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We demonstrate the existence of large phononic band gaps in designed hyperuniform (isotropic) disordered
two-dimensional (2D) phononic structures of Pb cylinders in an epoxy matrix. The phononic band gaps in
hyperuniform disordered phononic structures are comparable to band gaps of similar periodic structures, for both
out-of-plane and in-plane polarizations. A large number of localized modes is identified near the band edges, as
well as diffusive transmission throughout the rest of the frequency spectrum. Very high Q cavity modes for both
out-of-plane and in-plane polarizations are formed by selectively removing a single cylinder out of the structure.
Efficient waveguiding with almost 100% transmission through waveguide structures with arbitrary bends is also
presented. We expand our results to thin three-dimensional layers of such structures and demonstrate effective
band gaps related to the respective 2D band gaps. Moreover, the drop in the Q factor for the three-dimensional
structures is not more than three orders of magnitude compared to the 2D ones.

DOI: 10.1103/PhysRevB.95.094120

I. INTRODUCTION

Phononic crystals, artificial materials with periodically
arranged compounds, were introduced more than two decades
ago as the elastic waves analog of photonic crystals [1,2].
These materials, either in two or three dimensions, are capable
of exhibiting large frequency regions of prohibited propagation
of elastic waves, the so-called phononic band gaps (PBGs).
Phononic crystals have been efficiently used in applications
including audible filters [3], acoustic diodes [4] and cloaking
[5], ultrasound imaging [6], optomechanics [7], and heat
conduction [8,9].

On the other hand, the hyperuniformity concept was first
introduced as an order metric for ranking point patterns ac-
cording to their local density fluctuations [10]. Hyperuniform
structures cover the intermediate regime between random and
periodic structures, and exhibit properties usually associated
with both of these two extremes. Hyperuniform stealthy
disordered photonic structures exhibit large isotropic photonic
band gaps and are capable of blocking light of all polarizations
[11–13]. Therefore, they can be efficiently used in the design
of low dielectric contrast band gaps [14], high-Q optical
cavities [15,16], free-form waveguides [14,15,17], polarizers
[18], plasmon-enhanced Raman spectroscopy [19], quantum
cascade lasers [20], etc.

Markedly, compared with the studies of disorder in
photonic systems, research on disordered phononic systems
has been sparse. There have been some studies focused on
two-dimensional (2D) [21,22] and three-dimensional (3D)
[23–25] disordered phononic structures, but these structures
were not ideally suited for opening large phononic band
gaps (PBGs). The most insightful study into disorder has
been by Chen et al. [26]. The study of disorder in elastic
media is relevant from macroscopic-scale applications, such
as control of seismic waves [27] and modeling of rocks [28],
to the micro- and nanoscale applications, including acoustic
filters [29], piezoelectric materials [30,31], aviation [32],
biomaterials [33], fracture [33,34], manipulation of the thermal
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conductance [8,35–37], etc. Moreover appropriately designed
disordered phononic systems can suppress wave transport for
a wider range of frequencies than their periodic counterparts
[24]. Designed hyperuniform disordered phononic structures
(HDPS) have the advantage of exploiting both structural
disorder, due to the absence of translation symmetry, and
sort-scale ordering, due to the high degree of hyperuniformity.
This combination makes them ideal for phonon manipulation
since they can exhibit large band gaps, isotropy, and diffusive
propagation at the same time. Therefore they can play a very
important role in all the above mentioned application areas.

In this paper we introduce and analyze HDPS. Such
structures exhibit structural disorder, while being statistically
isotropic [10,38]. Moreover, they are designed from totally
disordered initial states; therefore they have no sign of
underlying periodicity, which differentiates them from all
previous structures studied in the literature. The radial
distribution function and the diffraction patterns (2D Fourier
transform) of the structure are used to investigate the
correlated disorder of the structure. The material parameters
used are the same as those used by Chen et al. [26,39]. In
Sec. II the band structure of such HDPS is discussed for
all polarizations. Large phononic band gaps, similar to the
periodic case, are observed. To identify the origin of these
gaps we introduce the concentration factor, previously used
in the photonic hyperuniform structures, for both out-of-plane
(pure transverse) and in-plane (mixed longitudinal-transverse)
elastic modes. Localized modes and propagation of elastic
waves in these structures are thoroughly investigated. In
Sec. III high-Q cavity modes are introduced into the structures
by removing single cylinders and thoroughly analyzed.
Moreover, waveguiding through arbitrarily shaped waveguides
with HDPS-like walls is extensively discussed. Section IV
extends the previous results in finite-thickness 3D slabs.

II. FREQUENCY BANDS OF 2D STRUCTURES

A hyperuniform point pattern is a point pattern in real
space for which the number variance σ 2(R) within a spherical
sampling window of radius R (in d dimensions) grows more
slowly than the window volume (∝Rd ) for large R. We
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FIG. 1. (a) A supercell of the proposed HDPS, consisting of
500 cylinders (radius 0.25a, χ = 0.5). (b) The radial distribution
function g2(r) of the hyperuniform points pattern. (c) The magnitude
of the Fourier transform components of the HDPS. (d) The radially
integrated Fourier components. We can clearly identify the region
where these components and the corresponding structure factor
vanish, below k0 = 0.71(2π/a).

furthermore consider that the point pattern is stealthy; i.e.,
the structure factor S(k), defined as [10]

S(k) = 1

N

∣∣∣∣∣

N∑

n=1

eik·rn

∣∣∣∣∣

2

, (1)

where k are vectors in the reciprocal space and rn, n =
1, . . . ,N , are the positions of the N particles, is isotropic
and vanishes for a finite range of wave numbers 0 < k � k0

for some positive critical wave vector k0 [40]. The size of
this region can be expressed through the so-called stealthy
parameter χ = M(k)/dN , where M(k) the number of linearly
independent k vectors where S(k) = 0 and d = 2 in the present
case [11,40].

We consider, as a working example, an HDPS consisting of
N = 500 identical cylinders with a radius 0.25a, a being the
average distance among the centers of the cylinders, distributed
according to a stealthy hyperuniform point pattern, as shown in
Fig. 1(a), with χ = 0.5. We consider a supercell of the structure
with dimensions

√
Na × √

Na. Figure 1(b) depicts the radial
distribution function g2(r) [10]. We can clearly identify two
peaks corresponding to first and second neighbor average
distance. Figure 1(c) depicts the magnitude of the 2D Fourier
components (structure factor) of the image of the structure
[Fig. 1(a)], i.e., the structure factor of the decorated point
pattern. This structure factor differs from the structure factor
of the point pattern only at the high-k values, i.e., outside the
region of the ring we observe in Fig. 1(c). The “stealthiness” of
the structure can be clearly identified by the radial symmetry
and the region of vanishing structure factor within a circle of
radius k0 with k0a/2π = 0.71, as shown in Fig. 1(d).

Let us now consider the propagation of elastic waves
through the structure. We are interested in the frequency-
domain response of the structures; i.e., we solve for fields
of the form u(r,t) = Re[u(r) exp(−iωt)], where u(r) is

the (complex) time-independent elastic field component at
position r and ω = 2πf is the angular frequency. The time-
independent wave equation in an inhomogeneous isotropic
medium characterized by position-dependent mass density ρ

and position-dependent Lamé coefficients λ and μ takes the
form [39]

∇(λ∇ · u) + ∇ · [μ(∇u + ∇uT)] = −ρω2u, (2)

where ∇u is the tensor gradient of the displacement field and
∇uT is the transpose of the tensor gradient. A 2D structure
is composed of infinite-height cylinders; i.e., the system is
considered to be homogeneous along the z direction and
propagation is restricted in the xy plane. In this case Eq. (2)
splits into two independent sets of equations, namely,

∇ · [μ∇uz] = −ρω2uz (3)

for elastic waves polarized along the z axis and

∇‖(λ∇‖ · u‖) + ∇‖ · [μ(∇‖u‖ + ∇‖uT
‖ )] = −ρω2u‖ (4)

for elastic waves polarized parallel to the xy plane, where
u‖ = x̂ux + ŷuy and ∇‖ = x̂(∂/∂x) + ŷ(∂/∂y). We note that
Eq. (3) is a pseudoscalar equation for the uz component of
the purely transverse elastic field; however Eq. (4) couples
the ux and uy components of the elastic field. Moreover, u‖
is a mixture of a longitudinal and a transverse component. In
order to separate the longitudinal and transverse components
we can use the displacement potentials φ(r) and A(r), which
are defined by the equation

u(r) = ∇φ(r) + ∇ × A(r). (5)

The wave equations satisfied by the displacement potentials,
φ(r) and A(r), can be written in the form

∇2φ(r) + ω2

c2
l

φ(r) = 0 (6)

and

∇2A(r) + ω2

c2
t

A(r) = 0, (7)

where cl and ct are the longitudinal wave and transverse wave
velocities, respectively [41]. Therefore the scalar potential
is connected to purely longitudinal waves, while the vector
potential is connected to purely transverse (shear) waves.
Moreover for the in-plane waves we consider here it can be
easily shown that A(r) = Az(r)ẑ. These potentials carry the
same phase shift information as the initial fields. However
these potentials need not be continuous along interfaces. We
note that the quantity ẑ · 1

2∇ × u(r), which in the linear elastic
regime describes the angle of shear rotations (transverse part
of the field) around the z axis [42], is proportional to Az(r),
while the quantity ∇ · u(r), which expresses local changes in
the volume (area for 2D) of the structure [42], is proportional
to φ(r).

We consider cylinders made of lead (Pb) with density
ρPb = 11.4 g/cm3, transverse velocity clPb = 2160 m/s, and
longitudinal velocity ctPb = 860 m/s in an epoxy host matrix
with ρh = 1.2 g/cm3, clh = 2830 m/s, and cth = 1160 m/s,
respectively [26]. The filling fraction of the structure is 20%.
These materials and the filling fraction correspond to the ones
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FIG. 2. (a) Scattering cross section of a single Pb cylinder in epoxy. The field profile at the two peaks of the scattering cross section,
associated with excitation of the first and second eigenmodes of the cylinder, are shown in the insets (dotted circles mark the position of
the cylinder). (b) Band structure of the out-of-plane modes of the square periodic arrangement with lattice constant a. The band gap edges
of the HDPS structure are drawn with dashed red lines for comparison. (c) Band structure of the out-of-plane modes of the HDPS (folded in the
supercell). We note that in the long-wavelength limit the slopes are the same, but look different due to the different sizes of the corresponding
Brillouin zones. (d) Transmission through a slab of the structure that is finite along the x direction (length

√
Na).

used in the literature for a 2D disordered structure, originating
from a square lattice [26,39], for comparison. However the
results are expected to be similar for other relatively hard
disks in relatively soft embedding solids. Moreover the filling
fraction is not optimized for the disordered case although
the size of the band gaps of the HDPS as compared to the
periodic one suggests that it is close to the optimum value.
The phononic band structure for such a 2D arrangement of
cylinders can have two distinct types of elastic modes: out-of-
plane (pure transverse) modes, similar to 2D TM photonic
modes, and in-plane (mixed longitudinal and transverse)
modes, corresponding to the 2D TE photonic modes. The
band structure for the out-of-plane modes is shown in the
left-hand diagram of Fig. 2, calculated with a finite-element
commercial software (COMSOL Multiphysics). The PBGs
for such disordered structures turn out to be equivalent to
the fundamental band gap in periodic systems in the sense
that the spectral location of the TM gap, for example, is
determined by the resonant modes of the individual cylinders
(Mie resonances). Indeed, in the middle diagram of Fig. 2, we
see that the frequency of the lower edge of the band gaps is in a
nice agreement with the first mode of the cylinder, as calculated
using Ref. [41], and in good agreement with calculations using
the finite-element method.

The PBG for the HDPS is equivalent to the fundamental
band gap in periodic systems, since in the former case the band
gap occurs between the N , N + 1 bands, instead of the first
and second band of the periodic structure, and we have exactly
N scatterers in each unit (super)cell. This can be interpreted in
terms of an effective folding due to this “average” periodicity,
which the HDPS exhibits due to the short-range geometric
order. In the disordered (periodic) structure the PBG extends
from 0.30cth/a (0.31cth/a) to 0.56cth/a (0.60cth/a); i.e., in

the disordered case the PBG (
ω/ωG = 60%) has almost the
same size as the periodic one (
ω/ωG = 64%). However there
is a large number of edge states (localized modes) on both sides
of the PBG in the disordered case, as was also the case for pure
random 2D phononic structures [39]. We note that frequency
scales with length and if we consider, e.g., a = 1 μm then the
HDPS PBG extends from 350 to 650 MHz.

The transmission through a finite, along the x axis, slab
of the disordered structure of length

√
Na is shown in the

right-hand diagram of Fig. 2. We impose the periodic boundary
condition along the y axis and perfectly matched layers
(PMLs) along the x axis. The excitation is done by a uniform
load with a direction along the z axis. We can clearly identify
that the transmission becomes vanishingly small inside the
PBG. Moreover, above the PBG the diffusive propagation of
the waves retains relatively small values for the transmission.
This is connected to the observation made by Sainidou et al.
[24] regarding the enlargement of the transmission gap in a
disordered phononic structure.

In order to explore the origin of the PBGs in the HDPS
we employ the so-called concentration factor, which in the
photonics case is strongly related to the appearance of band
gaps [14]. The concentration factor relates to the idea that the
eigenmodes are minimized states of an energy functional [14],
and can be defined as

CF =
∫

rods ρ(r)|u(r)|2d2r
∫

supercell ρ(r)|u(r)|2d2r
, (8)

where ρ(r) is the position-dependent mass density. We note
that

√
ρ(r)u(r) are the eigenmodes of the eigenvalue problem

of the elastic field [43] and ρ(r)|u(r)|2 is proportional to the
kinetic energy density. We expect a PBG to open up when,
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FIG. 3. The concentration factor, CF , as a function of the
normalized frequency, f a/cth, for a large number of k vectors for
the HDPS (solid black lines) and for the relevant periodic structure
(dashed red lines). In the left-hand (right-hand) diagram the results
correspond to the out-of-plane (in-plane) modes.

with increasing energy/frequency, the modes can no longer
spatially distribute in the same manner but have to drastically
change the location or number of nodes, changing between
the two distinct manners of propagation, i.e., an elastic wave
hopping coherently from a cylinder to its neighbors (coupled
resonances) and wave propagation mainly through the host
material [44].

Indeed, the left-hand panel of Fig. 3 shows the sudden
drop of the CF , above the band edge, which implies that now
the kinetic energy is mainly distributed in the host matrix,
while below the PBG it was mainly distributed inside the
cylinders. For the periodic structure there is strong dispersion
of the position of the curves for different k values which is
a direct consequence of the fact that the periodic structure is
an anisotropic structure, while the HDPS is an isotropic one.
Finally, we note a slight anomaly of CF at about 0.23cth/a,
connected to the change in the spatial distribution of the modes,
as we discuss in the next paragraph.

The real part of the z component of the elastic displacement
field, uz, is presented in Fig. 4. In the long-wavelength limit
[Fig. 4(a)] the HDPS seems to act as a homogeneous effective
medium; however the inhomogeneity still plays an important
role and we observe strong enhancement of the field on
specific cylinders, or aggregates of cylinders acting as local
scatterers. At higher frequencies, below the band gap, the
modes mostly resemble monopole-like modes, with cylindrical
symmetry of the displacement field within the cylinders and the
energy concentrated within the cylinders, suggesting a hopping
mechanism for transmission. We clearly see that as we go
past 0.23cth/a, i.e., from Fig. 4(a) to Fig. 4(b), the modes
change from collective to more isolated ones, connected to the
slight change in CF . Moreover there is a phase difference of
approximately 180◦ of the field among neighboring cylinders.
We also note that there is a large number of strongly localized
modes in the vicinity of the PBG (edge states). The two modes
in Figs. 4(c) and 4(d) are such an example exactly at the
band edge. Above the PBG there is increased concentration

FIG. 4. Re[uz(r)] for the HDPS at 0.20cth/a, 0.29cth/a,
0.30cth/a (at the band edge), 0.56cth/a (at the band edge), 0.59cth/a,
0.65cth/a, from (a) to (f), respectively.

of the fields between the scatterers, which supports the idea
that the elastic waves are diffusely transmitted in between
the scatterers. Moreover the modes above the band gap show a
dipole-like behavior, similar to the one of the second resonance
of the single cylinder (see the left-hand diagram of Fig. 2).

Let us now consider the in-plane modes which, being a
mixture of longitudinal and transverse waves, are expected to
have a more complex behavior. The band structure for these
modes is shown in Fig. 5(c). In Fig. 5(b) we show the band
structure of the corresponding periodic structure with the same
filling fraction. We note that the Brillouin zones in the two
cases are not the same, due to the effective folding of the
HDPS. The area of the HDPS supercell band structure (denoted
by prime symbols) is the 1/N of the periodic one. However,
in the long-wavelength limit the band structures have the same
slopes, as expected for a homogenized material of the same
filling fraction. Moreover, in this case the opening of the band
gap occurs between the bands 1500 and 1501, instead of the
third and fourth band of the periodic structure, indicating again
a 500 folding due to the “average” periodicity (short-range
order) of the structure.

However, for the in-plane polarization the HDPS (periodic
structure) band gap extends from 0.58cth/a (0.58cth/a) to
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FIG. 5. (a) Scattering cross section of a single Pb cylinder in epoxy, for shear-polarized in-plane incident plane wave. The field profile,
Re[Az(r)], at the two peaks of the scattering cross section, associated with the single-cylinder modes at 0.55cth/a and 1.23cth/a, respectively,
are shown in the insets (cylinders can be identified due to the discontinuity of these fields). (b) Band structure of the out-of-plane modes of the
periodic structure with lattice constant a. The band gap edges of the HDPS structure are drawn with dashed red lines for comparison. (c) Band
structure of the out-of-plane modes of the periodic structure HDPS (folded in the supercell). (d) Transmission through a slab of the structure
that is finite along the x direction (length

√
Na). Transmission is shown for both longitudinal (along the x axis, black solid curve) and the shear

(along the y axis, red dashed curve) polarizations.

0.75cth/a (0.80cth/a); i.e., in the disordered case the band gap
(
ω/ωG = 26%) is smaller than the periodic one (
ω/ωG =
32%), implying that the in-plane modes are more sensitive to
disorder. Of course, the band gap is still quite large due to the
existence of the short-range order in the HDPS. We should also
note that in this case the structure supports many edge states
(localized modes). Moreover, interestingly enough, the lower
band edge of the HDPS and the periodic structure coincide.
This is not accidental, but has to do with the localized mode
of the single cylinder, shown in the lower inset of Fig. 5(a),
which interacts with the band gap and forms the lower band
edge mode. For this mode see also Fig. 6(d) and relevant
discussion. However, the upper band edge has shifted to lower
frequencies due to the formation of a large number of localized
modes near the top band gap edge. Moreover the modes above
the band gap edge resemble the field profile of the single mode
shown in the upper inset of Fig. 5(a).

The transmission in this case, shown in the right-hand
diagram of Fig. 5, has similar behavior to that for the
out-of-plane polarization and is almost independent of the
polarization of the incident wave. We can again see that
due to diffusive propagation transmission is low above the
band gap. For the in-plane waves the drop in the transmission
(−300 dB) within the band gap is somewhat smaller compared
to the out-of-plane ones (−320 dB). These results indicate
that the in-plane modes are more affected by the disorder.
However, overall, we still have sufficiently large band gaps
and corresponding transmission drops.

In the right-hand diagram of Fig. 3 we show the concentra-
tion factor for the in-plane modes. We again see a similar
behavior with the kinetic energy distribution concentrated
inside the cylinders below the band gap and outside the

cylinders above the band gap. However in this case both the
periodic structure and the HDPS exhibit stronger anisotropy
than in the out-of-plane polarization. Moreover, CF abruptly
drops at about 0.48cth/a, while remaining almost constant in
the region 0.42–0.49cth/a, connected to the fact that there
is a decrease in the density of states, as is indicated by the
decreased density in the number of bands we find over this
region. Such a behavior mirrors a similar behavior in photonics
[45].

Figure 6(a) depicts the transverse component of a mode
well below the band gap (long wavelengths). We see collective
oscillations of Re[Az(r)] corresponding to aggregates of four
to six cylinders. As we approach 0.49cth/a the modes display
a mixed character [see Fig. 6(b)]. The smoothness of the
disordering vanishes and local excitation can be separated
into cylindrical symmetry modes within the cylinders and
mirror-symmetric modes with one nodal plane within the
cylinders, resembling dipole-like shaped modes. The modes
are still very extended. However, just a little bit higher in
frequency [Fig. 6(c)] the modes rapidly localize. Interestingly
while doing so they keep their mixed-resonance character. At
even higher frequencies the modes take on a clear monopole-
like appearance and gradually evolve from localized back
to extended. Initially the monopole-like resonances have
alternating phase on each inclusion; however, as maximum
localization is surpassed the phase behavior begins to cluster
and eventually fully correlates, just below the absolute band
gap [Fig. 6(d)]. This behavior is quite peculiar and was not
found for the out-of-plane modes. The origin of this effect has
to do with the existence of the highly localized torsional mode
near the band gap edge, which interacts with the band gap
and results in the formation of the band edge mode shown in
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FIG. 6. Profile of Re[Az(r)] for the in-plane modes of the HDPS
at (a) 0.20cth/a, (b) 0.48cth/a, (c) 0.49cth/a, (d) 0.58cth/a (at the
lower edge of the PBG), (e) 0.75cth/a (at the upper edge of the PBG),
(f) 0.81cth/a.

Fig. 6(d). In both the periodic and the disordered case this mode
has the same shape and since it is localized in the cylinders it
propagates with a very small group velocity (0.001cth) through
a hoping mechanism. As a result the geometrical disorder is
not affecting strongly this mode. At the upper band edge the
modes exhibit the usual tight localization [Fig. 6(e)], while at
even higher frequencies the modes become more extended but
still highly diffusive [Fig. 6(f)].

There are some similarities to the photonics case in the
sense that we observe the displacement field localized mainly
inside, below the band gap, and outside the cylinders, above
the band gap. Moreover we see that the ballistic transport,
at low wavelengths, is accompanied with excitation of local
modes in the cylinders, while we see diffusive transport well
above the band gap. However, the modes also show important
differences. First, we see in general a higher localization of
the modes. Second, a delocalized band edge mode, with a very
low group velocity 0.001cth, was identified in the lower edge
of the band gap, due to the existence of a torsional mode at
the lower edge of the band gap. Such an extended mode was

FIG. 7. Profile of Re[φ(r)] for the in-plane modes of the HDPS at
(a) 0.20cth/a, (b) 0.48cth/a, (c) 0.49cth/a, (d) 0.58cth/a (at the band
edge), (e) 0.75cth/a (at the band edge), (f) 0.81cth/a.

not observed previously in hyperuniform photonic structure.
Third, the modes above the band gap remain localized for a
large frequency region, up to about 0.81cth, before turning to
diffusive modes. We note that these results could in principle be
found also in the photonics case for appropriate combination
of material parameters.

The longitudinal component of the fields is shown in Fig. 7.
In contrast to the transverse components the longitudinal
ones exhibit always a stronger delocalization and no obvious
correlations. However at high frequencies [see, e.g., Figs. 7(e)
and 7(f)] the mode profiles of the longitudinal and the
transverse components become quite similar, showing the
striking behavior of spreading out continuously along curvy
planes among the scatterers.

III. CAVITIES AND WAVEGUIDES

A cavity in a HDPS can be created by simply reducing
the radius of a single cylinder or totally removing it. In
the photonics case it was observed that the localized modes
have some resemblance to the modes at the band edge. We
expect some differences to the cavity and waveguide modes
of photonic band gap structures, due to the different mode
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FIG. 8. The uz cavity mode profile for the in-plane polarization.
The frequency of the eigenmode at 0.43cth/a has a Q factor of
5 × 1015.

behavior around the band gap for the in-plane modes of the
phononic structure.

Figure 8 shows the out-of-plane resonant cavity mode
introduced by removing a cylinder from the HDPS. In this case
we consider a finite number of 499 cylinders and substitute the
periodic boundary conditions with PMLs. The cavity mode,
which has a cylindrical symmetry, occurs at 0.43cth/a and has
a very high Q factor of about 5 × 1015. A careful look in the
mode profile also reveals the flexibility of the mode to exactly
adjust its shape around the surrounding cylinders. We note
that this value is much larger than what is usually found in
the literature on phononic cavities. The reason for that is that
we do not take into account phonon-phonon scattering which
limits the intrinsic Q factor. This intrinsic Q factor is usually
of the order of 105 or less depending on specific frequencies
and materials considered [46]. As a result usually a limited
number of layers is enough to achieve this intrinsic Q factor
while in our case there are about 11 layers surrounding the
cavity. Therefore in all cases considered we are well above that
point and only intrinsic Q-factor limits should be considered
on specific applications.

Figure 9 shows the in-plane resonant modes of the cavity. In
this case three cavity modes are formed. The first two modes,
at 0.66cth/a (Q = 9 × 1013) and 0.67cth/a (Q = 2 × 1014),
appear elongated with a plane of nearly mirror symmetry,
almost normal between them. The lower-frequency mode is
more spread out in the lateral direction by approximately 2a.
The higher-frequency mode is more tightly confined along
the symmetry direction and its shape appears more strongly
influenced by the adjacent scatterers. The highest-frequency
mode at 0.71cth/a with Q = 3 × 1013 has a nearly cylindrical
symmetry.

In phononic crystals, removing a row of cylinders generates
a channel through which elastic waves with frequencies
within the PBG can propagate, i.e., waveguide modes. Elastic
waves cannot propagate elsewhere in the structure outside
the channel because there are no elastic modes to couple
to. However, the waveguides must be composed of segments
whose orientation is confined to the high-symmetry directions
of the crystal. As a result, the waveguide bends of 60◦ or 90◦
can be easily achieved [47], but bends at an arbitrary angle
lead to significant scattering losses due to excessively strong
scattering at the bend junction. However in the case of the

FIG. 9. |u(r)| (left-hand column), Re[Az(r)] (middle column),
and Re[φ(r)] (right-hand column) cavity mode profiles for the in-
plane polarization. The frequencies of the eigenmodes at 0.66cth/a

(top row), 0.67cth/a (middle row), and 0.71cth/a (bottom row) have
Q factors 9 × 1013, 2 × 1014, and 3 × 1013, respectively.

HDPS the distribution of cylinders around the bend junction
are statistically isotropic. If the defect mode created by the
removal of cylinders falls within the PBG, the bend can then
be oriented at an arbitrary angle.

We note that we could couple such high-Q cavity modes to
create a line of defects and thereof coupled-cavity waveguide
modes [48]. However we employ here a more efficient and
flexible bottom-up design strategy previously introduced for
photonic structures [49]. We define the path of the waveguide
first and then built the structure around it. Specifically, we
distribute periodically cylinders on curves parallel to the
waveguide line and then distribute the rest of the scatterers
in a nearly isotropic and homogeneous manner around the
waveguide. We use one layer of ordered cylinders to shape a
waveguide with a sharp bend (as shown in Fig. 11) and leave
the rest of the structure disordered. It is worth noting that in the
photonics case it is not enough to consider only one layer of
ordered cylinders, but at least three. We think the main reason
for this is the fact that phonons are strongly localized around
defects, as we can see from Figs. 8 and 9.

The left-hand diagram of Fig. 10 shows the transmission
spectrum through the waveguide for out-of-plane polarization.
In order to trigger efficiently the transmission through the
waveguide we consider a Gaussian load profile centered at
the waveguide region, with a width of 2a. We see an almost
100% transmission for this structure within the corresponding
HDPS band gap. For the in-plane polarization (see right-hand
diagram of Fig. 10) we again observe efficient waveguiding
of about 100% transmission and very strong confinement of
the mode within the frequency region of the corresponding
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FIG. 10. Transmission spectrum through a curved waveguide
formed by surrounding HDPS-like structures. Left-hand panel:
Transmission for out-of-plane polarized waves incident from the
left [see Fig. 11(a)]. Right-hand panel: Transmission for in-plane
polarized waves incident from the left [see Fig. 11(c)].

HDPS band gap. However there are some significant drops
in the transmission around 0.65cth/a and 0.75cth/a. This is
probably due to multimode behavior in that region, but we
do not intend to further investigate such details in the current
paper.

In Figs. 11(a) and 11(b) we show the uz field profile
for continuous wave (cw) excitation normal to the plane at
0.41cth/a, well inside the waveguide frequency region, and at
0.54cth/a, at the edge of the waveguide frequency region. It
is clear that the field is highly localized, although in the latter
case there are scattering losses and the field attenuates along
the waveguide. As expected in the second case the elastic field
has a much smaller wavelength, as we can identify by the phase
shift. In Figs. 11(c) and 11(d), we show the magnitude of the
in-plane polarized elastic field at 0.61cth/a, where we have a
high transmission of almost 100% and at 0.77cth/a, at the
strong drop of the transmission (see Fig. 10). In the former case
the field is highly localized along the waveguide. However in

FIG. 11. Re[uz(r)] for the out-of-plane polarized field for cw
excitation at 0.41cth/a (a) and 0.54cth/a (b). |u(r)| for the in-plane
polarized field for cw excitation at 0.61cth/a (c) and 0.77cth/a (d).

FIG. 12. Decomposition of the in-plane elastic field of Fig. 11(c)
in the Re[Az(r)] (left-hand diagram) and Re[φ(r)] (right-hand
diagram) parts.

the latter case the field has strong scattering (diffusive) losses
inside the HPDS-like material.

In order to further understand the behavior of the in-plane
field, we present the decomposition of the in-plane polarized
elastic field at 0.61cth/a [Fig. 11(c)] in Re[Az(r)] (transverse
component) and φ(r) (longitudinal component) in the left- and
right-hand diagrams of Fig. 12, respectively. We can identify
the wavelength from the sign change of the components
along the waveguide. Moreover the longitudinal component is
somewhat better localized within the waveguide region, while
the transverse one expands in the region of the ordered arrays
of cylinders. And this is the small difference in the strength
of the localization among the out-of-plane [Fig. 11(a)] and the
in-plane [Fig. 11(c)] polarized elastic fields.

IV. FINITE THICKNESS HDPS

We finally consider a thin finite slab of the HDPS of
thickness a along the z axis. In this case we expect Lamb
waves, drastically modulated by the HDPS inhomogeneities,
to propagate through the structure. We note that for such
structures the in-plane and out-of-plane modes are no longer
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FIG. 13. Transmission through a thin film of the HDPS of
thickness a. The transmission for a boundary uniform load applied on
the left boundary with a direction along the z axis (x axis) is shown
in the left-hand (right-hand) diagram.
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FIG. 14. (a)–(c) The 3D cavity mode profiles for a finite-height
structure extending from z = −a/2 to z = a/2 at 0.46, 0.66, and
0.67cth/a from top to bottom, respectively. The deformation of the
structure is a magnification of the actual deformation. (d) The uz

displacement profile at z = 0 for the mode in (a). (e), (f) The |u|
displacement profile at z = 0 for the modes (b) and (c), respectively.

decoupled, but interact with each other. We consider that the
HDPS has a finite length of

√
Na along the x axis and use

PML to account for propagating modes that travel along the x

axis in the (infinite) surrounding epoxy material. On the other
hand we still consider periodic boundary conditions for the y

axis. Finally we consider stress free top and bottom surfaces
(z axis).

The left-hand diagram of Fig. 13 shows the transmission
through this structure for an excitation along the z axis.
We can clearly identify the large transmission drops within
the corresponding PBGs (see left-hand diagrams of Figs. 2
and 5). However in this 3D case there is a large number
of localized modes within this region, as we can identify
from the transmission peaks. Therefore no absolute band gap
exists in this case. We also note that, independently of the
load polarization, we can see significant transmission drops
corresponding to the frequency regions of the 2D PBGs of
both the in-plane and out-of-plane modes, since all the modes
are now coupled. However the transmission gaps are somewhat
shifted, as a result of the finite thickness of the HDPS and the
need for the modes to redistribute their energy profiles in a
finite extent along the z axis (modulated Lamb waves). When
we excite this 3D structure with a uniform load along the x

axis most of the localized modes are not excited and we get a
clearer picture within the transmission band gaps.

Moreover, we expect the finite thickness of the HDPS to
affect strongly the cavity modes. As we already mentioned in
this case there is no absolute band gap and no characterization
of the modes according to their polarization. Therefore, even
in the large transmission dips we were able to identify a large
number of localized modes. However among them the ones
corresponding to the 2D cavity modes are easily identified
from their very high Q factors. Specifically, in Fig. 14 we
show the modes with high Q factors. We can identify three such
modes. The first, at 0.46cth/a [Fig. 14(a)] with Q = 6 × 1012,
originates from the out-of-plane mode at 0.43cth/a (Q = 5 ×
1015), as we can verify by direct comparison of Fig. 14(d) with
Fig. 8. The modes at 0.56cth/a (Q = 1 × 1014) and 0.57cth/a

(Q = 2 × 1013) resemble the elongated displacement profiles
of the modes at 0.66cth/a (Q = 9 × 1013) and 0.67cth/a (Q =
2 × 1014) [see Figs. 9(a) and 9(b)], although there is significant
change in the displacement profiles.

V. CONCLUSIONS

We introduced a class of structurally disordered
phononic crystals, hyperuniform disordered phononic struc-
tures (HDPS). These structures are made from initially
arbitrary point patterns by applying strong correlations among
the points and finally decorating them with a specific pattern, so
that the structure factor becomes isotropic and vanishes for all
k vectors within a specific radius. Such structures can be clearly
identified (see Fig. 1) as amorphous phononic structures.
Although we only consider here cylindrical inclusions we
expect similar results independently of the shape of the
scatterers, and even for more complex decorations, such as
continuous networks originating, similarly to the photonics
case [11]. In such structures both ballistic propagation (at lower
wavelengths) and diffusive transport (at higher frequencies)
together with large phononic band gaps can coexist.

By using finite-element method calculations and supercell
techniques the band structure of HDPS has been calculated.
Large PBGs, similar to the periodic counterparts, have been
identified. Such large band gaps cannot be found in completely
random phononic structures. Moreover a large number of
localized modes was found within the frequency region of
interest. As a result, huge transmission drops have been
observed in the frequency regions of the corresponding band
gaps, for all polarizations. These results indicate that these
structures can be used as frequency filters, with the added
advantage of being highly isotropic. This latter characteristic
makes them also strong candidates for in- and out-coupling of
free-space elastic waves with waveguides.

High-Q cavity modes can be, therefore, easily imple-
mented. We showed here an example of a high-Q cavity
by removing a single cylinder. However, we expect this to
be the case even by just altering the size or misplacing
one or more cylinders, depending on the mode localization
we want to achieve. We were able to find extremely large
Q factors, ignoring intrinsic phonon-phonon scattering, and
strong localization of the field profile. Combined with the
fact that in these structures diffusive propagation and a large
number of localized modes are observed, such structures
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can be efficiently used for thermal conductivity reduction
[8,9,37]. Moreover the fact that these structures are also very
efficient in photonics applications implies that they can be
also used to create optomechanical and/or phoxonic devices
[7,50–52]. Waveguiding in such structures can also be very
efficient. It is shown that 100% transmission through arbitrary
bends is possible, due to isotropy. This is a very important
result, since this behavior cannot be found in conventional
periodic structures, where one needs to follow high-symmetry
lines. Therefore such structures are very strong candidates for
phononic integrated circuits [53].

We have also shown that 3D thin-layer HDPS behave
similarly to the 2D ones, in terms of the large effective band
gaps and the existence of high-Q cavity modes. This is an
important aspect for practical applications, since very thick
(2D) structures are, in many cases, not efficient. Although we
mainly discuss micro- and nanoscale applications we expect

that the understanding and control of such coupling between
random and short-range ordered structures is important in the
macroscale as well, such as in the understanding of seismic
wave propagation, fracture in complex structures, as well
as biomaterials, which all include some kind of correlated
disorder.

The data underlying the findings of this study are available
without restriction [54].
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