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Machine learning based interatomic potential for amorphous carbon
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We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous
elemental carbon. Based on a machine learning representation of the density-functional theory (DFT) potential-
energy surface, such interatomic potentials enable materials simulations with close-to DFT accuracy but at much
lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve
in carbon structures; then, using a hierarchical set of two-, three-, and many-body structural descriptors, we
construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and
structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases,
at variance with a state-of-the-art empirical potential. Exemplary applications of the GAP model to surfaces
of “diamondlike” tetrahedral amorphous carbon (ta-C) are presented, including an estimate of the amorphous
material’s surface energy and simulations of high-temperature surface reconstructions (“graphitization”). The
presented interatomic potential appears to be promising for realistic and accurate simulations of nanoscale
amorphous carbon structures.
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I. INTRODUCTION

Carbon is among the most intriguing elements due to
its structural diversity, and its solid-state forms range from
diamond and graphite via many more complex allotropes [1–3]
onward to amorphous phases (a-C). The atomic structures of
a-C samples depend strongly on density and are characterized
by the coexistence of threefold (“sp2”) and fourfold bonded
(“sp3”) carbon atoms. In this sense, low- and high-density
forms of a-C are loosely reminiscent of graphite and diamond,
respectively, but the actual situation is much more complex
(Fig. 1). “Tetrahedral amorphous” carbon (ta-C), the dense,
sp3-rich form, is of particular technological interest due to its
attractive mechanical properties [4–6].

Atomistic simulations have long been providing useful
insight into a-C materials [10]. Many empirical interatomic
potentials exist for carbon, from the original Tersoff [11]
and Brenner [12] formulations to more recent developments,
including an environment-dependent interaction potential
(EDIP) [13], improved reactive bond-order (REBO) poten-
tials [14–16], or a recently reparametrized reactive force field
(ReaxFF) [17]; a comprehensive comparative study of such
potentials was very recently carried out [8]. These fast poten-
tials make large-scale molecular-dynamics (MD) simulations
possible, and have been applied to engineering problems such
as fracture [18] or friction and wear of ta-C coatings [19];
they are efficient enough to perform thin-film deposition
simulations [20], thus directly mirroring the atomic-scale
processes in experiments. Nonetheless, these potentials remain
empirical in nature, and may have serious shortcomings:
prominent examples are an underestimated concentration of
sp3-bonded atoms in ta-C (Ref. [15]) and poor description
of surfaces. A general problem of empirical potentials is the
inevitable compromise in accuracy for predicting different
material properties.

*vld24@cam.ac.uk

On the other hand, seminal studies based on tight-
binding schemes [21–23] as well as density-functional theory
(DFT) [24–27] early on afforded atomistic structure models of
a-C, and more recent DFT-MD studies dealt with applications
in photovoltaics [28] or coatings [29]. Furthermore, liquid
carbon has been of interest, for example, in first-principles
studies of the diamond melting line which is difficult to eval-
uate experimentally [30]. Despite their usefulness, however,
DFT-based methods are restricted to quite small system sizes,
and even with the computational power available nowadays,
they are limited in practice to a few hundred atoms. This makes
many of the above scenarios simply inaccessible to predictive
DFT-quality simulations.

To bridge the long-standing gap between these two realms,
a class of simulation methods has recently emerged which
is based on machine learning (ML). The key idea is to map
a set of atomic environments directly onto numerical values
for energies and forces; these quantities are “trained” from
a large and accurate quantum-mechanical reference database
but subsequently interpolated using the ML algorithm. If
training is successful, this makes atomistic simulations close
to quantum-mechanical accuracy accessible but requires less
computational effort by many orders of magnitude. Recent
implementations use high-dimensional artificial neural net-
works [31–33], compressed sensing [34], or Gaussian process
regression [35]. Interatomic ML based potentials have been
developed for several prototypical solids [31–40] and applied,
e.g., in studies of phase transitions [41]. We mention in passing
that ML schemes are currently being developed to estimate
other fundamental properties of molecules and solids, includ-
ing atomization energies [42], multipolar polarization [43],
band gaps [44], or NMR parameters [45]. A recent tutorial
review of the field is in Ref. [46].

Previous ML potentials have been created for the
crystalline carbon allotropes diamond and graphite [35,37],
but as those were trained on a small region of configuration
space, they are not suitable for simulating a-C. Indeed, the
only reported ML potential dealing with amorphous matter is
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FIG. 1. Exemplary a-C structures at various densities, obtained in 216-atom cells from DFT melt-quench simulations. Note the gradual
transition from open to dense networks, and the coexistence of twofold (“sp”; yellow), threefold (“sp2”; green), and fourfold (“sp3”;
blue) coordinated carbon atoms. The open, low-density structures are metastable and on much further annealing will form more sp2-rich
networks [7,8]; here, on purpose, we focus on the as-quenched structures shown, to assess as diverse local environments as possible. Bonds
are drawn up to a maximum interatomic distance of 1.85 Å, and coordination numbers are determined using the same cutoff. Structures were
visualized using ATOMEYE [9].

a neural-network potential for the phase-change data-storage
material GeTe [47] that enabled large-scale simulations
of thermal transport [48] and atomistic processes during
crystallization [49]. Amorphous materials are structurally
much more diverse than their crystalline counterparts, and
despite the lack of long-range translational symmetry, their
properties depend crucially on structural order on the local
and intermediate length scales [50]. The required large unit
cells and the long relaxation times make it very difficult to
use DFT simulations for amorphous materials of practical
interest [47,51]. The latter are hence particularly promising
targets for high-quality ML potentials.

In this work, we introduce an interatomic Gaussian ap-
proximation potential (GAP) for condensed-phase elemental
carbon, with particular focus on liquid and amorphous phases
of various densities. First, we systematically determine the
maximum accuracy that any finite-range interatomic potential
for carbon can achieve as a function of its neighbor cutoff, inde-
pendently of how it is fitted. Then, we show that our GAP does
indeed reach this accuracy, and furthermore provides reliable
structural and topological data that agree well with the com-
putationally much more demanding DFT benchmarks. Finally,
we show predictions for energies and structures of ta-C sur-
faces, which play a key role in wear and fracture mechanisms.

II. THEORY

The Gaussian approximation potential (GAP) [35,52] is an
ML approach to atomistic materials modeling, whereby an
interatomic potential for the given material is “trained” from
a database of reference quantum-mechanical data, and is then
used to interpolate energies and forces for arbitrary structures.
In order to make simulation of large systems feasible, the
total energy is broken down into a sum of local contributions,
given by a local energy function ε. This function is expanded
in a basis set adapted to the input database; it is generated
using a kernel function, or similarity measure of neighbor
environments. The choice of this kernel (and the symmetries
it obeys) is critical for the success of any ML potential [53].

Previous ML potentials for solids used a decomposition
into atomic energies, and employed many-body descriptors
to represent the atomic neighbor environment, comprising all
neighbors of an atom up to a given cutoff radius [35,54–57].
However, for a complete description of these atomic en-
vironments, one must fit the atomic energy function in a
high-dimensional space. This leads to poor “extrapolation,”
that is, to a poor fit in regions of configuration space far away
from any data points. A long simulation will likely find such
regions, especially at high temperatures, and/or when disorder
is large. Indeed, in the present case of a-C, we encountered
problems early during training when using a single many-body
descriptor only: MD runs driven by such GAP models showed
atoms aggregating at unreasonably small (sub-Å) distances.
This is a very general challenge during the development of
high-dimensional ML potentials, which carry the risk of erro-
neous extrapolation behavior unless carefully tested and used.

In this work, we generalize the many-body GAP approach
for solids: we retain the many-body terms but augment
them with two- and three-body “descriptors,” distances
between atoms and angles in triplets. The latter terms hence
represent two- and three-body interactions as in traditional
(empirical) interatomic potentials, but now all descriptors and
associated local-energy contributions are part of the same ML
framework. Our starting point is thus the following expression
for the total energy:

E = (δ(2b))2
∑

i ∈ pairs

ε(2b)
(
q(2b)

i

) + (δ(3b))2
∑

j ∈ triplets

ε(3b)
(
q(3b)

j

)

+ (δ(MB))2
∑

a ∈ atoms

ε(MB)
(
q(MB)

a

)
, (1)

where “2b,” “3b,” and “MB” denote two-, three-, and
many-body interactions, respectively. This is similar in spirit
to the recently introduced moment tensor potentials [57],
and also to another scheme that uses a parametric two-body
term in combination with a neural network that describes the
many-body interactions [58].
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In the above expression, the δ are scaling parameters, and
each corresponds to the distribution of energy contributions
that a given interaction term has to represent. We choose the
largest value for the 2b terms, which describe the largest share
of the total energy; on top of that, we add a 3b term, and finally
the many-body term with the smallest δ(d).

The local energy corresponding to each descriptor d ∈
{2b,3b,MB} is given by a linear combination of kernel
functions [35]

ε(d)(q(d)) =
N

(d)
t∑

t=1

α
(d)
t K (d)

(
q(d),q(d)

t

)
, (2)

where t denotes one of Nt training configurations qt , each
of which attains a weighting coefficient αt during fitting, and
K is a covariance kernel which quantifies how similar the
input configuration q is to the t th training configuration qt .
In practice, we sparsify the representation and only allow the
sum to range over a number of “representative points” drawn
from the full training database (Nt � Nfull). The number of
representative points differs for each descriptor and must be
carefully controlled during training.

Both for 2b and 3b contributions, we use a squared
exponential kernel [35]

K (d)
(
q(d)

i ,q(d)
t

) = exp

⎡
⎣−1

2

∑
ξ

(
q

(d)
ξ,i − q

(d)
ξ,t

)2

θ2
ξ

⎤
⎦, (3)

where ξ is an index running over the components of the
descriptor vector q(d). In the case of pairs, the descriptor has
one single scalar component (namely, the distance r12 between
the two atoms involved):

q(2b) = |r2 − r1| ≡ r12 ; (4)

for triplets, we do not directly use the natural coordinates r12,
r13, and r23, but a different form to enforce symmetry over
permutation of the neighbor atoms 2 and 3 [52]:

q(3b) =
⎛
⎝ r12 + r13

(r12 − r13)2

r23

⎞
⎠. (5)

Note that with this choice of descriptors, the first term in
Eq. (1) is equivalent to a pair potential, and the second is a
generic three-body potential, but in the GAP framework both
do not impose constraints on the specific functional form.

For the many-body term, we use the recently introduced
smooth overlap of atomic positions (SOAP) [53] descriptor,
which has proven successful in generating GAP models for
tungsten [40], in classifying diverse molecular and solid-state
structures [59], and very recently in constraining structural
refinements of amorphous Si [60]. We briefly review the most
pertinent features; detailed formulas and derivations are in
Ref. [53]. SOAP starts from the neighborhood density of a
given atom a, defined as

ρa(r) =
∑

b

exp

[
− (r − rab)2

2σ 2
at

]
× fcut(rab), (6)

where the sum is over neighboring atoms, and the cutoff
function fcut, which ensures compact support, goes smoothly

to zero at rcut over a characteristic width r	. The parameter
σat ultimately controls the smoothness of the potential. The
neighbor density is expanded into a local basis of orthogonal
radial basis functions gn and spherical harmonics Ylm,

ρa(r) =
∑
nlm

c
(a)
nlm gn(r)Ylm(r̂), (7)

and the expansion coefficients are used to form the spherical
power spectrum

p
(a)
nn′l =

√
8π2

2l + 1

∑
m

(
c

(a)
nlm

)∗
c

(a)
n′lm, (8)

which is invariant both to permutations over neighbors and to
three-dimensional (3D) rotations of the neighbor environment.
We use the elements of a finite truncation of the power
spectrum (up to n � nmax and l � lmax) as components of
the many-body descriptor vector q(MB)

a , which furthermore is
normalized to have unit length.

The kernel function for the SOAP term is the simple dot
product

k
(
q(MB)

a ,q(MB)
t

) =
∑
nn′l

p
(a)
nn′l p

(t)
nn′l = q(MB)

a · q(MB)
t , (9)

and we find it advantageous to raise it to a small integer power
for a sharper distinction between different environments. This
gives the final kernel

K (MB)
(
q(MB)

a ,q(MB)
t

) = ∣∣q(MB)
a · q(MB)

t

∣∣ζ . (10)

This dot product kernel is a natural choice to use with the
power spectrum descriptor, as it makes the kernel equivalent
(up to normalization) to the integrated overlap of the original
neighbor densities∫

dR̂

∣∣∣∣
∫

ρa(r)ρt (R̂r)

∣∣∣∣
2

. (11)

The expression for the total energy in our GAP model is
therefore given by

E = (δ(2b))2
∑

i

∑
t

α
(2b)
t K (2b)

(
q(2b)

i ,q(2b)
t

)

+ (δ(3b))2
∑

j

∑
t

α
(3b)
t K (3b)

(
q(3b)

j ,q(3b)
t

)

+ (δ(MB))2
∑

a

∑
t

α
(MB)
t K (MB)

(
q(MB)

a ,q(MB)
t

)
, (12)

where all fitting coefficients α enter linearly, and therefore we
can obtain them simply using linear algebra. This is in contrast
with the difficult nonlinear parameter optimization required
both for traditional interatomic potentials and for some other
ML schemes, e.g., artificial neural networks.

The above discussion does not include the prescription
for obtaining the linear fitting coefficients. In practice, this
is complicated due to the fact that the quantum-mechanical
data are only available in the form of total energies, atomic
forces, and virial stresses. The full formalism simultaneously
includes sparsification, multiple energy terms, and fitting to
total energies and their derivatives; it is given elsewhere [52].
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FIG. 2. Potential-energy scans for an isolated carbon dimer. This
plot, with DFT data as reference (blue), allows us to assess the use
of different structural descriptors: all three combined are needed for
a high-quality fit (see text).

To illustrate the role of the combined descriptors, we use
different (and increasingly complex) GAP models to compute
the potential-energy curve for an isolated carbon dimer; these
models have been fitted to the full bulk and surface training
set described below that additionally incorporates DFT data
points between 0.8 and 3.7 Å in small increments. The results
are summarized in Fig. 2: GAP models using 2b descriptors
only, or a combination of 2b+3b, reproduce the minimum
and the repulsion at small C-C distances reasonably well, but
the longer-range behavior is not yet correctly described. An
interesting result is seen when using a many-body descriptor
only: the fit is very good for the region where data points
(blue circles) are provided, but shows unphysical behavior at
r < 0.8 Å; this can, and will, then lead to bad extrapolation in
practical simulations. By contrast, a GAP model combining all
three descriptors [Eq. (12)] gives a highly satisfactory result
(red line in Fig. 2).

III. COMPUTATIONAL METHODS

A. General protocol for melt-quench simulations

Structural data were obtained from melt-quench MD,
following protocols that are well established for a-C [24,26].
Initial simulations were performed in the DFT framework,
subsequent ones with GAP, but both employed the same
temperature protocol. For each simulation, an (unstable)
simple-cubic lattice of carbon atoms was generated at the
appropriate density and held at a constant temperature of 9000
K for 3 ps. The simulation cell was then held in the liquid state
at 5000 K (3 ps), quenched with an exponentially decaying
temperature profile (0.5 ps), and finally annealed at 300 K
(3 ps). The time step was 1 fs in all MD simulations.

B. DFT-based (“ab initio”) molecular dynamics

Structures for initial training, as well as benchmarks for
a-C properties, were generated using DFT-based ab initio MD,
using the QUICKSTEP scheme and a stochastic Langevin ther-

mostat [61] as implemented in CP2K [62,63]. Electronic wave
functions were described at the � point using a mixed-basis
scheme with Goedecker-Teter-Hutter pseudopotentials [64]
and a cutoff energy of 250 Ry. Double-ζ quality basis functions
were used for the carbon 2s and 2p levels.

Exchange and correlation were treated in the local density
approximation (LDA) [65], both during ab initio MD and
training-data generation. This functional, despite its simplicity,
has long been used for atomistic simulations of a-C and is still
the de facto standard for many current applications [15,28,29].
Further work may be concerned with the application of
higher-level DFT methods, such as computationally much
more expensive hybrid functionals, or the implementation of
dispersion corrections; these will likely be interesting additions
to the GAP framework, but are beyond the scope of this study.

C. Construction of the training database

Our training database contains structural snapshots from
ab initio MD and also, as it is iteratively extended, from GAP-
driven simulations. No matter how generated, all structures
are then subjected to single-point DFT-LDA computations to
yield well-converged energies and forces for training. This was
done using CASTEP [66] with dense reciprocal-space meshes
(maximum spacing 0.03 Å−1) [67], a 650-eV cutoff for plane-
wave expansions, and an extrapolation scheme to counteract
finite-basis errors [68]. Gaussian smearing of 0.1 eV width
was applied to electronic levels. The halting criterion for SCF
iterations was 	E < 10−8 eV.

Initial training data were computed for snapshots from
ab initio MD melt-quench trajectories, and a preliminary GAP
was fitted to those data. The resulting potential reproduced
the structure of the 9000-K liquid well, that of the 5000-K
liquid satisfactorily, but not yet that of the amorphous phase.
In retrospect, this is easily understood: the 9000-K liquid is
highly diffusive, and so one single 3-ps trajectory apparently
contains sufficiently different atomic environments to sample
configuration space during training. A quenched amorphous
structure, by contrast, is essentially one single snapshot with
thermal fluctuations but no major changes in connectivity.
Training from DFT data alone would thus incur significant
expense, as each uncorrelated a-C sample would require a
full melt-quench trajectory (9500 steps) of which only the last
snapshot was of use.

Instead, an initial GAP was used to generate liquid
structures at 5000 K, which were then briefly re-equilibrated
(500 steps) and quenched (500 steps) using ab initio MD. This
was done for 10 uncorrelated structures each at 2.0, 3.0, 3.25,
and 3.5 g cm−3, thus placing more emphasis on high-density
amorphous phases which are richer in tetrahedral (“sp3”)
motifs and thus structurally most different from the liquids.

The resulting, amended database was used to train a new
GAP, which was further extended iteratively by performing
melt-quench simulations fully driven by the previous GAP
version, as is common practice in the development of ML
potentials [40,47]. Thereby, all GAP-MD simulations were
carried out using a Langevin thermostat as implemented in
QUIPPY (http://www.libatoms.org) and the same temperature
profiles as in the CP2K simulations. A typical protocol included
the generation of 100 independent structures at densities of
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TABLE I. Key parameters for the GAP model created in this work
(see Sec. II for definitions).

Two-body Three-body SOAP

δ (eV) 5.0a 0.3a 0.1
rcut (Å) 3.7 3.0 3.7
r	 (Å) 0.5
σat (Å) 0.5
nmax, lmax 8
ζ 4

Sparsification Uniform Uniform CUR
Nt (a-C bulk) 125 2500
Nt (a-C surfaces) 50 1000
Nt (crystalline) 25 500
Nt (dimer) 30

Nt (total) 15 200 4030

aFor the 2b and 3b descriptors, when specifying training input, the δ

given here is divided by the expected number of pairs or triplets an
atom is involved in.

1.5–3.5 cm−3, with system sizes of 27–125 atoms. For one
or more snapshots from each trajectory, a single-point DFT
computation was performed and the results were included in
the next round of training.

To add amorphous surfaces to the training set, we generated
ta-C structures using GAP, and from these created slabs
by adding vacuum regions. In parallel ab initio MD runs,
amorphous slabs were briefly heated at up to 5000 K, and
structures from both procedures were added to the database.
We reiterate that it is not problematic to generate the training
structures with different techniques [69], as their energies
and forces are recomputed using the same reference method
(tightly converged plane-wave DFT).

Once the training database of liquid and amorphous
structures had been generated, it was further extended by
including randomly distorted unit cells of the crystalline
allotropes, diamond and graphite. This combined database was
then split into a training and a test set (90:10); the latter was
not included in the fit but used for validation. Finally, DFT data
for an isolated dimer were added (cf. Fig. 2). A full description
of the training database is provided as Supplemental Material
[70].

D. GAP model fitting

Values for the above GAP parameters as used in this work
are given in Table I. Furthermore, the regularization parameters
of the Gaussian process corresponding to the expected errors
were as follows. For liquid and amorphous structures we set
0.002 eV (energies) and 0.2 eV Å−1 (forces); for the crystalline
forms, we multiplied both values by 0.1, and additionally
included virials in the training with an expected error of 0.2 eV.
Sparsification was done with the CUR method [71] for the
SOAP kernel, whereas a simple uniform grid of basis function
locations was used for the 2b and 3b terms. In the following,
unless specified otherwise, “GAP model” refers to one with all
three terms (2b, 3b, and SOAP). The potential files are freely
available at http://www.libatoms.org.

IV. RESULTS AND DISCUSSION

A. Locality and target accuracy

A central assumption of all interatomic potentials is that
of locality: the energy associated with a given atom or bond
depends on its immediate environment [εi ≡ ε(qi)], but not
on atoms further away than a given cutoff radius (ignoring
electrostatic terms and van der Waals corrections for the
moment). A similar assumption follows directly for the forces
on atoms. While this approximation is often made implicitly,
and tacitly, in the development of empirical potentials, their
ML based counterparts aim at quantitative energy and force
accuracy with respect to the reference potential-energy surface,
and so at the outset we must numerically determine how well
the above assumption holds. This question is very general, and
likely relevant beyond this study.

Quantum-mechanical models such as DFT are inherently
nonlocal: they do not allow for a unique partitioning of the total
energy into a sum of local terms. Nonetheless, quantum models
of electronic structure are nearsighted [72], which means that
the reduced one-particle density matrix decays strongly (at
least under the assumption of screening, for insulators, and
in general at finite temperature) [73]. This implies locality
in the atomic forces, which we quantify as the decay of
the dependence of an atomic force on a neighboring atom’s
position as the distance between the two atoms grows. A direct
manifestation of this is the decay of the dynamical matrix or
Hessian.

Using our reference quantum-mechanical method, we
can calculate the above decay of the dependence of the
atomic forces, and thus determine a bound on force locality.
Conversely, this gives a bound on the force accuracy of
any interatomic potential model based on a local energy
decomposition. We stress again that all this applies only for
materials without strong polar interactions, or for models
from which such polar interactions have been substantially
subtracted.

The procedure, as previously employed by Bartók
et al. [35], is sketched in Fig. 3(a): we select one atom in a
given simulation cell and define a sphere of radius rfix around
this center in that the atoms are fixed. We then create many
structures which differ in the positions of the atoms outside
the fixed sphere, and for each calculate the force on the central
atom using DFT [74]. Locality is then characterized by plotting
the standard deviation of this force as a function of rfix.

We first consider the crystalline allotropes and begin
by introducing rather modest distortions, moving all atoms
outside rfix randomly with a standard deviation of 0.1 Å.
Diamond exhibits strong locality [Fig. 3(b)]: the overall
force deviations due to displacements outside the spheres are
small, and they gradually vanish and are practically zero at
rfix = 5.5 Å. Graphite, by stark contrast, is highly nonlocal
[Fig. 3(c)]: the force deviations are much larger than in
diamond, and they do not decay as rapidly.

Turning now to the locality in amorphous carbon, we
focus on two representative densities: a low-density form (2.0
g cm−3) and an approximant of dense ta-C (3.0 g cm−3),
and again we start by randomly displacing atoms [Fig. 4(a)].
Qualitatively, the results are in line with those for the
crystalline phases: the more sp2-rich form (2.0 g cm−3) clearly
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FIG. 3. (a) Schematic overview of the procedure used here for
locality tests. (b), (c) Results for diamond and graphite, respectively,
obtained by displacing all atoms outside rfix randomly and inspecting
the standard deviation of the force on the central atom.

shows lower locality [75]. Due to the coexistence of sp2/sp3

motifs in the amorphous forms, however, there is no clear-cut
distinction between the two system sizes, and ta-C retains a
notable degree of nonlocality.

The displacements so far have perturbed the atoms outside
rfix, but the models still retain a “memory” of the initial struc-
ture even outside the fixed sphere. We therefore next perform
Tersoff MD [11], starting with velocities that correspond to a
very high temperature, and let the system evolve for 1 ps, again
keeping the central sphere fixed. This leads to a more local
picture [Fig. 4(b)], especially for the dense “diamondlike”
form; nonetheless, the overall σ (3.7 Å) values in the latter are
much larger than in the crystalline form.

Summarizing, diamond shows the strong force locality
expected for a covalent semiconductor; graphite, by contrast,
is highly nonlocal. The latter holds for the amorphous phases
as well, more pronounced so at low density. As a ballpark
measure, for an a-C potential with a cutoff radius of 3.7 Å,
we estimate the lowest achievable standard deviation of force
components to be ≈1 eV Å−1 (Fig. 4). One might increase rcut

up to 7.0 Å, which is expected to lower the standard deviation

to ≈0.7 eV Å
−1

, but the tradeoff in terms of much greater
computational expense (both during training and application
of the GAP) does not seem to justify this. Hence, all that
follows will be done in the framework of modest rcut values as
given in Table I.

B. Energies and forces

With the target errors for a finite-range potential established,
we can now analyze the quality of our GAP. We therefore test
how much the predicted energies and forces deviate from DFT
reference values. Again, we assess different combinations of
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FIG. 4. Locality tests for a-C structures. (a) Force locality in low-
and high-density forms, evaluated in the presence of a small distortion
that preserves the major topological features of the amorphous
network. In both panels, data have been collected over three structural
models; for each, 10 atoms were randomly sampled as sphere centers,
and five independent distortions were created for each central atom.
(b) Same but for a large distortion induced by MD at very high
temperature such as to erase any structural memory of the initial cell
outside the fixed sphere.

structural descriptors, and thereby illustrate how hierarchical
GAP models can achieve increasing accuracy. Correlation
plots of energies and force components already make this
clear [Fig. 5(a)]: using the 2b descriptor only, there is a certain
degree of correlation between the DFT and GAP energies,
but with much scatter, and there is essentially no correlation
between DFT and GAP force components (light gray). A
2b+3b model is clearly better (dark gray), but ultimately SOAP
must be added (red) to achieve the accuracy limit imposed by
nonlocality [Fig. 5(b)]. Figure 5(c) shows the errors as cumu-
lative distributions: the curves move left (toward lower errors)
and up (to a higher degree of confidence) as successively more
complex descriptors are added to the GAP model.

For such a heterogeneous training database, it is interesting
to further break down the GAP’s performance according to
configuration types: slightly distorted diamond configurations
will be easier for an ML potential to fit than disordered liquid
carbon. Indeed, looking back at Fig. 5 shows that the training
points with lowest overall energy show the lowest fitting errors;
these are precisely the crystalline structures.

In Fig. 6, we show the distribution of errors for configura-
tions coming from different stages of the melt-quench cycles.
We investigate a set of 100 uncorrelated a-C structures, with
125 atoms each and randomized densities over the range
1.5–3.5 g cm−3, created using GAP-MD and subsequently
analyzed using DFT. From each melt-quench trajectory, we
take one configuration at each key step, that is, one from the
9000-K and one from the 5000-K liquid, one during quenching,
and the final one from the quenched amorphous sample. The
force errors are very similar for all parts of the trajectory, but
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FIG. 5. (a) Scatter plots of DFT-computed and GAP-predicted
total energies (left; relative to a free singlet atom) and force
components (right) on a test set of 450 configurations. Results are
shown for hierarchical GAP models with different combinations of
descriptors (Sec. II). (b) Absolute errors of the respective quantities,
similarly resolved according to different sets of descriptors. For
the force components (right), akin to Ref. [35], an estimate of the
maximum achievable standard deviation as judged from locality tests
(Sec. IV A) is indicated by a blue line. (c) Cumulative distributions: a
given point (x,y) on the curve indicates that y percent of all structures
have an error equal to or below x. The standard deviation estimated
from locality tests, σloc, which should enclose ≈68.3% of the GAP
force component errors, is indicated in blue: indeed, the GAP model
with combined 2b, 3b, and MB descriptors (red line) does reach this
accuracy.

the absolute magnitude of forces is much different; hence, in
relative terms, the GAP performs much better for forces in
the liquid than in the amorphous phases. A detailed numerical
analysis is in Table II. We estimate how widely the absolute
DFT force components are distributed by giving their 95th
percentile value P95. We then divide the GAP force component
error by P95; the lower this ratio, the better. For melt-quench
simulations, the situation appears favorable: as the structure
is “frozen in” during quenching, the topology (say, the sp3

count) of the amorphous phase is largely determined by a
correct description of the liquid.
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FIG. 6. DFT-computed versus GAP-predicted force components
in a set of 125-atom snapshots of liquid and amorphous carbon,
emphasizing the overall magnitude of forces the GAP has to learn at
various parts of the melt-quench trajectories.

C. Structural properties

From energy and force evaluations, we now move on to
probe physical properties as predicted by our GAP. Table III
compares its performance to DFT reference data for the dia-
mond structure. Here and in the following, we will also make
comparison to a state-of-the-art empirical potential, namely,
a screened variant of the Tersoff potential developed by
Pastewka and co-workers [15,76]. Similar potentials have been
successfully applied in recent studies both to graphene [77] and
to ta-C [78], and are faster than GAP by about a factor of 50.

The lattice parameter a of diamond is accurately reproduced
by the GAP; the bulk modulus and elastic constants are
reasonable but deviate somewhat from the DFT reference
(Table III). It was shown previously that a GAP model
trained for the crystalline phases exclusively can reproduce the

TABLE II. Energy and force rms errors of our GAP, computed for
a set of 125-atom structures (cf. Fig. 6), and also for the crystalline
structures from the test set. Percentile values P95 for the absolute
DFT values are given; these measure the range of data the GAP has
to “learn.”

Energy Force components
(eV) (eV Å−1)

rms rms P95

(GAP) (GAP) (DFT) Ratio

Liquid (9000 K) 0.041 1.27 6.52 0.19
Liquid (5000 K) 0.031 1.12 5.68 0.20
Quench 0.023 1.07 5.06 0.21
Amorphous 0.018 0.94 2.23 0.42

Crystalline 0.002 0.10 1.32 0.08
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TABLE III. Structural and elastic properties of diamond, com-
puted using DFT-LDA and our GAP as well as the screened Tersoff
potential from Ref. [76] (“scrT”).

DFT GAP scrT

a (Å) 3.532 3.539 3.566

BVoigt (GPa) 466 438 427

C11 (GPa) 1101 1090 1073
C12 (GPa) 148 112 104
C44 (GPa) 592 594 640

benchmark even better [35]; here, the gain in transferability
(being able to model amorphous as well as crystalline phases)
comes at a small price in terms of accuracy.

Similar tests for the graphite c parameter gave 6.625 Å
(DFT) and 6.518 Å (GAP). Despite this slight overbinding
(–1.6%), the agreement is appreciable, especially given that
the Tersoff and Brenner potentials are short ranged and cannot
describe the interlayer spacing in graphite at all (rcut < c/2).

We now turn to the main subject of this work: the liquid
and amorphous phases of carbon. We begin by inspecting the
concentration of sp3 atoms during melt-quench simulations
(Fig. 7), and use this to once more assess the performance of
different combined structural descriptors. The DFT reference
(blue) shows that in liquid carbon at 3.0 g cm−3, approximately
one-third of the atoms are in fourfold coordination, and this
number increases strongly when quenching (6.0 → 6.5 ps in
simulation time). During annealing at 300 K, the DFT average
then levels off at ≈70%; as only three structures were created
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FIG. 7. Top: exemplary temperature profile during a DFT-MD
melt-quench simulation to yield a 216-atom structure of ta-C.
Bottom: concentration of sp3 atoms during these cycles, measured
by counting atomic neighbors up to a cutoff distance of 1.85 Å.
DFT benchmarks are compared to GAP results using different
combinations of descriptors; areas of light shading indicate standard
deviations.
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FIG. 8. Radial distribution functions for liquid (left) and sub-
sequently quenched amorphous (right) carbon structures (10 inde-
pendent 216-atom structures were created at each density). Results
for five densities are given, spanning the entire range visualized in
Fig. 1. “scrT” denotes the screened Tersoff potential as introduced in
Ref. [76].

with DFT, fluctuations and standard deviation (light blue
shading) are sizable. The GAP results, by comparison, clearly
identify the need for combined structural descriptors when
aiming to make physically meaningful predictions: using the
two- and three-body descriptors only yields systematically too
low sp3 concentrations (gray), whereas both combined with
SOAP essentially reproduce the DFT data for the liquid forms
(red); the sp3 count is still underestimated in the quenched
amorphous phase. We performed additional GAP simulations
in which we increased the quenching time from 0.5 to 2.0 ps,
but this did not further improve the result. For completeness,
we include in Fig. 7 results for a GAP model that employs
two-body descriptors only, but in this case the atoms clump
into unphysical structures within the first few steps (black line),
not unexpectedly so.

The simplest measure of short-range order in a liquid or
amorphous structure is given by the radial distribution function
(RDF). In Fig. 8, we compare GAP results to those of DFT, and
start by noting that both are very close. The liquid structures
are more diffuse and less strongly ordered, and the RDFs show
a nonzero first minimum at ≈1.9 Å, whereas the amorphous
structures exhibit a gap between their first and second RDF
peaks. A small but visible asymmetry of the second RDF peak
at ≈2 Å for all amorphous structures indicates the presence of
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four-membered rings. The screened Tersoff potential (“scrT”)
does not predict the existence of such four-membered rings in
a-C (we will return to this below), and other than DFT and
GAP it lowers the first RDF minimum to almost zero in all
liquid structures.

Figure 9 shows angular distribution functions (ADFs). The
ADF maxima at low (high) density are centered around 120◦
(109◦), respectively, loosely mirroring the defining structural
features of the crystalline allotropes (graphite honeycombs
and diamond tetrahedra); naturally, this distribution is broader
in the highly diffuse liquids than in the quenched amorphous
structures. At low densities, a contribution close to 180◦ is seen
in the DFT reference data, due to nearly linearly coordinated
“sp” carbon atoms (yellow in Fig. 1); this is a minor feature
at 2.5 and 2.0 g cm−3, but becomes prominent at 1.5 g cm−3,
especially so in the quenched amorphous structures (top right
panel in Fig. 9). The GAP reproduces these features very well,
both the location and the extent of the maxima, as well as
the overall shape of the ADF curves. The screened Tersoff
potential deviates significantly from the DFT and GAP results,
and the ADFs derived from it are zero both at 60◦ (absence
of three-membered rings) and at 180◦ (absence of linear “sp-
bonded” chains).
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FIG. 10. Count of “sp3” (fourfold coordinated) carbon atoms in
quenched a-C structures as a function of density. Ten independent
melt-quench cycles were performed at each density for the empirical
and GAP models; three independent ones were done for DFT. Data
for the Brenner potential are taken from Ref. [15]. Experimental data
have been collected from Refs. [79–81]. Error bars represent standard
deviations. Lines between data points are only guides to the eye.

D. Coordination statistics and medium-range order

Among the key structural characteristics for a-C is the con-
centration of fourfold coordinated (“sp3”) atoms as function of
the sample density. We assess this in Fig. 10, comparing GAP
results to DFT but also to previous modeling and experimental
studies. The empirical Brenner and Tersoff potentials, as is
known [15], underestimate the sp3 count at high density;
indeed, one of the breakthrough successes of the screened
Brenner and Tersoff potentials has been their much improved
description of ta-C in this respect [15]. In comparison, the GAP
data (red in Fig. 10) are even closer to the DFT reference (blue),
particularly at lower densities. The residual error of the GAP
results is most pronounced at 3.0 g cm−3, and so using this
density for the example in Fig. 7 showed the worst of all cases.

Looking beyond the first nearest-neighbor shell, the
medium-range order in amorphous materials is conventionally
characterized by means of ring statistics, which we evaluate
using Franzblau’s shortest-path algorithm [82]. Again, we
compare liquid and quenched amorphous structures side by
side, and inspect the entire range from low to high densities
(Fig. 11).

The DFT reference (blue) shows that the distribution is
quite complex: at high densities, the ring sizes center around
six-membered (similar to diamond, where n = 6 exclusively),
and the distribution decays quickly beyond that; no large-
membered rings are found in ta-C. By contrast, the distribution
in the low-density structures is less clearly defined and does
involve higher-order rings, indicative of structural voids.

The results for ta-C at 300 K are very similar with all three
methods. In addition, the GAP model also recovers the three-
and four-membered rings that are key features of the liquid
and also prominent in low-density amorphous structures [24].
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FIG. 11. Medium-range order in a-C as evaluated through ring
statistics. Top: structural fragment from one of the DFT generated
a-C structures at 2.0 g cm−3, chosen to visualize the diversity of
ring sizes observed. Rings are indicated by shading, and their size
n is given. Bottom: ring statistics for liquid (left) and quenched
amorphous (right) carbon structures obtained from DFT (blue), GAP
(red), and screened Tersoff potential (“scrT”; black) simulations. Data
for the liquid structures have been collected over the last 1 ps of the
respective trajectory; data for the amorphous structures correspond
to the last snapshot only, as the structures are strongly correlated in
this case. For GAP-derived structures, the standard deviation for the
count of each ring size is indicated by error bars.

The screened Tersoff potential, by contrast, overestimates the
average ring size in low-density a-C, and does not predict the
occurrence of any three- or four-membered rings, neither in
the liquid nor in the amorphous phases.

So far, all validation of the presented potential has been done
against DFT, and therefore necessarily been limited to rather
modest system sizes of 216 atoms. The true strength of ML
potentials, however, is in the application to larger structures.
Figure 12 shows results for an 8000-atom a-C structure at
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FIG. 12. Application of the GAP to larger-scale simulations.
(a) Melt-quenched 8000-atom structure of a-C at 1.5 g cm−3,
shown as stick drawing. (b) Ring statistics for this structure (purple)
and as averaged over 10 different 216-atom structures (red; as in
Fig. 11). Purple shading emphasizes ring sizes of n � 18 that the
smaller systems cannot reproduce. (c) Same analysis but for ta-C
(3.0 g cm−3).

1.5 g cm−3, which would presently be impossible to generate
with DFT-based MD even on state-of-the-art supercomputers.

RDFs and ADFs obtained with 216-atom and 8000-atom
structures are practically the same and are hence not shown.
The situation for the ring statistics [Fig. 12(b)] is more
complex. For small- and medium-sized rings, results for the
large system (purple) come very close to the average from
the 216-atom structures (red). Hence, while a single 216-atom
snapshot will not be sufficient to investigate ring statistics of
a-C models, one may instead collect averages over sufficiently
many smaller structures, and therefore reproduce the short-
and medium-range structural features without requiring larger
simulation cells. Nonetheless, there is an inherent deviation
between the 216- and 8000-atom structures: namely, at very
large ring sizes [n � 18; shaded in Fig. 12(b)], which the
216-atom cells cannot reproduce as they are simply too small.
This emphasizes that realistic studies of voids and porosity in
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a-C will require large structures on the order of at least several
thousand atoms.

We also created an 8000-atom ta-C structure [Fig. 12(c)]:
in this case, no voids are found but a dense, “diamondlike”
network. Consequently, no large rings (n > 15) are observed,
and the 216-atom simulations already provide a very good
estimate of the medium-range structural order. Likewise,
the screened Tersoff potential here correctly reproduces the
maximum at n = 6 as well as the abundance of larger-
membered rings. The latter drops to zero between n = 12 and
15 for all potentials and system sizes investigated.

E. Elastic properties

We next evaluated the Young’s modulus of a-C which,
like the sp3 count, depends strongly on density [83–85]. We
compare results using scrT and GAP, but not DFT, due to the
high expense of fully relaxing the internal degrees of freedom
for several uncorrelated models. In addition, we disentangle the
effect of input structure versus potential performance for the
prediction of elastic properties, and therefore also use both scrT
and GAP to evaluate the Young’s moduli of DFT-generated
structures.

To compute the Young’s modulus of a-C, we take previ-
ously generated 216-atom structures, perform further short
MD quenches from 300 K to very low temperature, and
finally a conjugate-gradient relaxation to minimize the forces
on atoms; the cell vectors remain fixed to keep the density
unchanged. For each optimized structure, we compute the
full 6 × 6 matrix of elastic constants C without imposing
symmetry operations, and invert this matrix to obtain the
compliance matrix S [86]. From this, we calculate the Young’s
modulus E (see, e.g., Ref. [87]) by averaging over the three
spatial directions:

E = 1

3

[
1

S11
+ 1

S22
+ 1

S33

]
(13)

and subsequently over independent structures (10 from scrT
and GAP melt-quench runs, 3 for the DFT case; see above).
The GAP results agree very well with experiments at all rele-
vant densities (Fig. 13), and as expected they predict increased
stiffness as density and sp3 concentration (“diamondlikeness”)
increase. The screened Tersoff potential correctly captures
the same trend, albeit the absolute values are significantly
overestimated; this is most pronounced at higher densities.

F. From the bulk to surfaces

Realistic materials modeling, especially at the nanoscale,
must extend from the bulk to a description of crystal surfaces
and their reactivity [88]. Likewise, the surfaces of amorphous
matter are of broad interest but pose particular and significant
challenges for modeling. We here present initial applications of
our GAP to amorphous carbon surfaces of the 3.0 g cm−3 phase
(ta-C). This is because dense, diamondlike carbon is used in
coatings [6] and it is this form for which surface phenomena
are most relevant.

Early studies of ta-C surfaces have been reported at the DFT
level but have necessarily been restricted to very small system
sizes [89]. Larger-scale simulations were made possible by

2.25 2.50 2.75 3.00 3.25 3.50
Density (g cm–3)

0

200

400

600

800

1000

1200

1400

Yo
un

g'
s

M
od

ul
us

(G
Pa

)

Expt. (Ref. 83)
Expt. (Ref. 84)
Expt. (Ref. 85)
scrT (on DFT structures)
GAP (on DFT structures)
scrT (on scrT structures)
GAP (on GAP structures)

FIG. 13. Young’s modulus of a-C as a function of density.
Experimental values are taken from Ref. [83] (green), Ref. [84] (blue),
and Ref. [85] (yellow), respectively. Lines between data points are
guides to the eye.

tight-binding schemes [90] and EDIP [91], but even high-
quality empirical potentials may face problems when it comes
to the prediction of surface energies; this has already been
reported for diamond [76].

Conventionally, the surface energy γ is calculated as

γ = 1

2A
[Eslab − N × Ebulk] (14)

for an elemental (or stoichiometrically precise) surface slab
that contains N atoms and exposes equivalent surface areas A

at top and bottom; in this expression, Eslab denotes computed
total energies for a slab model per unit cell, and Ebulk refers to
the energy of the underlying bulk structure per atom.

For amorphous systems, the structure of the surface is not
uniquely defined (there are no distinct cleavage planes as in
crystals), and to calculate γ one must average over many large
structures. We assess the suitability of the GAP model for such
studies by computing surface energies of ta-C and comparing
to DFT values. We used a GAP to generate a 1000-atom bulk
ta-C structure and cleaved five different surfaces normal to the
[001] direction of the simulation cell [cf. Fig. 14(a)]. For each
surface, the unrelaxed surface energy was evaluated using the
three methods [Fig. 14(b)]. The GAP model fully reproduces
the stability ordering; for the most stable surface (structure 1),
GAP and DFT results differ by less than 0.01 J m−2. For the
two least stable candidates, 4 and 5, this difference increases
slightly but remains small (below 0.1 J m−2, or 2%). The
screened Tersoff potential yields much lower surface energies,
similar to what has been reported for diamond [76].

We finally perform high-temperature annealing simulations
with our GAP, to assess structural relaxations and recon-
structions at ta-C surfaces. These are associated with an
increased formation of sp2 atoms (“graphitization”) that has
been observed in several ex situ experiments [92] and also
in situ during film growth [93]. A discussion of the relevant
differences between experiment and theory has been given
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FIG. 14. (a) Exemplary surface slab of ta-C, freshly cleaved from
a 1000-atom bulk structure. (b) Unrelaxed surface energies [Eq. (14)]
for five slabs cleaved from the same bulk structure. Lines between data
points are guides to the eye. (c) Course of temperatures in the protocol
we use to generate reconstructed surfaces: the systems are heated over
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constitute a slower cooling back to 300 K. (d) Concentration of sp2

carbon atoms in 1000-atom slabs versus simulation time. Averages
over 10 independent structures are given, and areas of light shading
indicate standard deviations.

by Marks et al. [91]. Higher temperatures than in experiment
must be used to overcome kinetic barriers during simulation, as
experiments typically involve up to one hour of annealing [92].
In that sense, the absolute annealing temperature used for
simulation is fictitious [91]; its choice depends on the compu-
tational method [8], and a suitable annealing temperature must
therefore be found by trial and error.

In Figs. 14(c) and 14(d), we explore the use of different
such temperatures, and in particular we analyze the structures
obtained before and after each of the different annealing
runs (Fig. 15). Each slab is gradually heated to the target
temperature over 10 ps, annealed for 10 ps, and then cooled
back to 300 K over another 20 ps; each structure contains
1000 atoms, and 10 independent ones are studied in parallel to
improve statistics. Monitoring the concentration of sp2 atoms
during these simulations provides the most direct insight:
heating to 1000 K induces no significant changes overall but
“heals” the dangling bonds directly at the surface; therefore,
the 1000-K annealed structure may be a useful representative
of the nongraphitized surface. At the intermediate setting of
2000 K, the sp2 concentration in the system rises slightly
during annealing and is then lowered again during cooling;
the interior of the slab and its density remain close to that of
bulk ta-C, whereas reconstructions are observed at the surface.
Finally, heating to 3000 K graphitizes the entire system; this is
reminiscent of what was seen earlier by Powles and co-workers
using the EDIP model [7]. It also leads to a strong expansion
of the slab interior [Fig. 15(d)].

A top view best visualizes the atomic-scale processes at
the surface (Fig. 16). The freshly cleaved, unrelaxed structure
shows a number of “dangling bonds” and low-coordinated
atoms, trivially so as the tetrahedra in ta-C have been cut
apart. These defects largely disappear during annealing at
1000 K already, but at this temperature the surface stays
strongly disordered [Fig. 16(b)]. By contrast, increasing the
annealing temperature to 2000 K leads to graphitized layers of
several Å thickness at the surfaces [Fig. 15(c)]: six-membered
rings are seen, as well as pairs of five- and seven-membered
ones that are likely metastable [Fig. 16(c)]; still, the surface
atoms are connected to lower-lying sp3 atoms even within

(a) Unrelaxed surface (b) Annealed at 1000 K (c) Annealed at 2000 K (d) Annealed at 3000 K
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N=3 (“sp2”)

(a)

(b) (c) (d)

Unrelaxed
surface

1000 K: Removal
of “dangling bonds”

2000 K: Surface
reconstruction

3000 K: All-slab
graphitization

N=1 (defect)
N=2 (“sp”)

N=4 (“sp3”)

FIG. 16. Top views of the same surface structure before (a)
and after (b)–(d) different degrees of annealing. Only atoms in the
outermost 3 Å are shown, and coloring indicates the coordination
number.

the topmost 3 Å, and the graphitization therefore remains a
genuine surface phenomenon. By contrast, during annealing at
3000 K, the entire slab graphitizes as seen above, and a strongly
defective graphene sheet begins to detach from the surface; no
near-surface sp3 atoms are seen any more [Fig. 16(d)].

While the present simulations deal with pure ta-C, it would
be an interesting next step to extend the GAP model to
hydrogenated (ta-C:H) surfaces, which are likewise important
for applications [6,19] and have been studied using empir-
ical potentials (see, e.g., Ref. [94]). For ML models, such
multicomponent extensions require significant effort, as the
underlying quantum-mechanical reference databases have to
be extended and adapted, and the complexity of this rises
steeply with the number of species involved. Nonetheless, fea-
sibility studies have been reported for several binary [35,38,47]

and even ternary systems, such as in a very recent study
on mixed Cu-Ce-O nanoparticles using an artificial neural-
network potential [95]. In terms of multicomponent systems,
it would likewise be interesting to move from amorphous
carbon to the binary Si-C system, and to compare again
with the performance of an established screened empirical
potential [19].

V. CONCLUSIONS

We have developed a machine learning based GAP model
for atomistic simulations of liquid and amorphous elemental
carbon. The structural complexity that the potential has to
encompass, as well as the nonlocality in forces are notable,
and larger than in any previous ML based interatomic potential
model. Nonetheless, our GAP predicts energies that are largely
in the range of tens of meV/atom; characteristic structural
properties, such as the sp3 count and the medium-range order
as expressed through ring statistics, are faithfully recovered,
and surface energies and reconstructions are well described
by the GAP.

The central issue in the development of atomistic ma-
terials modeling remains in the tradeoff between accuracy
and cost. The GAP model presented here is many orders
of magnitude faster than DFT, but slower than state-of-
the-art empirical potentials (while similarly linear scaling).
Being thus intermediate between both realms, GAP models
appear to be promising tools for accurate large-scale atom-
istic simulations, including amorphous materials and their
surfaces.

ACKNOWLEDGMENTS

We thank L. Pastewka, A. P. Bartók, J. R. Kermode,
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[52] A. P. Bartók and G. Csányi, Int. J. Quantum Chem. 115, 1051
(2015).
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