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The anharmonic effect in thermoelectrics has been a central topic for decades in both condensed matter physics
and material science. However, despite the long-believed strong and complex anharmonicity in the Bi, Te;_, Se,
series, experimental verification of anharmonicity and its evolution with doping remains elusive. We fill this

important gap with high-resolution, temperature-dependent Raman spectroscopy in high-quality single crystals
of Bi,Tes, Bi,Te,Se, and Bi,Se; over the temperature range from 4 to 293 K. Klemens’s model was employed to
explain the renormalization of their phonon linewidths. The phonon energies of Bi,Se; and Bi, Tes are analyzed
in detail from three aspects: lattice expansion, cubic anharmonicity, and quartic anharmonicity. For the first time,

we explain the evolution of anharmonicity in various phonon modes and across the series. In particular, we
find that the interplay between cubic and quartic anharmonicity is governed by their distinct dependence on the
phonon density of states, providing insights into anomalous anharmonicity designing of new thermoelectrics.
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I. INTRODUCTION

The Bi,Te;_,Se, family of materials has been studied for
decades as good thermoelectrics, however, the physical origin
of their low thermal conductivity remains not fully understood
[1]. Recently neutron scattering established anomalous anhar-
monicity as the origin of low thermal conductivity in another
popular thermoelectric family (Pb;_,Sn,Te). Specifically,
anharmonicity-induced softening of the transverse optic (TO)
modes opens an important decay channel for one of the major
heat carriers—Ilongitudinal acoustic (LA) modes—and thus is
key to their low thermal transport [2]. First-principle studies
suggest the resonant bonding mechanism is responsible for this
large anharmonicity. Furthermore, these studies suggest that
the same mechanism, although weaker, is relevant to group
V,—VI; materials [3,4]. Since these materials also hold great
promise for nanoelectronics due to their topological properties,
understanding the evolution of anharmonicity across the
Bi,Te;_,Se, series is crucial. This giant anharmonicity can
also lead to new properties such as ferroelectricity [5,6], struc-
tural phase transitions [7], and reduced thermal conductivity
[2]. Inrecent years, there has been a focus on neutron scattering
as a means to explore anharmonicity, due to the emergence of
new sources and excellent results in PbTe [2]. Nonethless,
such studies typically require large crystals and provide a high
momentum but limited temperature resolution.
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High resolution and small sample requirements are pro-
vided by temperature-dependent Raman spectroscopy, which
is well established for measuring the evolution of the lattice
structure [8], phonon dynamics, and anharmonicity in a wide
range of materials [9—13]. While there have been some studies
of Bi,Te;_,Se, using Raman spectroscopy [14,15], these
either were limited to fewer phonon modes or samples were
measured just at room temperature. A high-temperature and
spectral resolution study across the series is still lacking.
Specifically, if one considers the small temperature-dependent
changes of phonons (typically 2-5 cm~! from room tem-
perature to 4 K) the experimental data sets obtained with
different setups can be misleading. We filled this gap with the
temperature-dependent measurement across the whole series,
performed with a single setup. In this paper, we present
a Raman study of Bi,Ses, Bi,Te,;Se, and BiyTe; over the
temperature range from 4 to 293 K using the same Raman
microscope with a high spectral resolution. The anharmonicity
of BiyTe;_,Se, is discussed from two viewpoints. First,
the temperature dependence of the phonon linewidths is
well explained by Klemens’s model through three-phonon
interaction driven by cubic anharmonicity. Second, the tem-
perature renormalization of phonon energies of BiyTe; and
Bi,Se; are discussed in great detail. As in most materials
we find contributions to the lifetime and phonon shift from
quasiharmonic and three-phonon decay. However, in BiyTes
we also find that the lowest energy mode observed requires the
inclusion of four-phonon scattering processes, which typically
emerge only in materials with anomalous anharmonicity (i.e.,
phonon modes soften as the temperature decreases, creating
the “waterfall” effect in phonon dispersion [2]). This term
usually is negligible in most materials, however, has been

©2017 American Physical Society


https://doi.org/10.1103/PhysRevB.95.094104

TIAN, JIA, CAVA, ZHONG, SCHNEELOCH, GU, AND BURCH

found to be large and plays an important role in the strong
scattering seen in IV-VI (PbTe, SnTe) materials [16] and
onset ferroelectric behavior [5,6]. Furthermore, we find that
the evolution of the strength of the anharmonic terms is easily
explained in a model that accounts for the phonon density
of states and joint density of states. Thus our results offer
a guide for further experiments measuring and tuning the
anharmonicity in materials.

II. EXPERIMENTS

Single crystals of BiSe; and Bi,Te; were grown by using
a floating-zone method in which the melting zone was the
Se-rich or Te-rich side. Materials of high purity, 99.9999% Bi,
Te, and Se, were premelted and loaded into a 10-mm-diameter
quartz tube. The crystal growth velocity in the quartz tube
was 0.5 mm per hour. The Bi,Te,Se single crystal was
grown by the Bridgeman method using special techniques to
suppress the carrier concentration and the Fermi level was set
inside the bulk band gap; detailed growth procedures are
described in a previous work [17]. In preparation for the mea-
surements, all single-crystal samples were freshly cleaved (001
plane) and quickly placed inside a sample chamber. Exposure
to air was approximately 5 min. The temperature dependence
was achieved by an automated close-cycle cryostation de-
signed and manufactured by Montana Instrument, Inc. Raman
spectra were taken in a backscattering configuration with a
home-built Raman microscope. A linear polarized 532-nm
solid-state laser was used as the excitation source. Signals were
recorded with a cooled Andor iDus charge-coupled device.
Two Ondax Ultra-narrow-band diffractive Notch Filters were
used to reject Rayleigh scattering. This also allows us to
observe both Stokes and anti-Stokes Raman shifts. The laser
spot size was 1 um in diameter. The laser power was kept
as low as 40 uW to avoid laser-induced heating. This was
checked at4 K by monitoring the anti-Stokes signal as the laser
power was reduced. Once the anti-Stokes signal disappeared,
the power was cut an additional 50%. Detailed information on
the instruments can be found elsewhere [18-21].

III. RESULTS AND DISCUSSION

A. Temperature-dependent studies

For all three Bi,Te;_,Se, materials, Raman spectra were
taken in the temperature range from 4 to 293 K in 15 K
steps. At each temperature, three acquisitions taken for 5 min
were averaged and the spectra were corrected for the thermal
factor [np(w)+ 1; np is the Bose factor]. The resulting
temperature-dependent Raman spectra are normalized to the
highest phonon peak for clarity and shown in Fig. 1(a). The
room-temperature results are consistent with previous studies
[14]. Details on the group theory analysis and effects of disor-
der are discussed in the Supplemental Material [22]. In short,
three modes were observed in Bi,Se; and Bi, Tes; we call these
modes A}, E,, and Ai based on their symmetry. For Bi; Te,Se,
we observed one extra mode. We have previously ascribed
this mode (V) to an anti-site defect induced local vibration
[11]. In all three materials, we see all phonons soften and
broaden as the temperature is raised. At first glance this is not
surprising since temperature-induced softening and hardening
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TABLE 1. Phonon frequency of BiyTe;_,Se, at 4 K. Units

are cm™!.

Material A i, E, Vi A§

Bi, Tes 62.7 104.9 137.6
Bi,Te,Se 65.1 109.1 145.1 154.7
Bi,Ses 73.9 134.6 177.7

have been observed in many other materials [23,24]. However,
the detailed analysis described in Sec. III A2 demonstrates
qualitative differences between Bi,Te; and Bi,Ses.

To gain more quantitative insights, we fit the Raman spectra
of all three BirTe;_,Se, materials with the Voigt profile
function,

+00

V(x,0,2,T) =/ G(x',0)L(x —x',0,)dx’, (1)

—00

which is the convolution of a Gaussian and a Lorentzian. The
Gaussian is employed to properly account for the instrumental
resolution and the Lorentzian represents a phonon mode.
The half-width o of the Gaussian was determined by the
instrumental resolution, which is 1.8 cm™! in our system.
Three Voigt functions could be used to fit the spectra of Bi, Tes
and Bi,Ses;, but four were needed for Bi, Te,Se. The extracted
temperature-dependent phonon energies @ and linewidths I’
can be used for the analysis of their anharmonicity. We also
list the phonon frequencies of all modes at 4 K in Table I for
a quick reference.

1. Temperature dependence of phonon linewidths

We begin by focusing on the phonon lifetime with temper-
ature, as this typically only includes contributions from cubic
terms in the anharmonicity that lead optical phonons to decay
into two lower energy modes. As discussed later the phonon
frequency with temperature includes this contribution as well
as changes due to the lattice expansion and higher order terms
in the anharmonicity. In Fig. 1(b) we plot the temperature
dependence of the phonon scattering rate for the highest energy
mode, though a similar temperature dependence is seen for
all modes. In all three materials the the scattering rate is well
described by Klemens’s model [23], where an optical phonon is
assumed to decay into two phonons with opposite momentum
at half the energy of the original mode. This leads to a scattering
rate described by I'(w,T) = T'o + AQ2np(w/2) + 1), where
'y results from disorder scattering, w is the mode energy,
and A is the three-phonon coupling coefficient obtained by
multiplying the joint density of states by the transition matrix
element. The “coalescence” process where two phonons
fuse into a third is neglected, because it requires thermal
populations of the second phonon which are very small at
low temperatures [25]. As found in many low-anharmonicity
materials, the model works well for describing the lifetime
[15]. In the Supplemental Material a detailed analysis of the
lifetime of all phonons modes is provided, where we generally
find an increase in A as the energy of the mode is increased. As
discussed later, this is as expected since higher energy modes
typically have access to a larger phase space for decay.
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FIG. 1. (a) Temperature-dependent Raman spectra of Bi, Te;_, Se, . From top to bottom: Bi, Tes, Bi, Te,Se, and Bi,Ses. (b) Phonon linewidth
of the Ai, mode of Bi,Te;_,Se,. Red lines represent the anharmonic prediction. The temperature-dependent renormalization of the phonon
linewidth is relatively simple, originating from the cubic anharmonicity and free of quartic anharmonicity to the lowest order.

2. Temperature dependence of the phonon energy

As mentioned previously, the temperate dependence of the
phonon energy reveals additional anharmonic effects. Typi-
cally, in a nonmagnetic insulating material, the temperature
dependence of a phonon energy comes from two primary
sources [15],

Aw(T) =Aw(T Matice + AT )anhar- (2)

AWiaice 1S the anharmonic correction solely due to lattice
expansion, while Ay, results from the anharmonic phonon-
phonon coupling. Specifically, Awy,yice Originates from the
crystal thermal-expansion-induced changes in the harmonic
force constants and is described by the equation for ahexagonal
lattice [15]

T / , ,
AT iaice =w(0)(e™7 Jo @T+2TNAT" _ 1y - (3)

where y is the mode Griineisen parameter, and ¢, and o,
are the coefficients of linear thermal expansion along the a
and c axes. The Griineisen parameters describe the effect that
the volume change of a crystal lattice has on its vibrational
properties and its value varies for different phonon modes.
In most analyses, the mode-averaged Griineisen parameter
is typically used to characterize the volume-change-induced
phonon frequency shifts since it is relatively easy to obtain
by comparing the specific heat to the lattice expansion [15].

However, to truly understand the anharmonicity in these
materials it is crucial to evaluate each mode separately.
Indeed, the relationship of each mode to the lattice ex-
pansion can be quite distinct, especially in thermoelectric
materials [3]. Thus, in the following discussion we use the
mode Griineisen parameter to capture the phonon frequency
shifts induced by thermal expansion. To the best of our
knowledge, the relevant data to calculate Awjyyice are absent
for Bi,Te,Se. Thus, Bi,Te,Se is omitted in the discussion
here.

On the other hand, Awgynh,r arises from the coupling of
phonon modes through the cubic and quartic anharmonicity
[26],

12 00 G —-j _
Aw(T);mhar:;Zv(j P h jlq>(2n3(q,n+1)
4.1
18 0 ¢ -q\
- — Vi. . . R(w), 4
h 4~ (J J1 ]2) (@) @
q,J1,J2
iyl
R(w) = ng(q,j1) +np(—q,j2) + )

=G, ji1) = o(=q,j2)
where V are the coefficients derived from the lattice potential

energy of deformation at a constant volume, and g and j are
the momentum and band index, respectively. We can see that
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Eq. (4) has two parts: the quartic anharmonicity [first term
in Eq. (4)] to first order in the perturbation theory and the
cubic anharmonicity [second term in Eq. (4)] to second order.
As described above, the cubic anharmonicity term contributes
to the phonon linewidth as well. The quartic anharmonicity
to first order contributes only to the phonon frequency, thus
showing the importance of analyzing both the lifetime and
the frequency of the modes versus the temperature. In most
cases, cubic anharmonicity dominates and results in softening
and broadening of the phonon as the temperature rises
[12]. However, for materials with high anharmonic potentials
(e.g., ferroelectrics), the quartic term plays a significant role
[6,27]. Therefore, it is worthwhile to disentangle the relative
contributions from the cubic and quartic anharmonicity in
BirSe; and Bi,Tes. To achieve this, one first has to remove
the effect of Awjaice. To do this we determined the mode
Griineisen parameters from previous measurements of the
pressure dependence (see Supplemental Material Ref. [22])
as well as established thermal expansion coefficients [28,29].
Our main conclusion is not strongly affected by a 20% change
in these parameters. Next we used Eq. (3) to calculate the
Awiaice for BirSes and Bir Tes.

Before proceeding further, we note in Eq. (4) that both
the cubic and the quartic anharmonic terms also contribute
to the phonon frequency at zero temperature. However, it is
difficult to unambiguously distinguish whether the resulting
phonon frequency shifts are from harmonic or anharmonic
components without a detailed first-principle calculation,
which is beyond the scope of this paper. Thus, we focus on the
temperature-dependent shifts of the phonon mode frequencies
in the following discussion. In Fig. 2 we plot Aw(T) =
o(T) — w(4 K). In addition, we show the calculated lattice
contribution Awi,ice and the anharmonic component obtained
by subtracting the lattice contribution from the measured data
[Aw, 1 = A(T) — Awpaice]. Here Aw] ;.- is just Awanhar
with the temperature-independent constant removed, which is
expressed by the following formula:

12 qJ
;nhar = 7 V<0 0 q
h J J N

h

v(® ¢ 4
= J J2
q,J1,J2

R(w) = ng(q,j1) +ng(—=q,j2) o
w — CL)(&,J]) - C!)(—é,jz).

Aw(T) ;lq >2n3<c7,j>
G.j1
2

18 )
- — R(w), (6)

Focusing first on BiyTe; in Figs. 2(a)-2(c), we see the
Aw,,.. for the Aé mode [Fig. 2(a)] stays almost at 0
between 4 and 175 K and slowly hardens at the higher
temperature. For the E, [Fig. 2(b)] and Aﬁ [Fig. 2(c)] modes

the Aw)], .. is monotonically decreasing throughout the entire

temperature range and increases in magnitude as the phonon
frequency increases. For example, at 300 K, Aw, , .= 1.2
cm™! for By, while Aw),,. = 2.5 cm™! for the A mode. To
understand this strikingly different behavior of the modes, let
us reexamine the different contributions to the anharmonicity.
According to Eq. (6), the anharmonicity interaction contributes
two terms: the cubic and the quartic anharmonicity, with

different signs. These two terms can cause a phonon mode
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to soften or harden as the temperature increases, depending
on their relative magnitudes. Moreover, the strength of the
two terms increases at different rates as the phonon frequency
increases. Apparently, the cubic term is dominant in the E,

and Ag, modes, leading to Aw] .. softening the mode as

the temperature is increased. However, the case for the A;
mode is complicated. To explain the behavior of this mode,
let us delve into Eq. (6) again. According to Eq. (6), both
the cubic and the quartic anharmonic terms are functions of
the Bose factor ng(fiw/kT). This is a nonlinear function and
increases very slowly at the low temperatures. In the ideal
scenario, we expect to observe a curve that starts from 0 with
a flat slope at the lowest temperatures and becomes larger
at high temperatures. However, given the low amplitude of
the difference in the anharmonic contributions from quartic
and cubic anharmonicity and the spectral resolution of our
Raman microscope, the data we obtained are almost 0 in the
temperature range between 4 and 175 K. Nevertheless, in the
temperature range from 200 to 290 K, where the Bose factor
becomes more significant, we can clearly see the hardening
trend. Thus, we conclude that the quartic term is slightly larger
for this mode.

To understand how the Aw] . . evolves with the phonon
frequency and the difference between the cubic and the
quartic anharmonicity, let us revisit the two anharmonic terms
in Eq. (6). The sum (one band index j;) in the quartic
term of Eq. (6) is proportional the one-phonon density of
states [D(w)] and that in the cubic term (two band indexes,
Jj1 and j) is proportional to the joint two-phonon density
of states [J D(w)]. For simplification, one can approximate
JD(w) as D(w;) X D(w,), where w; and w, are the energy
of the two phonon modes (w; + wy = w), respectively. For a
qualitative understanding J D(w) can be further simplified us-
ing Klemens’s approximation, where w; = w, = w/2. Thus,
eventually J D(w) takes the form D(w/2)>. As a result, the
quartic (cubic) term is proportional to D(w) [D(w/2)*]. In
a simple picture where the optical mode interacts with an
acoustic mode, D(w) increases monotonically with w. If the
phonon frequency w is low, it is possible that D(w) is equal to or
larger than J D(w). In the meanwhile, if the quartic anharmonic

coefficient, V((} ? z
expected that the quartic term wins and results in a hardening
of the phonon energy as the temperature increases, which is
the case for the A; mode. As the phonon frequency increases,
J D(w) increases much more rapidly than D(w). Therefore,

in the E, and Ag, modes a negative Aw, . is observed and

becomes larger in magnitude from the E, mode to the A§
mode. At this point, it may be worthwhile to compare the
behavior of the A; mode with the standard ferroelectrics,
as we mentioned previously that the quartic anharmonicity
there plays a key in the tuning the phonon frequency shifts
[6]. Compared to the soft modes in standard ferroelectrics
such as SrTiO; and BaTiOj;, the magnitude that the A;,
mode hardens as the temperature is raised is small and in
order to see the hardening, Awpice has to be subtracted.
However, the temperature-dependent behaviors are similar
where the phonon frequencies harden and linewidths broaden
as the temperature increases [30,31]. The small magnitude we
observed may be due to the energy of the Ai, mode being

), is reasonably large, it can be
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FIG. 2. Temperature dependence of the phonon frequency of Bi,Te; (a—c) and Bi,Se; (d—f). All data points are offset by the phonon
frequency at the lowest temperature. The dashed line indicates zero offset. We note that the anharmonicity-induced phonon energy shifts are
dramatically different between the A}z mode of Bi,Te; (hardening) and that of Bi,Se; (softening). This is explained by the anomalous quartic
anharmonicity in Bi, Te;, which is absent in Bi,Se;. Besides, as the phonon energy increases in Bi, Tes, the trend switches sign from hardening
to softening due to the relative contributions from the phonon joint density of states and density of states. Detailed discussion is given in the

text.

comparatively high and the quartic anharmonic term balanced
to a large extent by the cubic anharmonic term. The statements
above are also evidenced by the fact that the IR-active E, mode,
whose energy is lower than those of all three Raman-active
modes, seems to harden from 48 to 50 cm~! at 15 to 300 K
even without the subtraction of Awjaice [14].

To further explore the role of phonon frequency in the
strength of the anharmonicity, we now turn to Bi,Ses,
where the modes are at higher frequencies. Specifically, for
Bi,;Se; a similar analysis was performed and the results are
shown in Figs. 2(d)-2(f). We find that the thermal expansion
contribution term Awj,ice accounts for 63%, 57%, and 34% of
the total phonon frequency shift at room temperature for each
mode, respectively. In the case of BiSes, the resulting Aw), ;...
values are all negative. The magnitude of Aw,, . increases
monotonically from 0.7 cm™! [A;,; Fig. 2(d)], to 1.2 cm™!
[E,; Fig. 2(e)], to 2.5 cm™! (Aé; [Fig. 2(f)] at 295 K. This
suggests that the quartic term is smaller and the cubic terms
are dominant in all three modes.

At this point one may wonder whether it is simply the
change in the density of states with the phonon energy
that results in the dramatic difference in the temperature
dependence of the lowest energy phonon in Bi,Te;_,Se,. In
fact, we have so far ignored contributions from the strength of
the potential and resulting changes in the matrix elements. This
is likely to play a large role, as the lowest energy Raman mode
in Bi,Ses that we observe is only 11cm™' (17.5%) higher
than the equivalent mode in Bi,Te;. One explanation for the
dramatic difference may be the resonant bonding theory, where
the long-ranged interactions from the neighbors to the atomic
potential lead to anomalous anharmonicity [3,32-34]. Indeed
this mechanism has been suggested to be responsible for
the low thermal conductivity of Biy Tes [3]. As described in the
Supplemental Material a simple calculation suggests that the
resonant bonding should be stronger in Bi,Te; than Bi,Ses.
The reason for the difference can be understood as the p
orbitals in Te atoms are more delocalized than those in Se
atoms. Nonetheless, the detailed first-principle calculations of
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Bi,Se; required to confirm this suggestion are beyond the
scope of this paper.

As we mentioned earlier, the decay channel LA + TO —
TO plays a significant role in lowering the thermal con-
ductivity in thermoelectric materials. Interestingly, a very
similar phonon decay channel, TA + TO — TO, was found
in perovskite ferroelectrics, which has also been attributed
to lowering the thermal conductivity [35,36]. The common
feature of these two types of materials is that the TO mode
significantly softens as the temperature is lowered. We have
shown that the anharmonicity in Bi,Te; similarly softens the
Aél, mode. However, its energy is much higher than that of
the TO modes in the perovskite ferroelectrics [35] and PbTe
[2], so the contribution to the scattering of LA in BiyTes is
probably small. As pointed out in the Supplemental Material
[22], the first E, mode of BiTes;_,Se, is near 30 cm™!
[4,37,38], which is very close in energy to the soft TO modes in
other highly anharmonic materials. Thus it will be extremely
helpful in future studies to carefully examine the temperature
dependence of this mode.

IV. CONCLUSIONS

In summary, we have performed high-resolution,
temperature-dependent Raman scattering measurements on
BirTe;, Bi,Te;Se, and Bir,Se;. These Raman results on
BiyTe;_,Se, provide experimental insights into the long-
standing problem: the origin of complex anharmonicity as the
chalcogenide and/or the energy of the mode is changed.

Through analysis of the temperature-dependent phonon
energy, we found that the quartic anharmonicity is the key

PHYSICAL REVIEW B 95, 094104 (2017)

to explain the temperature-dependent phonon frequency shifts
of the Ai, mode for Bi,Te;, which is less significant in
Bi,Se;. Besides, the complex temperature and phonon-energy-
dependent phonon frequency shifts can be primarily explained
by the competition between quartic and cubic anharmonic
terms. These two terms are dependent on the one- and
two-phonon density of states, respectively, which increase at
different rates. As such, our observations that a positive Aa)gmhar
for the A; mode in BiyTes, a sign switch, and an increase in
the amplitude of Aw), ;.. are all consistent with this picture.
However, it may be that the change in density of states of
the phonons is not enough to explain the difference, and thus
our results may provide evidence of the resonant bonding in
Bi,Te; and its weaker role in Bi,Ses.

While these results clearly show the role of the chalcogenide
in tuning the anharmonicity in Bi,Tes_,Se,, further experi-
mental and theoretical efforts are required to fully understand
how the anharmonicity, crucial to their thermal and lattice
properties, is tuned.
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