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Instantaneous charge and dielectric response to terahertz pulse excitation in TTF-CA
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We present the results of exact numerical calculations of the dielectric properties of tetrathiafulvalene-p-
chloranil (TTF-CA) using the extended Hubbard model. The electronic polarization P̄el of the ionic ground state
is obtained by directly calculating the adiabatic flow of current. The direction of P̄el is opposite to polarization
P̄ion owing to ionic displacement, and |P̄el| is much larger than |P̄ion|, showing that, in the ionic phase, TTF-CA is
an electric ferroelectric. Furthermore, we numerically calculate the dynamics induced by THz pulse excitation.
In the ionic phase, there exists an almost exact linear relationship between �ρ(t) and E(t), and between �Pel(t)
and E(t) in the realistic range of the excitation magnitude, where �ρ(t) [�Pel(t)] is the charge transfer (electric
polarization) variation induced by the THz pulse and E(t) is the electric field of the pulse at time t . The absolute
value of �ρ(t) in the neutral phase is much smaller than that in the ionic phase. These results are consistent with
those of experiments and originate from the adiabatic nature of the THz pulse excited state.
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I. INTRODUCTION

Ferroelectric materials are widely used in various devices
such as random access memory, capacitors, sensors, piezo-
electric actuators, and optical devices [1–3]. In conventional
ferroelectrics, electric polarization is governed by the rotation
of polar molecules (order-disorder type) or displacement of
ions (displacive type). Recently, ferroelectricity that arises
from electron transfer has been observed in some materi-
als. This new type of ferroelectricity is termed electronic
ferroelectricity [4,5]. Multiferroicity [6–12], where the ferro-
electricity is driven by spin ordering, and charge-order-driven
ferroelectricity [13–19], where electric polarization is caused
by an electronic charge order without inversion symmetry,
are representative examples of electronic ferroelectricity. If
their ferroelectric polarization could be controlled in the
picosecond time domain, ferroelectric materials could be used
for advanced switching devices. The typical time constants
of polarization change for conventional ferroelectric materials
vary from microseconds to milliseconds, but much faster po-
larization switching is expected for electronic ferroelectricity.

TTF-CA is an organic charge-transfer compound composed
of an alternately stacked donor (D), tetrathiafulvalene (TTF),
and acceptor (A), p-chloranil (CA) [20]. TTF-CA exhibits
a neutral to ionic phase transition at Tc � 81 K [20–26]. The
electronic structure of these two phases is schematically shown
in Fig. 1. In the ionic phase, an electron is transferred from D
to A, and the phase is stable when the electrostatic energy gain
overcomes the energy cost of molecular ionization. Because
of orbital hybridization between D and A, the charge transfer
ρ̄ from A to D is not 1 (0), and ρ̄ ∼ 0.6 (ρ̄ ∼ 0.3) in the
ionic (neutral) phase [27,28]. Dimerization occurs in the ionic
phase [29–31]. Pairs of D and A connected by shorter bonds
are indicated by the oval in Fig. 1.

Previously, TTF-CA in the ionic phase had been regarded as
a displacive-type ferroelectric, the polarization of which results
from the displacement of static point charges of ions [32,33].
However, recent experimental P -E measurements [34] and
theoretical studies [35–38] have revealed that the direction
of the net polarization is opposite to the ionic displacement,

and the absolute value of net polarization is much larger than
that due to the ionic displacement. This shows that ionic
phase TTF-CA is an electronic ferroelectric, the polarization
of which mainly originates from charge transfer between D
and A.

Recently, Miyamoto et al. [39] carried out THz-pump
optical-probe and SHG-probe measurements on TTF-CA and
showed a linear relationship between �ρ(t) and E(t) and
between �Pel(t) and E(t), where �ρ(t) [�Pel(t)] is the charge
transfer (electronic polarization) variation induced by the THz
pulse and E(t) is the electric field wave form of the THz pulse
at time t . This result indicates that the polarization amplitude
can be modulated on the picosecond time scale with a THz
pulse. This opens up the possibility of the application of this
material to optical switching.

However, the origin of the instantaneous response has not
been clarified yet. Therefore, in this work, we theoretically
investigate the dynamics induced by THz pulse excitation
from numerical calculations in the extended-Hubbard model
for TTF-CA. There have been several works on the THz
pulse induced dynamics in the Hubbard-like model for one-
dimensional Mott insulators [40,41]. The THz pulse induced
dynamics is essentially different from that induced by a
light pulse, and interesting results such as doublon-hole
pair production and switching of Coulomb interaction from
repulsive to attractive have been obtained. It is found in the
present work that the experimental results are reproduced well
by the numerical calculations, and the adiabatic response is
the origin of the instantaneous charge and dielectric response
of TTF-CA to a THz pulse.

II. MODEL

We adopt the extended Hubbard Hamiltonian for TTF-CA
coupled with the electric field of a THz pulse. We consider
a half-filled periodic one-dimensional chain with system size
N = 14. We first introduce the following set of binary electron
operators:

ρ̂σ
n,m = c†m,σ cn,σ , (1)
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FIG. 1. Schematic representation of the electronic structures of
the (a) neutral and (b) ionic phases of TTF-CA. The horizontal lines
show the highest occupied molecular orbital of D and the lowest
unoccupied molecular orbital of A, and the arrows represent the
electron spins. Neutral (ionic) D and A are denoted by D0 and A0

(D+ and A−), respectively.

where c
†
n,σ (cn,σ ) creates (annihilates) an electron of spin σ at

site n. Using this notation, the Hamiltonian is given by

H (t) =
N∑

n=1,σ

α′(−1)nρ̂σ
n,n

+
N∑

n=1,σ

[β̄ + (−1)nβ ′]
(
ρ̂σ

n+1,ne
iĀ(t) + ρ̂σ

n,n+1e
−iĀ(t)

)

+U

N∑
n=1

ρ̂↑
n,nρ̂

↓
n,n + V

N∑
n=1,σ,σ ′

ρ̂σ
n,nρ̂

σ ′
n+1,n+1, (2)

where D (A) is placed at the odd-numbered (even-numbered)
sites. We adopt standard notation for the Coulomb integral
and the transfer integral in quantum chemistry [42]. The first
term describes the site energy, where 2α′ shows the difference
in orbital energy between the highest occupied molecular
orbital of D and the lowest unoccupied molecular orbital
of A. The second term describes the transfer of electrons,
and the electron-light coupling is introduced as the Peierls
phase into the transfer integrals, where β̄ − β ′ (β̄ + β ′) is
the transfer integrals for a shorter (longer) bond when Ā(t),
the dimensionless vector potential at time t , is 0. A shorter
(longer) bond is placed at the odd-numbered (even-numbered)
bond, and |β ′| shows the magnitude of bond length alternation.
The third and the fourth terms describe the on-site Coulomb
interaction and the Coulomb interaction between neighboring
sites, respectively, where U is the on-site Coulomb interaction
energy and V is the Coulomb interaction energy between
neighboring sites. The electric Hamiltonian He is given by
H (t) for Ā(t) = 0, and the ground state of He is denoted
by |φ0〉. We numerically calculate |φ0〉 using the Lanczos
method.

We consider the dimensionless vector potential Ā(t) of a
half-cycle pulse given by

Ā(t) = Ā

2

{
1 + tanh

(
t

D

)}
, (3)

where Ā is the amplitude and D is the duration time. The
vector potential A(t) is given by A(t) = Ā(t)/(ea), where e is
the elementary charge and a = 3.6 Å [29] is the average lattice
spacing along the one-dimensional direction. We numerically
solve the time-dependent Schrödinger equation subject to the
pulse with the initial condition |ψ(−∞)〉 = |φ0〉, where |ψ(t)〉
is the solution at time t .

The elements of the single density matrix for |ψ(t)〉 are
denoted by ρσ

n,m(t) = 〈ψ(t)|ρ̂σ
n,m|ψ(t)〉, while those for |φ0〉

are denoted by ρ̄σ
n,m = 〈φ0|ρ̂σ

n,m|φ0〉. The expectation values
of the considered physical quantities are given by these.

Because all the even-numbered (odd-numbered) sites are
equivalent, the charge distribution of |ψ(t)〉 (|φ0〉) can be
described by the charge transfer ρ(t) (ρ̄) from D to A, where
ρ(t) = ∑

σ ρσ
2,2(t) and ρ̄ = ∑

σ ρ̄σ
2,2. In the ionic (neutral)

phase, ρ̄ is nearly equal to 1 (0). The charge transfer ρ(t)
can be decomposed into two parts as

ρ(t) = ρ̄ + �ρ(t), (4)

where �ρ(t) is the charge transfer variation induced by the
THz pulse.

III. RESULTS

We first determine the parameters for the neutral phase
and the ionic phase. Because bond length alternation does not
occur, β ′ = 0 holds in the neutral phase. It has been shown
that the light absorption spectrum of the neutral phase can be
reproduced well with the following parameters: β̄ = −0.17,
α′ = 0.15, U = 2.41, and V = 1.07 [43]. Here and hereafter,
we use eV as the unit of energy. The above values of β̄, U ,
and V are adopted for both the neutral and the ionic phases. To
determine α′ and β ′, we calculate the dependence of the light
absorption spectrum α(ω), ρ̄, and �ρ(t) on them.

The α′ dependence of ρ̄ for β ′ = 0 and 0.02 is shown
in Fig. 2. In the small (large) α′ region, ρ̄ � 1 (ρ̄ � 0.1)
holds, and the ground state is an ionic (a neutral) state. In the
phase boundary region between these two regions, ρ̄ decreases
rapidly with increasing α′.

 0
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FIG. 2. The α′ dependence of ρ̄ for β ′ = 0 and β ′ = 0.02.
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The values of α′ that reproduce the experimentally observed
values ρ̄ = 0.3 and ρ̄ = 0.6 for the neutral and ionic phases,
respectively [27,28], are both in the phase boundary region.
However, because |�ρ(t)| is much larger than the experimen-
tally estimated value in the phase boundary region as is shown
later, we adopt α′ outside this region.

In the ionic phase, we adopt the parameters α′ = 0.13
and β ′ = 0.02. These values reproduce α(ω) and �ρ(t)
reasonably, but give ρ̄ = 0.94, which is significantly larger
than that experimentally observed. Furthermore, the ratio
|β ′/β̄| = 0.12 is consistent with the difference between the
length of the longer and shorter bonds [29]. A much larger
ratio (|β ′/β̄| � 0.5) is proposed from numerical calculations
of the electron-lattice coupled system [44]. However, such
large |β ′| results in α(ω) being greatly different from that
observed experimentally.

In the neutral phase, we adopt α′ = 0.158 and β ′ = 0,
which reproduce α(ω) well. These values give ρ̄ = 0.11, which
is significantly smaller than the experimentally observed value.
These parameters are consistent with previous theoretical
works [26,35,45–49].

A. Electric polarization of the ionic phase ground state

In this section, we calculate the electronic polarization per
unit cell P̄el of the ionic ground state. It should be emphasized
that P̄el cannot be determined from the charge distribution in
the unit cell, but it can be determined from the adiabatic flow of
current [50–53]. The current can be calculated from the Berry
phase in models based on density functional theory [50,54],
and other methods have been proposed [55,56]. In this paper,
it is directly calculated from the current for the many-body
wave function to fully take the strong correlation effect into
account. The current operator în for bond n, which connects
sites n and n + 1, is given by

în(t) = −ie
∑

σ

(β̄ + β ′(−1)n)
(
ρ̂σ

n+1,ne
iĀ(t) − ρ̂σ

n,n+1e
−iĀ(t)).

(5)

The expectation values in(t) = 〈ψ(t)|în(t)|ψ(t)〉 satisfy the
equation of charge conservation:

∂

∂t

{
e
∑

σ

ρσ
n,n(t)

}
= in(t) − in−1(t). (6)

We introduce an adiabatic parameter λ that scales the
electronic parameters leading from the neutral ground state
(λ = 0) to the ionic ground state (λ = 1). We consider the elec-
tronic Hamiltonian He(λ) with the scaled parameters, where
α′ = 0.158(1 − λ) + 0.13λ and β ′ = 0.02λ. The ground state
of He(λ) is denoted by |�0(λ)〉. Namely, |�0(1)〉 [|�0(0)〉] is
the ground state of the ionic (neutral) phase. We adiabatically
change λ(t) from 0 to 1 with large time interval T by assuming
the relation λ(t) = t/T , and we solve the time-dependent
Schrödinger equation

i
∂

∂t
|(t)〉 = He(λ(t))|(t)〉, (7)

with the initial condition |(0)〉 = |�0(0)〉. Because He(0)
has inversion symmetry, the electronic polarization is zero

for the neutral ground state |�0(0)〉. Therefore, the electronic
polarization P̄el of the ionic ground state |�0(1)〉 is given by
the time integration of adiabatic current flow as

P̄el =
∫ T

0
dta〈(t)|(î2n−1 + î2n)|(t)〉, (8)

where în is în(t) when Ā(t) = 0. In Eq. (8), we assume that
the bond length of all bonds is equal to a for simplicity.
The difference in length between odd-numbered and even-
numbered bonds is a few percent of a, so this simplification
affects the present result only slightly.

As T is increased up to 8000 eV−1, P̄el/(ea) converges to
−0.802 within an error of 1%. The polarization direction and
|P̄el| are consistent with the experimental results (−0.85) [34]
and previous theoretical results based on density functional
theory. Furthermore, |P̄el| 
 |P̄ion| holds, where P̄ion is the
polarization per unit cell arising from the ionic displacement.
The present result also shows that electronic polarization is
dominant in TTF-CA in the ionic phase.

B. THz pulse induced dynamics in the ionic phase

In this section we show the time variation of �ρ(t) and
�Pel(t) induced in the ionic phase of TTF-CA by a THz pulse.
The electric field of the pulse is given by

E(t) = − 1

2eaD
Ā cosh−2

(
t

D

)
. (9)

We adopt the duration time D = 300 eV−1 (197 fs), which
is about the same as that used in the experiments, and
1/(2eaD) = 46 kV/cm. The dependence of the results on D

is discussed later.
We first show how an artifact caused by the finite-size effect

can be removed from the numerical results. As is shown later,
the adiabatic approximation holds well for the solution |ψ(t)〉
of the time-dependent Schrödinger equation in the realistic
range of Ā. Then, as shown in the Appendix, |ψ(t)〉 can be
written as

|ψ(t)〉 = exp

[
− i

∫ t

0
dτE0(τ )

]
|φ0(t)〉 + |δψ(t)〉. (10)

Here, |φ0(t)〉 and E0(t) are the ground state and the ground
state energy of H (t), respectively, and |δψ(t)〉 is the first order
term of the small parameter ε of the adiabatic approximation,
which is explicitly given in the Appendix.

The electronic polarization variation induced by the THz
pulse �Pel(t) is given by the time integration of current flow
as

�Pel(t) = a

∫ t

−∞
dτ {i1(τ ) + i2(τ )}. (11)

The charge transfer variation �ρ(t) and �Pel(t) are given from
expectation values ρσ

n,n(t) = 〈ψ(t)|ρ̂σ
n,n|ψ(t)〉 and in(t) =

〈ψ(t)|în(t)|ψ(t)〉, respectively. The expectation value, for ex-
ample, 〈ψ(t)|ρ̂σ

n,n|ψ(t)〉, is decomposed into the zeroth-order
term 〈φ0(t)|ρ̂σ

n,n|φ0(t)〉 and the terms more than or equal to the
first order of ε. As shown in the Appendix, 〈φ0(t)|ρ̂σ

n,n|φ0(t)〉
and also the zeroth-order term 〈φ0(t)|în(t)|φ0(t)〉 of in(t) do
not depend on Ā(t) in the infinite system. However, they
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FIG. 3. (a) �ρ(t) and (b) �Pel(t) for Ā = −4, −3, −2, −1, 1, 2,
3, 4, and 5 in the ionic phase (for α′ = 0.13 and β ′ = 0.02), shown
with thick lines. The fitting curves �ρ̃[E(t)] and �P̃el[E(t)] are
shown with thin lines.

change with Ā(t) in the finite system, and time variation
of the zeroth-order term in �ρ(t) and �Pel(t) are artifacts
caused by the finite-size effect. Because �ρ(t) and �Pel(t)
are quantities more than or equal to the first order of the small
parameter ε within the thermodynamic limit, they are seriously
affected by this finite-size effect in the zeroth-order term. The
artifacts can be removed using Eqs. (A23) and (A25) shown
in the Appendix, and we consider the charge transfer variation
�ρ(t) and the electronic polarization variation �Pel(t) from
which the zeroth-order term is removed in the following. We
have numerically confirmed these equations by comparing
the quantities calculated with r = 2 and 3. The difference in
�Pel(t) is less than 1% for −5 � Ā � 4, while that in �ρ(t)
is less than 1% for −3 � Ā � 3 and only a few percent for
Ā = −5, −4, and 4.

We show the time variation of �ρ(t) and �Pel(t) for
−4 � Ā � 5 in Figs. 3(a) and 3(b), respectively. When Ā > 0
(Ā < 0) holds and the electric field is in the same (opposite)
direction as the electronic polarization of the ground state,
|Pel(t)| > |P̄el| (|Pel(t)| < |P̄el|) and ρ(t) > ρ̄ (ρ(t) < ρ̄) hold,
which is consistent with experiments [39].

We have numerically found that �ρ(t) and �Pel(t) are given
by the power series of E(t) up to the fifth order almost exactly,
neglecting the small oscillating components. We consider the
power series of E given by the following equations:

�ρ̃(E) =
5∑

n=1

ρ(n)En, (12)

�P̃el(E) =
5∑

n=1

P
(n)
el En, (13)

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015
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Δρ~
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(E
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(e
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Δρ~
ΔP

~
el/(ea)

FIG. 4. �ρ̃(E) and �P̃el(E) for α′ = 0.13. The experimentally
estimated values for E = −38 kV/cm are also shown.

and calculate the five coefficients ρ(n) (P (n)
el ) that best fit

�ρ(t) [�Pel(t)] in the time region shown in this figure. The thin
lines in Fig. 3 are the fitting curves �ρ̃[E(t)] and �P̃el[E(t)],
which reproduce the numerical results very well throughout
the time region and for all Ā except for the small oscillating
components. The quantities �ρ(t) and �Pel(t) at a certain
time are determined only by the electric field E(t) at that time,
showing that they respond to the electric field instantaneously.

Figure 4 shows �ρ̃(E) and �P̃el(E). Both quantities
are almost proportional to E for |E| � 50 kV/cm. If the
peak magnitude of the electric field is less than 50 kV/cm
(for |Ā| � 1), a linear relationship between �ρ(t) and E(t),
and between �Pel(t) and E(t), exists. The present results
reproduce the important experimental results well. It has
been experimentally estimated that �ρ̃(E) = 2.5×10−3 and
�P̃el(E)/P̄el = 7.5×10−3 for E = −38 kV/cm [39]. These
values are also shown in the figure and are about two
times larger than the numerical results. As shown later, the
magnitudes of these quantities strongly depend on α′. This
point is discussed later.

For |E| � 50 kV/cm, nonlinearity becomes prominent,
and �ρ̃(E) and �P̃el(E) are convex downward. Even in the
nonlinear region, �ρ(t) and �Pel(t) respond to E(t) with no
delay.

As shown in the Appendix, a linear relationship exists
between �ρ(t) and Ē(t) if the following two conditions are
satisfied: (i) the adiabatic approximation holds well (ε � 1)
and (ii) the THz pulse excitation is off-resonant (�ED 
 1),
where �E is the optical gap. With the present parameters, these
conditions hold except for very large |Ā| as discussed below.
Consequently, the characteristic instantaneous response of
TTF-CA to a THz pulse originates from these two properties.

C. THz pulse induced dynamics in the neutral phase

In this section we show the time variation of �ρ(t) and
�Pel(t) induced in the neutral phase of TTF-CA by a THz
pulse. We calculate �ρ(t) and �Pel(t) using Eqs. (A24)
and (A25), respectively, and those for 1 � Ā � 4 are shown
in Fig. 5. Because �ρ(t) [�Pel(t)] is an even (odd) function
of Ā, we show the results for Ā � 0. The difference in �ρ(t)
between the cases of r = 2 and 3 is a few percent for Ā = ±4.
Those for |Ā| � 3, and the difference in �Pel(t) for |Ā| � 5,
are less than 1%.
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FIG. 5. (a) �ρ(t) and (b) �Pel(t) for Ā = 1, 2, 3, and 4 in the
neutral phase (for α′ = 0.158 and β ′ = 0).

As seen from Fig. 5, despite the fact that |�Pel(t)| values are
comparable between the neutral and ionic phases, |�ρ(t)| is
much smaller in the neutral phase than in the ionic phase at the
same value of Ā. The important experimental observations [39]
are reproduced well by this result.

To consider the origin of the small �ρ(t) in the neutral
phase, we investigate the β ′ dependence of the dynamics,
where β ′ represents the magnitude of bond length alternation.
We fix all the parameters except for β ′ and calculate the
dynamics induced by THz pulse excitation in the range 0 �
β ′ � 0.02 for α′ = 0.13 and 0.158. The charge transfer ρ̄ for
the ground state weakly depends on β ′, and ρ̄ � 1 (ρ̄ � 0.1)
holds. Therefore, the ground state stays in the ionic (neutral)
state all through the range of β ′ for α′ = 0.13 (α′ = 0.158).

We show the β ′ dependence of the peak value of the charge
transfer variation �ρ(0) in the ionic (α′ = 0.13) and neutral
(α′ = 0.158) states in Fig. 6. As seen from this figure, �ρ(0) �
0 holds for β ′ = 0 both in the ionic and neutral states. This
result is analytically shown in the Appendix. Namely, �ρ(t) =

 0
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 0.00015

 0.0002

 0.00025

 0  0.005  0.01  0.015  0.02

Δρ
(0

)

β′

α′=0.13
α′=0.158

FIG. 6. The β ′ dependence of �ρ(0) for Ā = 0.1 in the ionic
(α′ = 0.13) and neutral (α′ = 0.158) states of TTF-CA.

0 holds up to the first order of the adiabatic parameter ε if
β ′ = 0 holds. The peak value �ρ(0) increases with β ′ in the
two states, and |�ρ(t)| in the neutral state is comparable to that
in the ionic phase at the same value of β ′. The much smaller
|�ρ(t)| for the neutral phase can be attributed to its inversion
symmetry without lattice dimerization.

This can be understood from the balance of the currents
between the odd-numbered and the even-numbered bonds. As
shown in Eq. (11), �Pel(t) is given by the sum of the time
integrations of the current at the odd-numbered and even-
numbered bonds. Conversely, from the equation of charge
conservation (6), �ρ(t) is given by the difference between
them as

�ρ(t) = 1

e

∫ t

−∞
dτ {i2(τ ) − i1(τ )}. (14)

Because |�Pel(t)| for the neutral phase is comparable to that
for the ionic phase, the magnitudes of the time integrations of
current at each bond are also comparable for the two phases.
In the case of uniform lattice (β ′ = 0), i2n−1(τ ) � i2n(τ ) holds
and the current at the odd-numbered bonds nearly cancels out
that at the even-numbered bonds. This is the reason for the
very small �ρ(t) in the neutral phase.

D. Phase boundary region

In this section we show the dynamics induced by a THz
pulse in the phase boundary region. We adopt the parameters
α′ = 0.1445 and β ′ = 0.02 (α′ = 0.142 and β ′ = 0), which
reproduce the experimentally obtained charge transfer 0.6
(0.3) [27,28] for the ionic (neutral) phase. With these param-
eters, ρ̄ = 0.62 (ρ̄ = 0.32) holds in the ionic (neutral) phase,
and α′ = 0.1445 and α′ = 0.142 are in the phase boundary
region, where ρ̄ decreases rapidly as α′ increases as seen in
Fig. 2.

We first discuss the results for the ionic phase. The
differences between the values of �ρ(t) and �Pel(t) calculated
with r = 2 and 3 are both less than 1% for −1 � Ā � 1. Thus,
the time variations of �ρ(t) and �Pel(t) for −1 � Ā � 1 are
shown in Figs. 7(a) and 7(b), respectively.

Also in the phase boundary region, �ρ(t) and �Pel(t) are
approximated well by the power series of E(t) up to the fifth
order. The fitting curves �ρ̃[E(t)] and �P̃el[E(t)] are also
shown in Figs. 7(a) and 7(b), respectively. The fitting curves
agree well with �ρ(t) and �Pel(t), and the linear relationships
between �ρ(t) and E(t) and between �Pel(t) and E(t) hold
well for |Ā(t)| � 0.2 (|E(t)| � 10 kV/cm). The deviations
from the fitting curves become prominent for |Ā(t)| � 0.2.
However, the overall time profiles of �ρ(t) and �Pel(t) are
reproduced well by �ρ̃[E(t)] and �P̃el[E(t)], respectively,
and a nearly instantaneous response also occurs in the phase
boundary region.

Figure 4 also shows �ρ̃(E) and �P̃el(E) for the ionic phase
in the phase boundary region. As seen, �ρ̃(E) and �P̃el(E) for
α′ = 0.1445 are about 50 times larger than those for α′ = 0.13.
The charge and polarization respond to the electric field much
more sensitively inside the phase boundary region than outside
the region. Furthermore, the magnitude of the charge transfer
|�ρ(t)| is much smaller in the neutral phase than in the ionic
phase.
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FIG. 7. (a) �ρ(t) and (b) �Pel(t) for Ā = −1, −0.8, −0.6, −0.4,
−0.2, 0.2, 0.4, 0.8, and 1 in the ionic phase in the phase boundary
region (for α′ = 0.1445 and β ′ = 0.02), shown by the thick lines.
The fitting curves �ρ̃([(t)] and �P̃el[E(t)] are represented by the
thin lines.

IV. DISCUSSION

It has been experimentally shown that there is an ap-
proximate linear relationship between �ρ(t) and E(t), and
|�ρ(t)| is much larger in the ionic phase than in the
neutral phase [39]. These results are reproduced well by our
numerical calculations. As shown in the previous section, this
characteristic charge dynamics occurs if the following two
conditions are satisfied: (i) the adiabatic approximation holds
well (ε = max[|Jn,0|/(ωn)2]Ā/D � 1) and (ii) the THz pulse
excitation is off-resonant (�ED 
 1). For α′ = 0.13 and β ′ =
0.02, max(|Jn,0|/ω2

n) � 0.6 and �E � 0.5 hold. Therefore,
these characteristic instantaneous charge dynamics induced
by the THz pulse excitation occur even at five times smaller
D for the realistic magnitude Ā � 1. We have confirmed
this with numerical calculations. It is therefore expected that
the polarization amplitude in ionic phase TTF-CA can be
modulated on a 0.1 ps time scale by a THz pulse.

A large optical gap is an indispensable property for materi-
als in which this characteristic instantaneous response occurs.
However, charge susceptibility is very small and |�ρ(t)| and
|�Pel(t)| are considered to be very small in conventional
insulators. Significant and instantaneous changes in charge
and polarization with E(t) are characteristic of materials with
a large optical gap and a large charge susceptibility. In the case
of TTF-CA, its characteristic large valence fluctuation enables
their coexistence.

Because the adiabatic approximation holds well, heat
production is negligible for realistic magnitudes of the THz
pulse field. This is a big advantage for optical devices.
However, neither polarization reversal in the ionic phase nor
THz pulse induced transition between the neutral and ionic

phases occurs within the adiabatic picture. They have not been
observed also experimentally [39]. As seen from Eq. (A16), the
induced charge arises from the off-diagonal element between
the adiabatic ground state and the virtual excited states. This is
in contrast to the case of photoexcitation, where real excitation
plays an important role and photoinduced phase transition
between the neutral and ionic phases occurs [43,44,57–65].
However, by using a stronger THz pulse to the TTF-CA
very close to the phase boundary, polarization reversal or the
phase transition may be induced by a THz pulse. To address
this problem, the following points are to be considered. It is
difficult to remove artifacts caused by the finite-size effect
in the intense excitation case. We need to extend the present
method to describe the dynamics in the case. Furthermore,
the screening of Coulomb interaction is enhanced near the
phase boundary by the diverging dielectric constant [32,49],
which may seriously affect the phase transition or polarization
reversal. However, the electronic parameters are fixed, and this
screening effect cannot be described in the present extended
Hubbard model. We consider that electron-lattice coupling
may play a crucial role to realize these phenomena. By
introducing electron-lattice coupling in the transfer integral,
THz pulse excitation may induce the lattice motion that
reverses the phase of bond length alternation, which will
induce the electronic polarization reversal. These points will
be discussed in a forthcoming paper.

V. CONCLUSION

We have investigated the dielectric properties of TTF-CA
using exact numerical calculations of an extended Hubbard
model. The electronic polarization P̄el of the ionic ground state
is obtained by directly calculating the adiabatic flow of current.
The direction of P̄el is opposite to that of the polarization P̄ion

owing to ionic displacement, and |P̄el| is much larger than
|P̄ion|, showing that, in the ionic phase, TTF-CA is an electric
ferroelectric. These results are consistent with experiments
and previous theoretical results based on density functional
theory. Furthermore, we numerically calculated the dynamics
induced by THz pulse excitation. The major experimental
results are reproduced well by our numerical results. For the
ionic phase, there exists an almost exact linear relationship
between the charge transfer variation induced by the THz pulse
�ρ(t) and the electric field E(t) of the pulse and between
the electric polarization variation induced by the THz pulse
�Pel(t) and E(t) in the realistic range of excitation magnitude.
The absolute value of �ρ(t) for the neutral phase is much
smaller than that for the ionic phase. These properties are
found to originate from the adiabatic nature of the THz pulse
excited state.
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APPENDIX

In this appendix, we derive the condition under which
the characteristic instantaneous charge dynamics occurs and
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how artifacts caused by the finite-size effect are removed. Up
to the first order of the small parameter ε of the adiabatic
approximation, which is described later, the solution |ψ(t)〉 of
the time-dependent Schrödinger equation can be written as

|ψ(t)〉 = exp

[
− i

∫ t

0
dτE0(τ )

]
|φ0(t)〉 + |δψ(t)〉, (A1)

|δψ(t)〉 =
n�=0∑
n

cn(t) exp

[
− i

∫ t

0
dτEn(τ )

]
|φn(t)〉, (A2)

where |φn(t)〉 is the energy eigenstate of H (t) with an energy
eigenvalue En(t), and |φ0(t)〉 and E0(t) are the ground state and
the ground state energy, respectively. Note that the magnitude
of the coefficient for |φ0(t)〉 is equal to 1 up to the first order.
The first-order term |δψ(t)〉 is given by the linear combination
of |φn(t)〉 with the coefficient cn(t).

To derive a differential equation for cn(t), we consider the
terms up to the first order of the infinitesimal time change
�t in the following. We divide the Hamiltonian H (t + �t)
into the unperturbed part H0 = H (t) and the perturbed part
H1 = H (t + �t) − H (t). Up to the first order of �t,H1 can
be written as

H1 = Ĵ (t)Ē(t)�t, (A3)

where Ĵ (t) is given by

Ĵ (t) = 1

e

N∑
n=1

în(t) (A4)

and Ē(t) is given by

Ē(t) = − d

dt
Ā(t) = eaE(t). (A5)

From the stationary perturbation theory, |φk(t + �t)〉 is
given by

|φk(t + �t)〉 = |φk(t)〉 − Ē(t)�t

n�=k∑
n

Jn,k(t)

En(t) − Ek(t)
|φn(t)〉,

(A6)

where Jn,k(t) is the transition dipole moment given by

Jn,k(t) = 〈φn(t)|Ĵ (t)|φk(t)〉. (A7)

The arbitrary phase of |φk(t + �t)〉 is determined from this
equation.

From the time-dependent perturbation theory, |ψ(t + �t)〉
is obtained up to the first order of Ā as

|ψ(t + �t)〉 = U (0)(t + �t,t) exp

[
− i

∫ t

0
dτE0(τ )

]
|φ0(t)〉

+U (1)(t+�t,t) exp

[
−i

∫ t

0
dτE0(τ )

]
|φ0(t)〉

+U (0)(t + �t,t)|δψ(t)〉, (A8)

where U (i)(t + �t,t) is the ith-order time evolution operator
given by

U (0)(t + �t,t) = exp[−iH (t)�t], (A9)

U (1)(t + �t,t)

= −i

∫ �t

0
dτU (0)(t + �t,t + τ )Ĵ (t)Ē(t)τU (0)(t + τ,t).

(A10)

Substituting Eqs. (A9) and (A10) into Eq. (A8), we obtain

|δψ(t + �t)〉 =
n�=0∑
n

{
cn(t) exp

[
−i

∫ t+�t

0
dτEn(τ )

]

+ iĒ(t) exp

[
− i

∫ t

0
dτE0(τ )

]

×
(

1

En(t) − E0(t)

)2

Jn,0(t)

}
×{exp[−iEn(t)�t]

− exp[−iE0(t)�t]}|φn(t)〉, (A11)

From Eq. (A11), it can be easily shown that cn(t) satisfies
the following differential equation:

d

dt
cn(t) = exp

[
i

∫ t

0
dτωn(τ )

]
Ē(t)

Jn,0(t)

ωn(t)
, (A12)

where ωn(t) = En(t) − E0(t) is the excitation energy from the
ground state to the optically allowed energy eigenstate |φn(t)〉,
where Jn,0(t) �= 0 holds. As shown later, in the thermodynamic
limit, Jn,0(t) and ωn(t) are constant with time, and Jn,0(t) =
Jn,0 and ωn(t) = ωn hold, where Jn,0 and ωn are the transition
dipole moment and the excitation energy, respectively, from
|φ0〉 to |φn〉 in the electronic Hamiltonian He = H (−∞).
Then, we can solve the differential equation (A12), and cn(t)
is given by

cn(t) = −i
Jn,0

ω2
n

exp[iωnt]Ē(t)

= −i
Jn,0Ā

2ω2
nD

exp[iωnt]sech2

(
t

D

)
, (A13)

where the terms of second order or more in 1/(ωnD) are
neglected. In the case of THz pulse excitation, 1/(�ED) � 1
holds, and this approximation holds well for almost all the
insulators. Therefore, the small parameter ε for the adiabatic
approximation is given by

ε = max

( |Jn,0|
ω2

n

) |Ā|
D

, (A14)

and the adiabatic approximation is good if ε � 1 holds.
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We expand ρ(t) = 〈ψ(t)|∑σ ρ̂σ
2,2|ψ(t)〉 up to the first order

of ε as ρ(t) = ρ(0)(t) + ρ(1)(t), where ρ(i)(t) is the ith-order
term. From Eq. (A1), it can be easily shown that

ρ(0)(t) = 〈φ0(t)|
∑

σ

ρ̂σ
2,2|φ0(t)〉, (A15)

ρ(1)(t) = 2Re

{
exp

[
i

∫ t

0
dτE0(τ )

]
〈φ0(t)|

∑
σ

ρ̂σ
2,2|δψ(t)〉

}
.

(A16)

The zeroth-order term does not depend on time and
ρ(0)(t) = ρ̄ holds in the thermodynamic limit as shown below.
Using the unitary transformation

c̃n,σ = cn,σ exp[inĀ(t)], (A17)

where c̃
†
n,σ c̃n,σ = c

†
n,σ cn,σ holds, the transfer term of H (t) can

be written as

N−1∑
n=1,σ

[β̄ + β ′(−1)n]
(
c̃†n,σ c̃n+1,σ + c̃

†
n+1,σ c̃n,σ

)

+ [β̄ + β ′(−1)N ]
(
c̃
†
N,σ c̃1,σ exp[iNĀ(t)]

+ c̃
†
1,σ c̃N,σ exp[−iNĀ(t)]

)
. (A18)

The vector potential gives a twist in the boundary condition,
but does not change H (t) except for this. This holds also for
Ĵ (t). Therefore, 〈φn(t)| ∑σ ρ̂σ

2,2|φm(t)〉 − 〈φn|
∑

σ ρ̂σ
2,2|φm〉,

Jn,0(t) − Jn,0, and ωn(t) − ωn are of the order of 1/N at most.
Substituting Eq. (A13) into Eq. (A16), and neglecting the

finite-size effect of the order of 1/N , we obtain �ρ(t) as

�ρ(t) = GĒ(t), (A19)

G = 2Im

[
n�=0∑
n

Jn,0

ω2
n

〈φ0|
∑

σ

ρ̂σ
2,2|φn〉

]

= 2Im

[
〈φ0|

∑
σ

ρ̂σ
2,2

1

{He − E0}2
Ĵ |φ0〉

]
, (A20)

up to the first order of ε, where Ĵ = Ĵ (−∞). The quantity G

is constant with time in the thermodynamic limit.
Up to the first order of ε, |ψ(t)〉 is given by the linear

combination of |φ0(t)〉 and |φn(t)〉 where Jn,0 �= 0 holds,
as seen from Eqs. (A1), (A2), and (A13). As a result,
�ρ(t) is given from off-diagonal elements 〈φ0|

∑
σ ρ̂σ

2,2|φn〉
as shown in Eq. (A20). In the uniform lattice (β ′ = 0), He and∑

σ ρ̂σ
2,2 are symmetric, and Ĵ is antisymmetric with respect

to site 2. Because of the symmetry, the ground state |φ0〉 is
symmetric, and |φn〉 are all antisymmetric, which results in

〈φ0|
∑

σ ρ̂σ
2,2|φn〉 = 0. Therefore, G = 0 holds for the uniform

lattice.
If we consider the higher-order terms, namely, excitation

from the weakly excited state, the elements between symmetric
states and those between antisymmetric states contribute to
�ρ(t), and �ρ(t) becomes nonzero even for β ′ = 0. We have
confirmed this from the numerical calculation. There is no
linear relation between �ρ(t) and Ē(t) in the case of β ′ = 0.

The time variations of the zeroth-order terms
〈φ0(t)|ρ̂σ

n,n|φ0(t)〉 of ρσ
n,n and 〈φ0(t)|în|φ0(t)〉 of în are

artifacts caused by the finite-size effect as shown before.
These artifacts can be removed by considering the dynamics
induced by a pulse with renormalized duration rD given by

Ā(r)(t) = Ā

2

{
1 + tanh

(
t

rD

)}
. (A21)

Because H (r)(rt) = H (t) holds, where H (r)(t) is the Hamilto-
nian with the pulse described by Ā(r)(t), the time-dependent
solution |ψ (r)(t)〉 of H (r)(t) can be written as

|ψ (r)(rt)〉 = exp

[
− ir

∫ t

0
dτE0(τ )

]
|φ0(t)〉 + |δψ (r)(rt)〉,

(A22)

where |δψ (r)(t)〉 is the first-order term of ε/r . The zeroth-order
term can be removed using Eqs. (A1) and (A22), and �ρ(t) in
the ionic phase is given by

�ρ(t) = r

r − 1

{
〈ψ(t)|

∑
σ

ρ̂σ
2,2|ψ(t)〉

−〈ψ (r)(rt)|
∑

σ

ρ̂σ
2,2|ψ (r)(rt)〉

}
, (A23)

�ρ(t) in the neutral phase is given by

�ρ(t) = r2

r2 − 1

{
〈ψ(t)|

∑
σ

ρ̂σ
2,2|ψ(t)〉

− 〈ψ (r)(rt)|
∑

σ

ρ̂σ
2,2|ψ (r)(rt)〉

}
, (A24)

and �Pel(t) in both the two phases is given by

�Pel(t) = ar2

r2 − 1

∫ t

−∞
dτ {〈ψ(τ )|(î1(τ ) + î2(τ ))|ψ(τ )〉

− 〈ψ (r)(rτ )|(î1(τ ) + î2(τ ))|ψ (r)(rτ )〉}, (A25)

where we use the fact that the leading term of
〈ψ (r)(rt)| ∑σ ρ̂σ

2n,2n|ψ (r)(rt)〉−〈φ0(t)| ∑σ ρ̂σ
2n,2n|φ0(t)〉 is the

first (second) order of ε/r in the ionic (neutral) phase, and that
of 〈ψ (r)(rτ )|în|ψ (r)(rτ )〉 − 〈φ0(t)|în|φ0(t)〉 is the second order
of ε/r in both the phases.
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