SDRG procedure for different values of kmax, at
the AL critical point, Wc � 83.5, in 6 dimensions, and for L = 3
(blue circles) and L = 6 (red squares). The horizontal blue (resp.
red) solid and dashed lines correspond to the average value of λ1d

and its fluctuations computed using the TM method for L = 3 (resp.
L = 6), showing that for kmax � 240 the approximate SDRG results
converge, within our numerical accuracy, to the exact values.

our numerical precision, with the ones obtained from exact
techniques. Similar results are found in all dimensions down
to d = 3 (not shown).

This analysis shows that the results obtained using the
SDRG approach for both for the average DOS and the
Lyapunov exponent converge already for reasonably small
values of kmax to the exact ones in all spatial dimensions, at least
close enough to the AL critical point [56]. Hence, the critical
parameters found using the SDRG approach (for sufficiently
large kmax) coincide, within error bars, with the ones given
in Eq. (11). Since the computer time required for an efficient
algorithmic implementation of the SDRG procedure scales as
dLd (ln L)k2

max(ln kmax), one can in principle apply this method
to obtain very accurate results for much larger system sizes
compared with the exact numerical techniques. The SDRG can
then also be applied to study AL in dimensions larger than 6.
This analysis goes beyond the scope of this work. Preliminary
results in this direction have already been obtained in [44] up
to d = 10.

In the last part of this section, we focus instead on the
properties of the flow of the SDRG close to the AL critical
point. More precisely, we study the evolution under RG of
the probability distributions of the diagonal and off-diagonal
matrix elements, Qτ (ε) and Rτ (t), respectively—the index τ

corresponds to the RG “time”. It is important to stress that these
probability distributions do not contain all the relevant physical
information on the system. For instance, they are insensitive to
correlations between on-site energies and hopping amplitudes
and/or spatial correlations between matrix elements which
may be possibly generated during the flow. However, as we
will discuss below, they can be still used to gather some useful
qualitative insights on the critical properties of AL in high
dimensions.

In the following, for simplicity, we will restrict ourselves
to the case of real matrix elements (i.e., we set η = 0 on
all the sites of the system). Similar results are obtained if
one considers a finite (but small, e.g., η ∼ 10/Ld ) imaginary
regulator and study, for instance, the flow of the probability
distributions of the modulus of diagonal and off-diagonal
matrix elements. At the AL critical point, the initial conditions
for the probability distributions of on-site energies and hopping
amplitudes are

Qτ=0(ε) = 1

Wc

θ

(
Wc

2
− |ε|

)
,

Rτ=0(t) = 2d

N − 1
δ(t − 1) + N − 1 − 2d

N − 1
δ(t).

(19)

The critical disorder Wc is much larger than 1 already in three
dimensions—and it grows very fast as d is increased (see
Fig. 16). As a consequence, at the beginning of the RG, the
strongest energy scales are provided by the sites with on-site
energies close to the edges of the support of Qτ=0(ε). As
these sites are integrated out, new hopping amplitudes are
generated, and the two δ peaks of Rτ=0(t) acquire a finite
support. Hence, as the RG time τ grows, Qτ (ε) shrinks and
Rτ (t) broadens. When the support of the two distributions
becomes approximately the same, we observe a stationary
state [57].

The stationary distributions Qτ�
(ε) and Rτ�

(t) at the AL
critical points are plotted in Fig. 13. Despite the fact that the
initial conditions (19) change dramatically as d is increased,
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FIG. 13. Bottom-left and bottom-right panels: The stationary
distributions Rτ�

(t) and Qτ�
(ε) at the AL critical points in dimensions

from 3 to 6. The system size is L = 33 in 3d , L = 14 in 4d , L = 8
in 5d , and L = 6 in 6d , in such a way that the total number of
sites is approximately the same, N ∼ 4 × 104, in all dimensions. The
stationary state is reached for a RG time τ� such that the number of
sites left in the system are approximately 1/8 of the initial ones in 3d ,
1/16 in 4d , 1/26 in 5d , and 1/40 in 6d . The value of kmax is set to
360 in all dimensions. Top panel: The same data as in the bottom-left
panel plotted in a log-log scale, showing the power law behavior of
Rτ�

(t) ∼ t−γ with γ � 2 (black dashed line), for t smaller than a
cutoff of O(1).
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we observe that Qτ�
(ε) and Rτ�

(t) are strikingly similar in
all spatial dimensions from 3 to 6. This implies that the RG
flow, and thus the critical properties of AL, are controlled by
a fixed point which is very similar for all d � 3. As shown
in the inset of Fig. 13, the tails of R�(t) seem to be described
by a power law, Rτ�

(t) ∼ t−γ , with an exponent γ � 2 which
is also roughly independent of d, and a cutoff for hopping
amplitudes of O(1), which seems to drift slowly to larger
values of t as d is increased. Note however that for large
d the initial conditions (19) get farther and farther from the
stationary distributions. One needs then more and more RG
steps to approach the stationary regime of the flow; i.e., τ�

increases as d grows. For this reason, FSEs on Qτ�
(ε) and

Rτ�
(t) also increase as d is increased since for τ = τ� we are

left with smaller systems and fewer matrix elements (see the
caption of Fig. 13 for more details).

The power law tails of Rτ�
(t) are reminiscent of a strong-

disorder fixed point scenario [58], since they are related to the
divergence of the variance of the distribution of the hopping
amplitudes. However, the fact that the stationary distributions
exhibit a cutoff on a scale of O(1)—which does not seem to
be due to a FSE—implies that in fact all matrix elements
stay of O(1) and that the disorder does not grows under
iterations of the RG transformations. Nonetheless, although
at any finite d the fixed point is not of a “truly” infinite
disorder type, the SDRG approach still provides an efficient
and accurate approximation scheme. Furthermore, we find that
the cutoff on the power law hopping distribution increases and
possibly diverges in the large-d limit, suggesting that in this
case one recovers a genuine infinite randomness fixed point
scenario [58].

All in all, these observations provide a convincing indica-
tion of the fact that the properties of AL in high dimensions
are governed by a “strong-disorder” fixed point, as already
suggested in [35,44]. This idea is also supported by the results
of the SUSY approach for the critical properties of AL on
treelike structures and infinite-dimensional models [30,31],
and will be discussed in more detail in the next section.

V. WEAK VERSUS STRONG COUPLING: ANALYSIS
OF DIMENSIONAL DEPENDENCE

In this section we analyze the dimensional dependence at
criticality of all observables discussed previously. As we shall
show, approaching the lower critical dimension, dL = 2, the
critical point corresponds to weak disorder (or, equivalently,
weak coupling in terms of the NLσM): when d approaches 2
the system at criticality is more and more metallic-like and
described by the GOE universality class. On the contrary,
when d → ∞, the system at criticality is more and more
insulating-like and described by the Poisson universality class.
This section presents results supporting one of the main
messages of this work, which is that the infinite-dimensional
limit is a better starting point to describe systems in all
dimensions down to d = 3.

1. Critical exponents and level statistics

We start by focusing on the critical exponent ν, whose
behavior as a function of 1/d is plotted in Fig. 14. One

0 0.1 0.2 0.3 0.4 0.5
1/d

0

0.5

1

1.5

2

1/
ν

FIG. 14. Numerical values of the inverse of the critical exponent ν
as a function of 1/d in dimensions from 3 to 6 (blue circles), showing
a smooth behavior interpolating from ν → ∞ in d = 2 to ν = 1/2
in d → ∞ [46]. The turquoise dashed line shows the predictions of
the self-consistent theory of [27], with dU = 4. The dashed-dotted
magenta line corresponds to the lower bound ν � 2/d provided by
the Harris criterion [59]. The red solid line shows the dimensional
dependence of ν obtained from a perturbative analysis of the NLσM
to five-loop in ε = d − 2 [10], Eq. (20). The straight dotted blue
line is a linear fit corresponding to the first correction in 1/d from
which we find 1/ν � 2 − 4.75/d . The prediction of the semiclassical
approach of Ref. [25], ν−1 = 2 − 4/d , corresponds to the straight line
interpolating from ν−1 = 2 in d → ∞ to ν−1 = 1 in d = 2.

clearly observes that ν continuously decreases from ν → ∞
in d = 2 to the value ν = 1/2 in d → ∞ predicted by the
SUSY approach [46], showing no sign of saturation. This
strongly indicates that the upper critical dimension of AL is
infinite, as first suggested in [24] and more recently also in
Refs. [22,25], in contrast, for instance, with the self-consistent
theory of [27], which predicts dU = 4 (turquoise dashed line).
The perturbative analysis of the effective field theory based
on the replicated NLσM has been carried to five-loop order in
ε = d − 2 [10], yielding

ν = 1

ε
− 9

4
ζ (3)ε2 + 27

16
ζ (4)ε3 + O(ε4). (20)

Such dimensional dependence of the critical exponent corre-
sponds to the solid red line of Fig. 14, and yields a very poor
agreement with the numerical results even in low dimensions.
In fact, Eq. (20) violates the lower bound ν � 2/d based on the
Harris criterion [59] (dashed-dotted magenta curve) already
in 3d. The straight dotted blue line in Fig. 14 is a linear fit
corresponding to the first correction in 1/d from which we
find

1

ν
� 2 − 4.75

d
.

The quality of the fit shows that the first correction in 1/d

performs much better than the expansion to the fifth order in
d − 2 down to d = 3.

As mentioned above, these observations suggest that
the critical properties of AL away from the lower critical

094204-11



E. TARQUINI, G. BIROLI, AND M. TARZIA PHYSICAL REVIEW B 95, 094204 (2017)

0 0.2 0.4
1/d

0.4

0.45

0.5

r c

0 0.2 0.4
1/d

0

0.2

0.4

0.6

qty
p c

0 0.2 0.4
1/d

0

0.1

0.2

0.3

(λ
1d

) c

0 0.2 0.4
1/d

0

0.1

0.2

0.3

β c

FIG. 15. Dimensional dependence of rc (top-left panel), q
typ
c

(bottom-left panel), (λ1d )c (top-right panel), and βc at the AL critical
point as a function of 1/d . The dashed horizontal red (resp. black)
lines correspond to the reference GOE (resp. Poisson values).

dimension might be governed by a strong-disorder regime, as
suggested in [35,44]. This idea is fully confirmed by the
analysis of the critical values and their dimensional depen-
dence: In Fig. 15 we plot rc (top-left panel), q

typ
c (bottom-left

panel), (λ1d )c (top-right panel), and βc (bottom-right panel) as
a function of 1/d. In d = 2 + ε dimensions the critical point
corresponds to weak disorder (or, equivalently, weak coupling
in terms of the NLσM), which means that the critical level
statistics is close to the GOE one. With increasing d the critical
point moves continuously towards strong disorder (strong
coupling), and rc and q

typ
c approach the Poisson reference

values, suggesting that the critical level statistics in the infinite-
dimensional limit is of Poisson form, like in the localized
phase. Similarly, βc decreases as d is increased and seems to
vanish in the d → ∞ limit, implying that the IPR has a finite
limit at the AL critical point in infinite dimensions, as predicted
by the SUSY approach [31]. Finally, (λ1d )c is also a decreasing
function of d, and smoothly approaches 0 for d → ∞, con-
firming the idea that the AL critical point in infinite dimensions
is strongly localized also as far as transport properties are
concerned.

2. Dimensional dependence of the critical disorder strength

It is also interesting to study the dimensional dependence
of the critical value of the disorder strength Wc. Figure 16
shows that Wc grows faster than d (which would be the natural
scale set by the coordination number for conventional phase
transitions) as the dimensionality is increased and seems to
approach the curve Wc/t ∼ 4(2d − 1) ln(2d − 1) for large
d, which corresponds to the exact asymptotic behavior on
treelike structures in the large-connectivity limit [28,60]. As
for ν, we numerically evaluated corrections to the d → ∞
result by a fit containing the first correction in 1/d (straight
dotted blue line in Fig. 16). As before, the first correction
performs impressively well down to d = 3. Recent predictions
for the critical value of the disorder strength have been
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1/d

0

0.2

0.4

0.6

0.8

1

W
c/[8

d
ln

(2
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]

FIG. 16. Dimensional dependence of the critical value of the
disorder strength, Wc, divided by 8d ln(2d), which corresponds to the
exact asymptotic behavior on treelike lattices in the large-connectivity
limit [60]. The straight dotted blue line is a fit that takes into account
corrections in 1/d , from which we find Wc/8d ln(2d) � 1 − 1.81/d .

recently obtained in [23] up to 6d, based on the forward
scattering approximation [28], which provides an upper bound
for Wc.

3. Multifractality

We finally turn to the analysis of the dimensional depen-
dence of the critical multifractal spectra of wave-function
amplitudes. Having in our disposition all the coefficients of the
eigenvectors from ED, we can easily find the scaling behavior
of all moments:

ϒ (n)
q =

Ld∑
i=1

|〈i|n〉|2q ∝ L−τ (q),

with the system size L. (Note that ϒ1 = 1 due to the normal-
ization condition, and ϒ2 is the IPR studied in Sec. III B.) In the
metallic phase the wave-function amplitudes are of O(1/Ld )
and τ (q) = dq − 1, whereas τ (q) = 0 in the insulating regime.
At criticality τ (q) is characterized by anomalous scaling
exponents [61] which are the signatures of multifractal states.
It is customary to introduce the singularity spectrum f (α),
which denotes the fractal dimension of the set of points where
the wave-function amplitude is |〈i|n〉|2 ∼ L−α [in our discrete
system the number of such points N (α) scales as Lf (α)]:

ϒq =
N∑

i=1

|〈i|n〉|2q ∼
∫

dα exp{[f (α) − qα] ln L}.

Then, in the thermodynamic limit, the saddle point compu-
tation of ϒq leads to the following Legendre transformation:

α = dτ (q)

dq
, q = f ′(α), f (α) = αq − τ (q). (21)

f (α) is by definition a convex function of α. The value
q = 0 is associated with the most probable value αm of the

094204-12



CRITICAL PROPERTIES OF THE ANDERSON . . . PHYSICAL REVIEW B 95, 094204 (2017)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

f(

d=3
d=4
d=5
d=

FIG. 17. Rescaled singularity spectrum f (α)/d as a function of
α/d at the AL critical point in dimensions from 3 to 5. The dashed
black straight line f (α) = α/2 for α ∈ [0,2] corresponds to the
prediction of [61] in the d → ∞ limit.

wave-function coefficients, where the singularity spectrum
reaches its maximum, f (αm) = d. The value q = 1 is asso-
ciated with the point α1 such that f (α1) = α1, and f ′(α1) = 1.
A finite support 0 < α− < α < α+ where f (α) > 0 in the
L → ∞ limit is a signature of multifractality, while for ergodic
states, f (α) = −∞ unless for α = d, where f (d) = d. From
the ED data we have evaluated the typical value of the exponent
τ (q) at the AL critical point as [18]

τ typ
q = −d ln ϒq

dL
,

from which the spectrum of fractal dimensions f (α) can be
determined applying the Legendre transformation, Eq. (21).
Our numerical results in dimensions from 3 to 5 are plotted
in Fig. 17, showing that the (rescaled) singularity spectrum
of critical wave functions broadens as d is increased. In
particular, the lower edge α− of the support of f (α) seems
to approach zero as d is increased and f (α) seems to approach
(even though there is still a substantial difference) the infinite-
dimensional prediction—observed on treelike lattices— which
corresponds to the strongest possible form of multifractality
and is represented by the straight line in Fig. 17 [61,62].
These observations support once again the extreme form of
AL criticality in the d → ∞ limit, where the critical states
correspond to an insulator, are described by Poisson statistics,
and their multifractal spectrum takes its strongest possible
form.

4. The d → ∞ limit and the Bethe lattice

We have shown above that the d → ∞ limit is an extremely
good starting point to analyze AL in finite dimensions. In the
usual phase transitions the mean-field theory corresponding
to the large-d limit is provided by the exact solution on
completely connected models. In the case of AL instead
completely connected lattices do not provide interesting results
and the mean-field theory is instead believed to correspond to
AL on Bethe lattices [28]. Our results confirm this expectation:

the critical values of all observables tend for d → ∞ to the
ones of the localized phase, rc = rP , q

typ
c = 0, βc = 0, i.e., to

the same critical behavior obtained for AL on Bethe lattices
and treelike structures [30,31].

VI. CONCLUSION: PHYSICAL PICTURE
AND PERSPECTIVES

In this last section, we discuss the implications of our results
on the qualitative and quantitative understanding of AL on
finite-dimensional lattices.

A. Anderson localization and rarefied conducting paths

The fact that the d → ∞ limit provides a very good
starting point to quantitatively describe AL suggests that the
solution of AL on Bethe lattices is a good starting point to
get a physical picture of AL on finite-dimensional lattices.
Recently the delocalized phase of the Anderson model on
treelike structures (and on related d → ∞ random matrix
models with long-range hopping [29]) has attracted a lot of
attention [32–37]. Although it is still debated whether before
the AL transition there is a nonergodic delocalized phase or
a very strong crossover regime, it is clear that localization is
related to the rarefaction of paths over which electrons can
travel, as anticipated in [41,46]. Some authors advocate that
this leads to a bona fide multifractal intermediate nonergodic
but delocalized phase [33,34,41], others that this picture is
valid below a certain scale that diverges (extremely fast)
approaching the transition [35–37]. Although we do not see
numerical evidence of an intermediate nonergodic delocalized
phase for large d, the fact that in the scaling variables that
govern finite-size scaling the linear size of the system, L =
N1/d , enters raised to powers that remain finite for d → ∞
suggests that (1) quasi-one-dimensional paths are indeed the
relevant geometrical objects for AL in high dimensions, and
(2) scaling becomes logarithmic in N for d → ∞ as found for
treelike structures [29] and Bethe lattices [35,37]. In summary
the idea of nonergodic transport along rarified paths is relevant
even in finite dimensions even though possibly only on finite
but very large length scales (on larger ones transport would be
instead described by standard diffusion).

B. Expansion around the Bethe lattice

In the usual phase transitions two different expansions have
been developed in order to describe the critical properties: one
around the upper and another around the lower critical di-
mension. Our results clearly indicate that the former is a much
better starting point for AL; see for example the comparison for
the value of ν in Fig. 14. This is certainly a direction for future
research and suggests that a 1/d expansion of the NLσM (in
its replicated or SUSY formulation) could provide an excellent
and controlled framework for AL. It would also be interesting
to apply the SDRG to higher dimensions (preliminary results
in this direction are already available [44] up to d = 10) as well
as to implement alternative real-space RG schemes (such as the
“resonance RG” method [63] and the Wegner flow equation
approach [64]) introduced for the family of the power law
random banded matrix ensembles, which have been shown
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to be appropriate RG schemes in the strong-disorder limit. It
seems that the only unique framework which would be capable
of spanning the whole range from the infinitely weak disorder
regime (in d = 2 + ε) to the infinitely strong disorder limit
(for d → ∞) is a nonperturbative RG approach [65]. Devel-
oping such an RG method for AL is certainly worth future
studies.

In summary, our work sheds new light on the critical
properties of AL, and it characterizes the infinite-dimensional
limit and stresses its relevance to describe AL even in three
dimensions. Our results are also relevant for cases in which

localization takes place on infinite-dimensional spaces, such
as for many-body localized systems.
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[4] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser,

and J. C. Garreau, Phys. Rev. Lett. 101, 255702 (2008); F.
Jendrzejewski, A. Bernard, K. Muller, P. Cheinet, V. Josse, M.
Piraud, L. Pezze, L. Sanchez-Palencia, A. Aspect, and P. Bouyer,
Nat. Phys. 8, 398 (2012); B. Shapiro, J. Phys. A: Math. Gen. 45,
143001 (2012).

[5] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A.
van Tiggelen, Nat. Phys. 4, 945 (2008).

[6] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[7] N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).
[8] L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, JETP Lett.

30, 228 (1979).
[9] F. J. Wegner, Z. Phys. B 35, 207 (1979); L. Schaefer and

F. J. Wegner, Z. Phys. B: Condens. Matter 38, 113 (1980); K. B.
Efetov, Adv. Phys. 32, 53 (1983).

[10] S. Hikami, Prog. Theor. Phys. Suppl. 107, 213 (1992).
[11] M. S. Foster, S. Ryu, and A. W. W. Ludwig, Phys. Rev. B 80,

075101 (2009).
[12] For a review see B. Kramer and A. MacKinnon, Rep. Prog. Phys.

56, 1469 (1993); See also P. Markoš, Acta Physica Slovaca 56,
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