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We consider in detail a simple model supporting a single floppy mode that is often used to heuristically describe
instances of negative thermal expansion. A key result is that the translational kinetic energy of the dilating bond
network scales extensively with system size and results in dynamical properties which differ qualitatively from
considerations built upon harmonic models. We develop an analogy between the dynamics of this model and a
modified mechanical pendulum to elucidate the connection between the new results and the familiar harmonic
limit. We then propose an appropriate Schrödinger equation for this system and study numerically the quantum
mechanical solutions. Marked differences from conventional phonon dynamics and thermodynamics are seen in
both classical and quantum limits, in particular a strong twofold enhancement of the (negative) coefficient of
thermal expansion. We contextualize the results against real material parameters and discuss related empirical
observations.
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Negative thermal expansion (NTE) has been identified
from the early 20th century as a maverick phenomenon [1],
and two routes to realizing this effect have been identified:
(i) broadened phase transitions and (ii) intrinsic structural
origins. Investigations into the first class of NTE phenomena
have revealed contentious issues regarding the interplay of
magnetism, disorder, charge disproportionation, and their
volume coupling and continue to intrigue physicists [2–8].
The second class of behavior, which we term structural NTE
(SNTE), is observed in both metallic and insulating materials
without competing order [9–14]. SNTE arises instead from the
low-energy fluctuations of the bond network which draw in the
lattice when thermally activated and represents a particularly
interesting limit of lattice dynamics.

A central question in the study of SNTE is whether
basic structural mechanics principles and intuition can be
applied to guide discovery of new materials that display this
anomalous effect. For example, metallic ReO3 and insulating
ScF3 with open perovskite structure display SNTE over
a wide range of temperatures [15,16], but why do other
open perovskites most commonly exhibit positive thermal
expansion (PTE)? Why is SNTE so rare, inevitably yielding
to PTE in response to disorder [16–18] and application of
pressure? In pursuit of conceptual control of the phenomenon,
innovative approaches have been offered which link thermally
activated transverse vibration of structural units to a tendency
to draw in lattice dimensions. “Rigid unit” approaches view
polyhedral molecular units (i.e., metal-anion tetrahedra and
octahedra) rather than ions as the fundamental building blocks
of a material and attempt to link the states built from rotational
zero modes of the free molecules to the low-energy modes of
the crystal. In this view, intramolecular degrees of freedom are
effectively integrated out, and the nature of their coordinated
motion as a function of lattice topology and connectivity
[19–23] is the central feature of SNTE. New discoveries
of robust SNTE have reinvigorated the field and raised the
question of whether strict molecular rigidity is an appropriate
starting point [24–26] or if, instead, it is more appropriate to
consider only the rigidity of the stiffest bonds in a view of the

materials as a framework of struts. In an effort to advance the
relative importance of molecular or bond stiffness in SNTE
systems, the present paper regards analytical and numerical
descriptions of a simple model supporting a single collective
mode capable of producing SNTE.

A two-dimensional constrained lattice model (2D CLM) is
shown in Fig. 1. The finite crystal consists of corner-linked
diamonds with coordinate origin at the center of mass (c.m.).
The diamonds could represent metal-anion octahedra in a
perovskite lattice structure such as the strong SNTE systems
ScF3 or ReO3, but has been used to describe more complex
lattices [27–31]. The N� = NxNy diamonds are attached by
hinged joints, so that their motional degrees of freedom are
constrained. The 2D CLM is an interesting case in that it
is isostatic [32–35], or marginally constrained [36,37], in the
sense that even in the thermodynamic limit, there is exactly one
internal degree of freedom: a staggered rotation of each dia-
mond by an angle θ . When θ = 0, the lattice has the maximum
area A0 = N�a2

0 , but changing θ from zero in either direction
contracts the lattice to an area A0 cos2 θ , and thermal activation
of this collective mode is often attributed as the origin of
NTE [27–31,38].

In addition to computational approaches built around
phonons, efforts to develop this model into a field theory
which respects the high-energy constraints of bond stretch and
bond-bend degrees of freedom include mimicking polyhedral
pliancy through a split-atom approach [39], by lowering the
degree of constraint [40,41], or permitting some diamonds
to be replaced with springs [42], and unusual properties
like NTE are found in each case. Below, we fully enforce
the constraints and show that exact analytical results link
phonon dynamics continuously to the floppy mode (FM)
of the 2D CLM. We will see that this strictly rigid limit
is inconsistent with the thermodynamic limit and focus our
attention to finite lattices. A comparison of emergent properties
derived from the 2D CLM Hamiltonian and their crossover
from textbook harmonic dynamics is the subject of this
paper. We reassess the possible role of molecular rigidity in
Sec. IV.
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FIG. 1. The two-dimensional constrained lattice model (2D
CLM) with staggered angle (a) θ = 0 and (b) θ �= 0. In the rigid
limit, the lattice dimensions contract uniformly by a factor cos θ .

I. CLASSICAL MECHANICS OF THE 2D CLM

Consider first the kinetic energy of the 2D CLM. When
θ = 0, a diamond center can be located at position �r(θ =
0) = (nx,ny)a0. When θ �= 0, the distance between neighbor-
ing diamond centers is reduced by a multiplicative factor
cos θ and each position vector is scaled similarly, �r(θ ) =
(nx,ny)a0 cos θ , with velocity �̇r(θ ) = −(nx,ny)a0θ̇ sin θ . The
velocity vectors and position vectors of each diamond always
point directly toward or away from the c.m. Summing the
translational energy m�ṙ2/2 over all diamonds in the crystal,
the total translational kinetic energy is

K trans
� = 1

2
Icθ̇

2 sin2 θ,

where Ic = ∑
nxny

m�[(nxa0)2 + (nya0)2] is the moment of
inertia of a similar crystal where diamonds are replaced by
points, each of mass m�. The appearance of the moment of
inertia in the kinetic energy reflects a deep connection between
the staggered rotation of the 2D CLM and the uniform rotation
of a rigid body, where dynamical motion is also characterized
by a single angle, with velocity increasing linearly with
distance from the c.m., but wherein material displacements
are purely tangential.

Including the rotational kinetic energy of each diamond and
summing, the total kinetic energy of the 2D CLM is

K = 1
2N�I�θ̇2 + 1

2Icθ̇
2 sin2 θ = 1

2N�I�θ̇2(1 + k2 sin2 θ ),

(1)

where k =
√

Ic

N�I�
= √

γN� and γ = Ic/N
2
�I� depends on

the aspect ratio of the crystal and mass distribution for
the diamonds (∼1.79 for a square crystallite of ScF3) [43].
Significantly, the kinetic energy of the FM has a rotational
part (the first term) which scales with system size in an
intensive way (∝N�), while the translational kinetic energy
scales extensively (Ic ∝ N2

� ). In the present work, we study
the dynamics of this floppy mode in finite systems.

We introduce a bond-bend potential V (θ ) at each molecular
junction to stabilize the equilibrium structure and study
dynamical fluctuations about the ground state, where θ = 0.
The lowest Fourier component of this potential can be written
κ(1 − cos θ ) � κθ2/2 in the small-angle limit. The energy of
the 2D CLM is, therefore,

E = 1
2N�I�(1 + k2 sin2 θ )θ̇2 + Nbκ(1 − cos θ ), (2)

where Nb � 2N� is the total number of intermolecular link-
ages. In the small θ limit, this reduces to

E = 1
2N�I�[1 + (kθ )2]θ̇2 + 1

2Nbκθ2. (3)

Figure 2(a) shows solutions to the equations of motion which
can be determined from the inverse of the function,

t(θ ) = 1

ωp

∫ θ

0

√
1 + k2θ ′2

θ2
0 − θ ′2 dθ ′

= 1

ωp

E

[
arcsin

(
θ

θ0

)
, − k2θ2

0

]
, (4)

valid for −θ0 < θ < θ0, where E(φ,m) is the incomplete
elliptic integral of the second kind and ωp = √

Nbκ/N�I�. The
k = 0 limit returns sinusoidal motion with amplitude θ0 and
frequency ωp, as expected. Of particular interest, however, is
the limit of large k, which corresponds to the thermodynamic
limit of the 2D CLM. Equation (4) then permits an exact
solution:

(t − t0)2

(kθ0/ωp)2
+ θ2

θ2
0

= 1.

The time-dependent staggered angle can be described by waves
constructed from semicircular arcs in the θ -t plane, in contrast
to the familiar sinusoidal behavior of the harmonic limit.

Several aspects of the thermodynamic FM are distinct

from the harmonic case: (i) the period τ = 4kθ0
ωp

= 4θ0

√
Ic

Nbκ

is proportional to both the amplitude of oscillation and the
system size, (ii) the system spends vanishingly small time in

(d)

t

T θ

θ0

θ̇

ωpθ0(a) (c)(b)

t

T

θ

θ0

θ

θ0

θ̇

ωpθ0

P (θ)

t

τ

t

τ

kθ0 = 0

kθ0 = 10

kθ0 = 1
kθ0 = 10

kθ0 = 10
kθ0 = 10

-1

0

1

10.510.5

-1

0

1

-1

0

1 1

1

-1

-1

FIG. 2. Panels (a)–(d) show classical solutions for θ (t) which follow from Eq. (3). These are plotted for different values of kθ0, which
uniquely quantifies the anharmonic behavior. The time axes in (a) and (c) are scaled by the FM period.
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the average position, and (iii) P (θ ) shows enhanced variance
[Fig. 2(b)], spending far more time near the extrema. These
three counterintuitive features are described in a different
context in Sec. 1 of the Appendix, which identifies the dual
problem of the Archimedean spherical pendulum (ASP): a
particle confined to an Archimedean spherical helix moving
under the influence of local gravity.

II. QUANTUM MECHANICS OF THE 2D CLM

In this section, we quantize the 2D CLM in the small-angle
limit. The classical Lagrangian of the 2D CLM/ASP is

L = 1
2N�I�(1 + k2 sin2 θ )θ̇2 − Nbκ(1 − cos θ ).

The variable θ has a conjugate momentum,

Lθ = ∂L
∂θ̇

= N�I�(1 + k2 sin2 θ )θ̇ .

Together, θ and Lθ span phase space, with the classical
Hamiltonian

H = Lθ θ̇ − L

= L2
θ

2N�I�(1 + k2 sin2 θ )
+ Nbκ(1 − cos θ ).

Expanding for small θ < 1, then substituting φ = kθ and Lφ =
Lθ/k, we get

H = k2L2
φ

2N�I�(1 + φ2)
+ 1

2

Nbκ

k2
φ2.

φ corresponds to the azimuthal angle of the ASP, is not
necessarily small, and is the natural variable for quantization.

In anticipation of quantizing L → ih̄∂ , we consider the
operator ordering possibilities relevant to the kinetic energy
in the last expression. The kinetic energy contains the two
usual factors of the conjugate momentum and an additional
Lorentzian factor f = 1

1+φ2 . These three operators can be

arranged in the following inequivalent combinations: L2
φf ,

Lφf Lφ , and f L2
φ . The requirement that the Hamiltonian be

self-adjoint restricts our attention to Lφf Lφ and the symmetric
combination (L2

φf + f L2
φ)/2. To distinguish between these

possibilities, we turn to the correspondence principle for
guidance and compare the numerical solutions in each case to
the classical time-averaged probability distribution Pt (φ) [44],

Pt (φ) = 1

2E(−φ2
0)

√
1 + φ2

φ2
0 − φ2

,

where E(x) is the complete elliptic integral of the second kind
and the classical turning points are φ0 = ±k

√
2E/Nbκ . In

a side-by-side comparison, we find that the operator choice
(L2

φf + f L2
φ)/2 produces wave functions that resemble the

classical time-averaged probability distributions of Fig. 2(b)
and explicit comparison is shown for the 25th excited state
in Fig. 3(a). The time-independent Schrödinger equation is
therefore[

− h̄2k2

4N�I�

( 1

1 + φ2
∂2
φ + ∂2

φ

1

1 + φ2

)
+ Nbκ

2k2
φ2

]
ψ = Eψ.

Defining scaled energy ε = E/h̄ωp, the dimension-free
Schrödinger equation for the 2D CLM is

− ν

4

( 1

1 + φ2
∂2
φ + ∂2

φ

1

1 + φ2

)
ψ + 1

2ν
φ2ψ = εψ, (5)

where ν = k2h̄/N�I�ωp. For small φ � 1, Eq. (5) reduces to

−ν

2
∂2
φψ + 1

2ν
φ2ψ = εψ,

which describes the harmonic limit with ground-state
uncertainty in the angle �φ = √

ν/2 = 0.707
√

ν. We
therefore expect the harmonic limit [45] to be realized near the
condition of ν small, with new anharmonic features for highly
excited states and/or ν large. The crossover in behavior is
controlled by the dimensionless parameter ν, proportional toh̄:

ν = k2

N�

h̄

I�ωp

= Ic

N2�I�

h̄

I�ωp

= γ
h̄

I�ωp

.

The factor γ , introduced above, is a number which is of
order unity (see Table II) and independent of system size
for large systems. The remaining factor h̄/I�ωp compares the
quantum of angular momentum h̄ to the angular momentum
of a single diamond rotating at angular frequency ωp. With a
h̄ωp = 1 meV oscillation corresponding to the zone edge op-
tical phonon of ScF3 and many perovskite systems, and using
the lattice parameter a � 4 Å, we geth̄/I�ωp = 0.0273 and an
overall νScF3 = 0.0491. Considering νScF3 , �φ = √

νScF3/2 �
0.157rad = 8.975◦. �φ is already appreciable in the ground
state, implying that the wave functions are significantly altered
from the Hermite polynomial type expected in the pure
harmonic limit. Section 3 of the Appendix evaluates γ , ν,
and �φ for some interesting materials.

The effects of nonzero ν on the ground-state wave function
are shown in Fig. 3(c), where a general broadening of the
probability distribution precedes formation of a two-hump
structure for ν > 1, indicating an approach to an instability
at zero temperature. One may speculate that this is a signature
that dilational dynamics resultant from local rigidity may
influence structural phase stability. We stress that θ = φ/k =
φ/

√
γN� is the physical angle so the quantum fluctuations

φ are suppressed by the system size: �θ → 0 in the strict
thermodynamic limit.

III. THERMODYNAMICS OF THE 2D CLM

The quantized energy spectrum shows sublinear depen-
dence on quantum number [Fig. 3(d)], but the harmonic
limit is recovered for ν → 0, as expected. The variance
〈n|φ2|n〉 is shown versus energy in Fig. 3(e) versus the scaled
energy ε = E/h̄ωp (solid lines) along with the same result
for an Einstein harmonic oscillator (dashes) with the same
ground-state uncertainty �φ. We see that NTE is enhanced in
the 2D CLM for two reasons: (i) the enhancement of angular
fluctuations is larger within each energy window but also (ii)
the low-temperature density of states is larger as a result of the
strain interactions.

The combined effect of these influences is manifest in
the thermally averaged unit-cell dimension, which is directly
related to the thermally averaged moments of θ : a(T ) =
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FIG. 3. n = 25 excited-state wave functions of the quantum 2D CLM in (a) and unfolded; (b) an Archimedean spiral representation for a
span of ν values. (c) Ground-state wave functions ψ0(φ). (d) Energy spectrum of the quantum 2D CLM, showing convergence to the harmonic
limit as ν → 0. (e) Variance in φ versus scaled energy for the 2D CLM (solid) and for the harmonic approximation (dashed) at the same ν,
showing the enhancement of angular fluctuations arising from the translational kinetic energy.

〈a0 cos θ〉 � a0(1 − 〈θ2〉T /2) = a0(1 − 〈φ2〉T /2k2), where
the expectation value 〈 〉T is over the statistical distribution.
The classical limit permits the analytical result

〈φ2〉T ,cl = 1

Zcl

∫
φ2e−βH dφdLφ

= kBT k2

1
2N�I�ω2

p

{
1

1 + K0(δ)
K1(δ)

}
.

with β = 1/kBT and δ = Nbκ/4k2kBT = h̄ωp/4νkBT . The
temperature-dependent lattice parameter according to the
classical 2D CLM is

acl(T ) = a0

(
1 − kBT

N�I�ω2
p

{
1

1 + K0(δ)
K1(δ)

})
. (6)

Welche et al. [38] have presented an expression for the
2D CLM excluding the translational kinetic energy and
find a T -linear lattice parameter and T -independent negative
coefficient of thermal expansion (CTE). The factor in brackets
in (6) is new and approaches 1

2 in the low-T limit and 1
in the high-T limit, suggesting that the translational kinetic
energy enhances SNTE significantly. This relative change
in lattice parameter is shown as �a/a0 = [a(T ) − a0]/a0 in
Fig. 4(b) for this classical result along with corresponding
calculation for the quantum model and various values of
ν, showing a general enhancement of slope with increasing
ν.

The CTE αL = da/dT can be calculated straightforwardly
from this expression, and we find that the αL is a universal
function of kBT ν/h̄ωp = 1/4δ, shown as a thick line in
Fig. 4(c):

αL(T ) = − a0kB

N�I�ω2
p

{
1

1 + K0(δ)
K1(δ)

− δ
d

dδ

1

1 + K0(δ)
K1(δ)

}
. (7)

In the absence of translational kinetic energy, the term in
brackets is constant and equal to 1/2 [38], shown as a

dashed line. The new feature resultant from considering the
translational kinetic energy is a doubling of the SNTE effect
above a crossover temperature kBT � h̄ωp/2ν. Quantum
effects are also apparent in Fig. 4(c) and tend to suppress
the CTE at low temperature.

Expressions for the classical thermal energy are given in
Sec. 2 of the Appendix and describe the unequal partitioning
among the rotational, translational, and potential energy
contributions to the thermal energy of the 2D CLM. We
present these results as a universal plot in Fig. 5(a) with
different contributions shown separately. When k or ν → 0,
the Hamiltonian is equivalent to a harmonic oscillator, the
preconditions of the equipartition theorem are valid, and the
heat capacity is C = kB , as expected for the two degrees
of freedom (rotational kinetic and potential). When ν �= 0,
the additional inclusion of the translational kinetic energy
and quartic terms render the equipartition theorem invalid,
and even the classical heat capacity depends on temperature.
Interestingly, the sum of potential and rotational terms equals
kB independently of ν, but the thermal energy is equally
partitioned among these two terms only when ν → 0. In
the large ν limit, the total energy is 3kBT /2 distributed as
kBT potential, kBT /2 translational, and negligible rotational
energy.

Figure 5(b) shows the heat capacity of the 2D CLM using
quantum numerics as a plot of C/T 3 versus ln T , which
represents an approximate profile of the vibrational density
of states in a phonon interpretation [46–50]. The effect of ν is
to increase the low-T heat capacity and distort this function
significantly from the Einstein form. Figures 5(c) and 5(d)
compare the classical and quantum heat capacity for moderate
(0.05) and large (2.0) values of ν. For small ν, the quantum
solution appears Einstein-like, with a rapid approach to the
classical (Dulong-Petit) limit around kBT = h̄ωp, as expected.
For larger ν, distortions from the Einstein form become
apparent. In both cases, the quantum and classical limits
converge well before the high-temperature limit of 3kB/2
is reached, in contrast to the classical Dulong-Petit/Einstein
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2 and crossing over to −1 at high temperature, where the translational kinetic energy enhances the SNTE
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results, which converge to each other and the high-temperature
limit simultaneously.

IV. DISCUSSION

The developments presented here are enabled by assuming
that a strictly rigid limit is taken in a two-dimensional
system, bringing the number of degrees of freedom from
a thermodynamic number to a single mode. This residual
soft degree of freedom results from integrating out the
intramolecular degrees of freedom in an approximation of
the strain interactions as having infinite range. While this
conceptual convenience has been traditionally invoked to
heuristically describe SNTE, whether the strict limit has a
place in describing real materials is a rather contentious issue
that has been revisited lately.

In the original SNTE material ZrW2O8, the role of
rigidity has been discussed at length in semiclassical
terms [19,22,23,25,51], with a common premise of molecular
rigidity but disagreement on the sense of motion required
to generate SNTE. ZrW2O8 is a complex-structured material
with 44 atoms/unit cell and consists of a network of ZrO6

octahedra and WO4 tetrahedra with large, open voids, inspiring
a rich discussion and proposals that the system is mechanically
underconstrained and frustrated [41,48]. More recently, the
premise of molecular rigidity has been questioned, and a view
of metal-anion bond rigidity [25] has been proposed based on
MD simulations.

Recently, strong NTE was discovered in ScF3, an open
perovskite only four atoms/unit cell that remains cubic at all
temperatures T < 1800 K. This model system has the capacity
to shed light on the issue of molecular versus bond rigidity
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due to its simple structure [24,26,50,52–55]. We review some
features of the 2D CLM presented above in the context of
experiments on ScF3.

2D nanoscale correlations. Recent inelastic x-ray scattering
work [18,56] has shown that ScF3 features an incipient soft
mode instability via its excitation spectrum. Specifically, the
“central peak” phenomenon and a dispersionless branch of
modes circumscribing the edges of the simple cubic Brillouin
zone softens to zero temperature according to classical
scaling and a putative transition temperature T = −39 K. The
dispersionless nature of modes in one dimension of reciprocal
space and observed diffuse x-ray scattering rods suggest a
dimensional lowering in this system, permitting application of
the 2D CLM [56]. We note the appearance of the system size in
the expression for the lattice parameter [Eq. (6)], implying that
the CTE vanishes in the thermodynamic limit. Comparison of
the observed CTE and optic mode energy with literal applica-
tion of the 2D CLM result presented in detail here implies a
length scale ∼5–6 unit cells, in reasonable agreement with the
correlation lengths observed in diffuse x-ray scattering data.

We note that the onset of CTE enhancement occurs at
high temperatures, kBT > h̄ωp/ν, where normal PTE may be
activated by intramolecular distortions above the bond-bend
threshold. This influence may contribute to the protracted
temperature range where SNTE is observed [15,53].

Thermodynamics and finite-size effects. Anomalous ther-
modynamic behavior has been observed in SNTE materials
ZrW2O8[48] and ScF3 [49,50] which display unusually strong
low-temperature heat capacity. Complications using Einstein-
Debye fits of low-temperature heat capacity have been noted
[49,57], suggesting there are interesting physics of SNTE
materials manifest in their thermodynamical properties.

Recent studies of ScF3 nanoparticles showing that both
the CTE and low-temperature specific heat are enhanced in
bulklike crystallites (∼1 μm) relative to nanoparticle samples
(∼80 nm) with the same morphology, suggesting extensive
scaling of thermal properties [50]. The peak in Cp/T 3

indicates an effective oscillator energy, which undergoes a
sizable shift from 0.8 meV in bulk [49] samples to 4 meV for
80-nm nanoparticles [50]. In the language of the present model,
variation of crystallite size is quantified by Nx = √

N� =
k/

√
γ . We have considered the size-dependent influences of

the present model (e.g., Nx ∼ 200 for 80-nm nanoparticles)
and find through calculation that ν for these system sizes
is only weakly dependent on Nx , too small of an effect to
alone explain the magnitude of the observed trend in effective
oscillator energy. Consistent with prior work, we attribute the
size dependence to stiffening at small particle size [50]: In
the language of our model, ωp increases and ν decreases as
the particles are reduced in size. Figures 4(c) and 5(b) show
that a corresponding lowering of the CTE and stiffening of
the Cp/T 3 peak are then expected to occur together in accord
with experiments.

Long-period vibrations. Multiple MD simulations aimed
at understanding the SNTE modes in the specific case
of ScF3 have been performed and dispersion data ex-
tracted [24,26,49,52–55]. In all but one tour-de-force
study [53], these efforts produce mode energies at the
M and R points of the simple cubic Brillouin zone in
the range 5–10 meV, consistently higher than experiments

0.5–4 meV [18], suggesting that possibly the slow oscillations
realized in the large k limit of our model are not captured in
some finite-size simulations (low k in our model). The origin
of the lengthened oscillation period in the 2D CLM is the large
translational motion of molecules throughout the crystal and
may be important to address in quantitative comparisons of
computational results with experiments.

Angular distribution. We present the thermally-averaged
probability distribution PT (φ) for the angle φ = kθ in
Sec. 2 of the Appendix and in Fig. 4(a), showing that the low-
temperature Gaussian distribution expected for the harmonic
oscillator evolves into a two-peaked function at high tempera-
tures. Recent MD simulations of ScF3 at high temperature have
revealed this surprising aspect of the probability distribution
is highly non-Gaussian and that the system spends essentially
zero time in the average structure with straight bonds [54,55].
This aspect is recovered in Sec. I of this paper [Fig. 2(b)],
is explained using the pendulum analogy in Sec. 1 of the
Appendix, and is resultant from the strong local constraints of
the 2D CLM. We note that in contrast to our approach, MD
simulations are at their heart semiclassical calculations and
may be limited in capturing quantum mechanical aspects of
the SNTE problem.

In conclusion, we have carried forth a thorough analysis of a
model of SNTE that dates 20 years. We identified an important
influence, the translational kinetic energy associated with the
dilating lattice, and developed solutions for classical, quan-
tum mechanical, and thermodynamical properties. We have
presented exact analytical and numerical solutions, including
expressions demonstrating strong enhancement of the CTE
and thermodynamics. We contextualize the results and identify
limited qualitative agreement with existing data. Further
experimental work is required to characterize the quantum
mechanical consequences of rigidity in SNTE materials.
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APPENDIX

1. Archimedean spherical helix pendulum

Harmonic motion is intuitive, appears widely in physics,
and sits at the heart of most approaches to lattice dynamics. The
stark departure of features above can likewise be understood
with basic mechanical intuition in a generalization of a planar
pendulum, whose energy is given by (2) in the limit k = 0.
The more general k �= 0 case can be extended by recalling
the kinetic energy of a particle moving in three dimensions
expressed in spherical polar coordinates:

1

2
mp(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2). (A1)
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TABLE I. The 2D CLM, characterized by parameters N�I�, Ic,
and Nbκ , is dynamically equivalent to the Archimedean spherical
pendulum with mass mp , spherical radius R, and angular pitch λ in
local gravity g according to the following mapping.

2D CLM Archimedean spherical pendulum

Nbκ mpgR

N�I� mpR2

ω2
p = Nbκ/N�I� g/R

2π/k = 2π
√

Ic/N�I� λ

Constraining the particle position ṙ = 0, (r = R constant)
to a spherical surface, constraining the azimuthal and polar
angles to each other φ = kθ , and identifying the parameter
mapping spelled out in Table I establishes that the dynamics
of the staggered rotation θ in the 2D CLM is equivalent to
the dynamics of the polar angle of a particle constrained
to move on an Archimedean spherical helix under local
gravitation. Figure 6 shows two 2D CLMs of different size
and their dynamically equivalent Archimedean spiral pendula
(ASPs), plotted for illustration using the inertial parameters
m�a2

0/I� = 10.74 appropriate for ScF3 and other oxide and
fluoride perovskites. Importantly, the angular pitch of the

helix is λ = 2π/k = 2π

√
N�I�
Ic

, which tends to zero in the

thermodynamic limit. In this context, we now develop an
intuitive basis for the anharmonic features (i)–(iii) described
in Sec. I.

(i) Period is proportional to amplitude. As gravity does
work on a plane pendulum, it increases the linear speed

g

Δθ

λ

30x30

5x5

FIG. 6. (Top row) Example of small and large crystallites whose
dynamics is governed by Eq. (2). (Bottom row) The corresponding
Archimedean spherical helix pendulum with the same dynamics as
the crystallite above it.

of the mass mp during a quarter cycle along an arc length
s = Rθ0 and for small amplitudes, the period τ is independent
of amplitude θ0, as is well known: τ ∝ (θ0)0. However,
for the spiral case, the arc length threads many points on
the conical cap of the sphere and the distance covered
grows as the solid angle � subtended by a cone of apex
half angle θ0: s = �R2/Rλ = 2πR(1 − cos θ )/λ � Rθ2

0 k/2,
and leads to an additional power of amplitude τ ∝ (θ0)1

because of the higher-dimensional manifold of points visited
within a cycle. Interestingly, this dimensional crossover in
the zero-pitch limit of the ASP is also realized in the
thermodynamic limit of the 2D CLM and may be a broadly
important element of the dynamics of SNTE systems. The
period is also proportional to the system size k and results
from the vanishingly small component of gravitational force
along the spiral path as k → ∞.

(ii) Vanishing probability density in average structure. The
linear speed of the mass mp is largest in the polar region where
the arc length within a narrow window �θ is smallest and the
resultant vanishing dwell time near the poles manifests as a
node in the probability density P (θ ) at θ = 0. This peculiar
property has been recovered in recent ab initio molecular
dynamics simulations of ScF3 at high temperature [54] in the
computed probability density for the Sc-F-Sc bond. A three-
dimensional extension of the present model is appropriate for
direct comparison to these computational results.

(iii) Moments of P (θ ). The larger variance of the classical
probability distribution implies that the system spends longer
time near the extrema of motion compared to the harmonic
case. This feature is also intuitive in the ASP analog: The arc
length in a small window of θ is larger near the equator than
near the poles and the pendulum moves slowest near the turn-
ing points. This feature has direct implications for NTE: The
time-averaged area 〈A〉t = A0〈cos2 θ (t)〉t = A0(1 − ηθ2

0 ). For
the sinusoidal k = 0 case, η = 1/2, while η = 2/3 for the ther-
modynamic limit k → ∞, showing that the strain dynamics
of CLMs enhances NTE over their harmonic counterparts.
This strong enhancement of dimensional and orientational
fluctuations is also realized when quantum and thermal effects
are accounted for, as discussed further below.

The quantum mechanical treatment uses the variable φ =
kθ , corresponding to the azimuthal angle of the ASP. We
note that the solutions discussed here are also relevant to the
quantum ASP and their analysis complements recent solutions
of the quantum particle on a loxodrome [58]. The loxodrome
(aka rhumb line) is another common spherical spiral which
transforms to straight lines on a Mercator projection of a sphere
and is best known for use in early naval navigation.

2. Expressions for contribution to thermal energy

In this section, we develop expressions for the thermally
averaged angular variance and average energies of the 2D
CLM. The partition function for the classical model, in the
limit of small angle is

Zcl =
∫ ∞

−∞
e−βH dθdLθ

= eδ
√

2π
kBT

ωp

[K0(δ) + K1(δ)],
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where β = 1/kBT , δ = Nbκ

4k2kBT
, and Kn(δ) is the order n mod-

ified Bessel function of the second kind. The corresponding
expression for the quantum model is

Zqu =
∞∑

n=0

e−βEn .

The thermally averaged second moment of θ is

〈θ2〉T ,cl = 1

Zcl

∫
θ2e−βH dθdLθ . (A2)

Evaluating this expression leads to Eq. (6). The corresponding
expression for the quantum model is

〈θ2〉T ,qu = 1

Zqu

∑
〈n|θ2|n〉e−βEn .

The thermally averaged probability distribution for the
angle θ can be determined from

PT (θ ) = 1

Zcl

∫ ∞

−∞
e−βH dLθ

= 2e−δ(1+2k2θ2) k
√

1 + k2θ2

[K0(δ) + K1(δ)]

= kPT (φ).

The thermally averaged energy is

〈E〉T ,cl = 1

Zcl

∫ ∞

−∞
He−βH dθdLθ

= kBT

[
1 + 1

2

K1(δ) − K0(δ)

K1(δ) + K0(δ)

]
and

〈E〉T ,qu = 1

Zqu

∑
Ene

−βEn .

The thermally averaged rotational kinetic energy is

〈Krot〉T ,cl = 1

Zcl

∫ ∞

−∞

L2
θ

2N�I�(1 + k2θ2)2
e−βH dθdLθ

= kBT
K0(δ)

K1(δ) + K0(δ)
.

The thermally averaged potential energy is

〈V 〉T ,cl = 1

Zcl

∫ ∞

−∞

Nbκ

2
θ2e−βH dθdLθ

= Nbκ

2
〈θ2〉T ,cl

= kBT
K1(δ)

K1(δ) + K0(δ)
.

TABLE II. Quantum parameters of the 2D CLM evaluated for
representative perovskite-structured materials. Mean lattice parame-
ters were evaluated in the cases where the symmetry is lowered by
distortion and the A-site contribution, when present in the structure,
was not addressed in the calculation. The trend shows that larger
B-site masses have larger γ , and larger ν, and �φ. Calculations of ν

and �φ assume h̄ωp = 1 meV.

Perovskite
〈a〉 (300 K) γ ν (ωp = 1 meV) �φ (h̄ωp = 1 meV) (◦)

ScF3 4.014 1.79 0.0491 8.975
SrTiO3 3.905 2.01 0.0689 10.62
SrTcO3 3.95 3.07 0.1030 13.00
SrRuO3 3.92 3.12 0.1061 13.20
ReO3 3.742 4.90 0.1829 17.33
SrIrO3 3.96 5.026 0.1676 16.58

The component not traditionally present in the harmonic
oscillator is the thermally averaged potential energy:

〈Ktrans〉T ,cl = 1

Zcl

∫ ∞

−∞

L2
θ k

2θ2

2N�I�(1 + k2θ2)2
e−βH dθdLθ

= kBT

2

[
K1(δ) − K0(δ)

K1(δ) + K0(δ)

]
.

3. Assessment against other materials systems

Table II shows rough estimates of γ , ν, and �φ for common
interesting perovskite materials with formula ABX3. The
A-site contribution was ignored for simplicity (exact for open
perovskites with formula BX3), and h̄ωp = 1 meV was as-
sumed for the purposes of side-by-side comparison. The factor
γ is calculated using the inertial parameters of the octahedra
and assumes ideal cubic symmetry of the octahedra. This
exercise reveals a trend suggesting heavier B-site elements
tend to possess larger values of γ , ν, and �φ and heavy
perovskites exhibit larger deviation from harmonic behavior
than their lighter counterparts. While experimental observation
of quantized NTE modes awaits further experimental work
and is beyond the scope of the present work, we suggest that
a significant variation in ν could be accessed among known
material systems and the results may be significant for a broad
class of perovskite-structured materials. We speculate that near
a structural phase transition where the effective soft optic mode
describing octahedral rotation softens completely, the effective
ωp may become very small and, with a corresponding increase
in ν, could exacerbate some of the features described here.
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