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Ubiquity of quantum zero-point fluctuations in dislocation glide
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Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys
Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point
energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations
where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal
ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.
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I. INTRODUCTION

The implication of quantum mechanics in plasticity of crys-
tals has long been a matter of theoretical investigations. The
main efforts were concentrated on accounting for interactions
between phonons and dislocations [1–3] because they are
the key physical ingredients in the process of conversion of
plastic work into heat during deformation [4,5] as well as
in the process of thermal activation of dislocation glide [1,6].
Modern simulation tools [7,8] have allowed us recently to sup-
plement the theory and shed new light on the low-temperature
deformation tests. Employing atomic scale simulations based
on the embedded atom method (EAM) [9,10] it was found
that along the dislocation glide the zero-point energy (ZPE),
which in the harmonic approximation is merely the sum of
phonon frequencies times half h̄, varies with an amplitude
of same order as the dislocation Peierls barrier but with an
opposite sign. The variation of the ZPE was found to yield
a significant Peierls stress reduction for the screw dislocation
in body-centered-cubic (bcc) Fe [7]. This result showed how
quantum fluctuations could be involved in the plasticity of
certain metals even though they are constituted of atoms with
some relatively heavy masses in comparison with conventional
quantum crystals [11] as solid He or H2. A recent experimental
study by Caillard [12] of the deformation of bcc Fe thin
foils confirms the emergence of additional contributions to the
screw dislocation thermally activated glide at low temperatures
which might be ascribed to quantum fluctuations.

In the present study we question the generality of the
ZPE contribution to plastic deformation in solids. In order
to achieve a pertinent answer, the phonon frequencies have
been computed in different face-centered-cubic (fcc) crystals,
i.e., Al, Ni, and Cu and solid solutions Al(Mg) and Cu(Ag), for
both dislocation types, i.e., edge and screw. In pure crystals, our
work reveals that the variations of the ZPE have same order of
magnitude as the Peierls barriers and they are of opposite sign.
Interestingly, in the 3 crystals the dislocations are dissociated
in their glide planes with different widths of the stacking fault
ribbon. Their features, the geometry of their core and the
height of their Peierls barriers, contrast with those for screw
dislocations in bcc Fe, the core of which presents a specific
compactness [13]. Therefore the fact that ZPE variations
remain significant in comparison to the Peierls barriers for
different core geometry can be viewed as the demonstration
of their ubiquity. In order to explore further the ZPE effect in
plastic deformation, our computations of phonons in the course

of crystal deformations have been extended to the case of
solid solutions alloys, Al(Mg) and Cu(Ag) where solute atoms
hinder the dislocation glide [14,15]. According to the position
of the solute atom the interaction with the dislocation may
be either repulsive or attractive and therefore the sign of the
potential energy barrier changes. However in both situations
the ZPE variations have been found to be opposite to the
potential energy barrier. We conclude that the variations of
quantum ZPE may yield a softening of solid solutions at low
temperatures.

The atomic scale simulations based on modeling atom
interactions through EAM potentials present some uncertain-
ties with respect to dislocation properties [16]. Thus it is
of primary importance to verify a prediction by means of
multiple examinations in different systems. It is exactly the
purpose of the present work which allows us to prove the
implication of quantum fluctuations in plastic deformation at
low temperatures in various model materials, pure metals as
well as binary alloys.

The present paper is organized as follows. First, in Sec. II
the simulation cell construction and the simulation method
for the dislocation glide are described together with the
computation of the crystal ZPE. The results are analyzed in
Sec. III, while our conclusions are presented in Sec. IV.

II. ATOMIC SCALE CALCULATIONS

To model the interaction between the atoms in fcc crystals
we have considered various interaction potentials based on the
embedded atom method (EAM). Some are for pure crystals
such as Al [10], Cu [17], and Ni [18] while others are for
binary alloys such as Al(Mg) [19,20] and Cu(Ag) [21].

To study the dislocations at the atomic scale, we have built
a simulation cell with several thousands of atoms with fcc
crystal symmetry. An example has been reported in Fig. 1. A
dislocation either of screw type or of edge type is introduced
as described in earlier works [22–25]. The geometry of the cell
was set up with the following crystal orientations: the [110]
direction along the X axis, the [112] direction along the Y axis,
and the [111] direction along the Z axis. The dislocation’s
Burgers vector is b = a0

2 [110], which corresponds either to
the glide direction for the edge dislocation or to the line
direction of the screw dislocation. Here, a0 represents the
lattice parameter of the perfect fcc lattice. Two surfaces have
been created, each with a normal corresponding to the Z
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FIG. 1. (a)–(e) Snapshots of the crossing process for an
a0/2[110](111) edge dislocation in a fcc Al crystal with a single Mg
impurity situated in substitution in the first crystal plane underneath
the dislocation glide plan. The colors of atoms are fixed according
to their potential energy deviations �i from perfect crystal cohesive
energy per atom (see text). Some examples have been reported in
Fig. 1(e).

direction, above and beneath the crystal sample, forming a
slab as shown in Fig. 1. A constant external shear stress
σxz may be applied by apportioning constant forces over the
atoms involved in the surfaces. The value of such atomic
forces is merely ±Sσxz/Nsurf where Nsurf is the number of
atoms at the surface, whose the total area is denoted by S.
The sign of the applied forces depends on which surface is
considered; in the present case we have chosen + for the
surface on top and − for the surface underneath the crystal.
To introduce the dislocations, the atoms are initially displaced
according to the corresponding isotropic elastic solution [26].
In order to avoid the effect of additional free surfaces and to
consider yet a relatively small number of atoms, we impose
periodic boundary conditions along X and Y. When a screw
dislocation type is considered, an additional shift in the X
direction [22] is introduced in the computation of distances
between two atoms associated with a bond, which crosses the
Y boundary. Strictly speaking the boundary conditions are no
longer periodic but this ingenious trick was found to stabilize

the simulation cell with a single screw dislocation [27]. The
use of such a method allows us to reduce the number of
atoms that are involved in the simulation cell in comparison
to the other possibilities, where some dislocations of different
sign must be introduced to fulfill the strict periodicity of the
cell [22]. When one has considered an edge dislocation type,
the conditions are periodic in both directions X and Y. One
half crystal plane orthogonal to the X direction is removed
and the size of the simulation cell along the same direction
is adapted to relax the whole energy of the cell [23]. The
atomic positions are relaxed by adding a simple Langevin
damping into the dynamical equation of motion, which is
integrated with a standard velocity Verlet algorithm [28]. After
a relaxation corresponding to a maximum atomic force below
10−4 eV/Å the simulation cell reaches mechanical equilibrium
and reducing further the force accuracy does not modify our
results. As expected for fcc crystals, because of their relatively
small stacking fault energies, the dislocation cores split into
two partial dislocations separated by a stacking fault, the
width of which is material dependent. It is clearly seen in
Fig. 1(a) where the atoms have been colored according to their
potential energy deviation from their energy in the perfect
crystal without dislocation. If the atom is identified by the
number i, we denote by E0

i the reference energy, which can
easily be computed before introducing the dislocation in the
simulation cell. Denoting by Ei the potential energy of atom
i, the potential energy deviation is given by �i = Ei − E0

i . In
the case where no impurity is present in the crystal, E0

i can be
substituted by the crystal cohesive energy per atom, Ecoh.

In the EAM models [29], the atomic energy is given by the
functional

Ei = 1

2

∑
j=〈i〉

V (rij ) + F

⎛
⎝∑

j=〈i〉
ρ(rij )

⎞
⎠, (1)

where the sum’s subscript runs over the neighbors j of the atom
i, rij is the distance between these atoms (smaller than rc, the
cutoff radius defined in the EAM adjustment), V corresponds
to a pair potential, ρ to the electronic density function, and F

stands for the embedding function.
The recent progress into the accuracy of EAM is based

on its adjustment with a data basis built from ab initio
calculations [10], which may involve dislocation configura-
tions [30]. The development of ab initio computations has
allowed us to calculate fundamental features of dislocations
such as their core geometry, their glide plane, and their Peierls
barriers [16,31,32]. Such computations being very limited
in size, i.e., a few hundred atoms, the study of dislocations
in solids still requires the development of atomic potential
interactions such as those based on EAM.

The dimension of the simulation cells along Z is 8
√

3a0

while the sizes in X and Y are adapted to the dislocation type.
For an edge dislocation, the Burgers vector is along X and the
dislocation dissociates and glides along the same direction
such that this dimension must be large enough to avoid
spurious interactions with the periodic images. We have found
that with an X dimension of 45

√
3a0/2, the periodic image

effect is negligible. Along Y, we have reduced the dimension
to 6

√
3/2a0. The latter constraint is imposed by the fact that

our main purpose is to compute the eigenfrequencies of the
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entire simulation cell which is computationally very heavy
since this operation requires the diagonalization of the Hessian
matrix with 3Nat rank, where Nat stands for the total number
of atoms. The consequence of such a reduction along Y is that
we are compelled to study straight dislocations because of the
translational symmetry. Thence the dislocation bowing cannot
be considered in the present work. However we have tested
an approximation, presented hereafter for the computation of
the Hessian eigenvalues which should allow us to extend our
work to larger simulation cells where the dislocation bowing
could be accounted for (see Einstein approximation further in
the text). For a screw dislocation, the Burgers vector is along X
and the dislocation dissociates and glides along the Y direction
such that we have found that a dimension of 50

√
3/2a0 in the

Y direction is required to avoid periodic image effects. Then
along X, we have reduced the dimension to 6

√
3a0/2 for the

same reasons as for the edge dislocation.
By increasing gradually the applied stress and relaxing the

atomic positions through the Verlet-Langevin algorithm, the
dislocation starts gliding once the stress reaches a certain stress
threshold corresponding to the dislocation Peierls stress. In the
case where an impurity is situated close to the glide plane of
the dislocation (as shown in Fig. 1), the stress threshold is
larger than the Peierls stress which is representative of solid
solution hardening [15]. Once the applied stress has been fixed
such that the dislocation can glide freely into the simulation
cell, we proceed to a periodic saving of atomic configurations
which are used afterward as initial configuration in the nudged
elastic band method (NEB) [33]. The NEB method is run with
no applied stress such that the minimum energy path (MEP) is
computed with no effect of stress. We have employed between
200 and 300 NEB images in order to determine precisely
the MEP which is plotted according to dislocation position
in Figs. 2(a)–2(d) for different systems. The position of the
dislocation is determined as the barycenter of the atomic
positions weighted by �i . Thence for an edge dislocation the
position along the X axis is simply written

XD = 1∑
i �i

∑
i

xi�i, (2)

while the position along the Z axis is given by

ZD = 1∑
i �i

∑
i

zi�i, (3)

where xi and zi are the coordinates of atom i along the X and Z
axis, respectively. For the screw dislocation the position along
the Y axis is given by

YD = 1∑
i �i

∑
i

yi�i, (4)

while its position along the Z axis is also given by Eq. (3). The
dislocation position can be obtained from other considerations
detailed in the literature (see for instance [34,35] and refer-
ences therein). The main interests of the definition employed
here are (i) its simplicity to be implemented with EAM and (ii)
it can be generalized to other crystal defects such as vacancies
and interstitial atoms. Then, the three equations (2), (3), and (4)
would be involved to fully determine the defect position in the
three dimensions of space. We have also verified the ability of

FIG. 2. (a)–(d) Peierls barriers (black lines) computed from the
NEB method for different dislocations in various fcc crystals and
the corresponding zero-point energy variations computed from the
exact diagonalization of the full crystal Hessian (blue) and from the
Einstein approximation detailed in the text (orange). The atomic scale
model for Al is from [10,19] while those for Ni and Cu are from [18]
and [17], respectively.

the present definition to determine the positions of different
dislocation segments in the cases of longer dislocations with
wavy profiles and even with kinked profiles such as the ones
encountered in bcc crystals.

The computations of the Hessian matrix coefficients have
been performed through the calculation of the first derivative of
forces under the finite displacements of each atom in the three
directions of space. When the atom denoted by i is displaced in
direction di , the whole force field must be computed over each
neighbor j , in each direction labeled by dj . Denoting by Fdj ,j

the force exerted on atom j in the direction dj and by Xdi,i the
displacement of atom i in the direction di , the coefficient of
the Hessian matrix situated at row i + Nat(di − 1) and column
j + Nat(dj − 1) is given by

Hi+Nat(di−1),j+Nat(dj −1) = − 1√
mimj

δFdj ,j

δXdi ,i

, (5)

where mi and mj correspond to the masses of atom i and
j , respectively. A good computation of the discrete force
derivative in Eq. (5) is obtained when averaged over several
atomic displacements of one hundredth of an angstrom.
This procedure has been tested in comparison to the exact
computation which is possible when considering analytical
potentials. The diagonalization of the matrix H has been
performed with the routine named DSPEV from the linear
algebra package LAPACK [36]. The 3Nat eigenvalues of H are
denoted by λu where the subscript u runs from 1 to 3Nat. The
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zero-point energy of the system is then evaluated through the
harmonic approximation by

Z = h̄

2

3Nat∑
u=1

√
λu. (6)

The zero-point energy is computed all along the MEP from
the Hessian diagonalization of each NEB image. We have
ascribed the label n to the nth NEB image such that the
corresponding zero-point energy is denoted by Zn. Along
the MEP, the system passes from stable configurations to
unstable ones such that in the Hessian spectrum one eigenvalue
becomes negative indicating the emergence of an unstable
mode for which λu < 0. The contribution of such a mode is
excluded from the zero-point energy evaluation in Eq. (6) since
the amplitudes of the associated imaginary frequencies given
by

√|λu| remain negligible in comparison to the variations
of the zero-point energy along the MEP, given by δZn =
Zn − Z0. The latter has been reported in Figs. 2(a)–2(d) against
the dislocation position in different fcc crystals.

III. THEORETICAL ANALYSIS OF ATOMIC
SIMULATIONS

In Figs. 2(a)–2(d), we have reported our results for the
Peierls barriers and the associated ZPE variation of different
dislocations in different fcc crystals. According to the EAM
potentials that we have selected to model fcc crystals, the
amplitude of the Peierls barriers varies between a tenth of an
meV/nm to 5 meV/nm. The shape of the barrier is similar to a
sinusoidal such as for edge dislocation in Al [Fig. 2(a)] or for
screw dislocation in Ni [Fig. 2(c)]. But it may also be composed
of the superimposition of different periodic functions, such
as for screw dislocation in Al and Cu [Figs. 2(b) and 2(d)].
This shape depends on the manner of the Shockley partial
dislocation [26] glide, i.e., the profile of their energy barriers
and the strength of their bounds.

For comparison we have also reported in Figs. 2(a)–2(d) the
ZPE variations δZn against the dislocation position. For the
screw type dislocation in Cu the maximum variation of the ZPE
is of the order of one half the Peierls barrier height, i.e., similar
to what was found for screw dislocations in α-Fe [8]. More
interestingly the ZPE variation is negative around the Peierls
barrier maximum which means that quantum fluctuations
are less important at the top of the barrier and hence the
barrier crossing is easier because of such quantum fluctuations
reduction along the MEP [7]. The negative ZPE variation has
an amplitude which is comparable to the Peierls barrier for the
screw dislocation in Ni Fig. 2(c), while in Al, for both types of
dislocation Figs. 2(a) and 2(b) the amplitude of ZPE variation
is even larger than the Peierls barriers. Here we must emphasize
that (i) our computation relying upon the quantization of
the harmonic modes provides a rough estimation of quantum
effects which neglects anharmonic contributions and (ii) the
atomic interaction EAM models may yield large uncertainties.
Nevertheless the same trend is observed in the four different
cases presented in Figs. 2(a)–2(d) which we consider as a
confirmation that quantum fluctuations cannot be ignored in
the low-temperature plasticity of crystals. According to the
quantum harmonic theory employed here, one can expect that

FIG. 3. Energy barriers (black) computed from NEB method for
an edge dislocation crossing an impurity situated in substitution
in different fcc crystals and the corresponding zero-point energy
variations computed from the exact diagonalization (blue) and from
the Einstein approximation detailed in the text (orange). Atomic scale
model for Al(Mg) [(a), (b)] is taken from [19] while the model
for Cu(Ag) (c) is from Ref. [21]. In (a) the position of the solute
atom is below the glide plane while in (b) and (c) the solute atom
is situated above the glide plane. The inset in (c) shows the ZPE
variation associated with dislocation glide in Cu(Ag).

the crystal quantum fluctuations are large enough to reduce
the effect of the Peierls barriers the dislocations have to
overpass. In the absence of thermal effects, this fact can be
understood from the mere consideration that the whole energy
of the system is composed of the sum of (i) the potential
energy which is computed from the EAM interaction potential
and (ii) the zero-point energy which is itself the result of a
combination between kinetic and vibrational energies. Since
our results show that the ZPE variation is negative when the
Peierls barrier is maximum, it implies that the total energy
barrier to overpass is lower than what could be expected from
the sole consideration of potential energy.

In order to examine the effect of quantum fluctuations
on the dislocation depinning from solute atoms, we have
repeated our computations for a simulation cell where a solute
atom has been placed in the vicinity of the dislocation glide
plane. The results are reported in Figs. 3(a) and 3(b) for
an edge dislocation in a crystal of Al with one Mg atom
introduced in the simulation cell in substitution to one Al
atom situated either below [Fig. 3(a)] or above [Fig. 3(b)]
the dislocation glide plane. For simplicity we have considered
only the situations where the Mg atoms are in the two (111)
planes that adjoin the glide plane. In order to cover the whole
range of interaction between the dislocation and the solute
atoms, the NEB method has been performed with starting
and ending states where the dislocation is situated far from
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the solute atom. The variations of the interaction energy
that are found here agree with previous publications [15,37].
When the Mg atom is below the glide plane [Fig. 3(a)] the
interaction is attractive whereas when the Mg atom is above
the glide plane, the interaction is repulsive [Fig. 3(b)]. In both
case, the large oscillations of the ZPE due to the crossing
of the crystal Peierls barriers are superimposed on the ZPE
variation related to the dislocation interaction with the Mg
atom. However the former corresponds to a wavelength of the
order of interatomic distances in the crystal while the variation
of the latter extends over 20 to 40 Å. One can therefore
distinguish well the variations associated with the Peierls
barrier crossing from the one due to the dislocation interaction
with the solute atom. In the situation where the Mg atom is
below the glide plane the ZPE varies as the inverse of the
interaction potential. In Fig. 3(a), the ZPE variation is positive
when the interaction potential is minimum which means that
the quantum effects ease the depinning of the dislocation from
the Mg solute atom. In Fig. 3(b), we distinguish two maxima
in the interaction potential which correspond to the crossing
between the Shockley partial dislocations and the Mg atom.
The system is metastable when the Mg atom is situated at
the middle of the stacking fault ribbon associated with the
dislocation core split into partial dislocations. When the partial
dislocations cross the Mg atom the ZPE increases and it
follows the trend of the interaction potential. We distinguish
clearly in Fig. 3(b) that the ZPE reaches some local maxima
at positions where the interaction potential is not maximal.
Actually the ZPE maxima, culminating roughly at one tenth
of the interaction potential maximum, are situated in a region
where the potential interaction is around one third of its
maximum. On the contrary when the potential interaction is
maximal the ZPE is close to naught. We conclude that the
ZPE variation does not contribute to increasing the energy
barrier of the Shockley partial dislocations. However when
the Mg atom passes into the stacking fault ribbon the ZPE
decreases and it reaches a value smaller than the ZPE when the
dislocation is far from the Mg atom. This means that the ZPE
contributes to stabilizing the presence of Mg atoms into the
stacking fault ribbon and that the repulsive interaction between
the Mg atoms and the dislocation is mitigated by ZPE. In both
situations, for Mg atoms situated below [Fig. 3(a)] or above
[Fig. 3(b)] the glide plane, corresponding to attractive and
repulsive interactions, respectively, the ZPE tends to ease the
dislocation glide.

Similar computations have been performed in the system
Cu(Ag) with the EAM model from [21] but the magnitude
of quantum effects is smaller. In Fig. 3(c), we have reported
the computation results for an edge dislocation crossing an
impurity atom situated above the glide plane. The potential
barrier is higher than for Al(Mg) while the ZPE variation is
one order of magnitude smaller [see the inset in Fig. 3(c)]. In
the case of Cu(Ag) one can conclude that the ZPE contribution
is negligible according to the EAM model employed here.

To gain some insight into the ZPE variation along the
MEP of dislocations, we have tested the approximation which
consists of computing eigenfrequencies from the on-site
frequencies of each atom considering the other atoms as
frozen. Then we consider the solid as an assembly of inde-
pendent single oscillators, which corresponds to the Einstein

FIG. 4. (a), (b) Energy barriers (black) computed from NEB
method for a straight screw dislocation in α-Fe and the corresponding
zero-point energy variations computed from the exact diagonalization
(blue) and from Einstein approximation detailed in the text (orange).
Atomic scale model for α-Fe is from Refs. [7] and [38].

approximation. The main interest of such approximation is that
the numerical diagonalization of the Hessian is skipped. By
combination of Eq. (5) and Eq. (6), the Einstein approximation
for ZPE of the whole simulation cell is

ZE = h̄

2

∑
i,di

√
− δFdi ,i

mδXdi,i

. (7)

The variation of ZPE computed with Eq. (7) has been reported
in Figs. 2(a)–2(d) and in Figs. 3(a)–3(c). In all cases, we
notice a good agreement between the Einstein approximation
in Eq. (7) and the exact computation of the eigenfrequencies
obtained by diagonalization of the Hessian matrix. We have
verified (see Fig. 4) that the same agreement is also obtained
in the case of straight screw dislocation gliding in different
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FIG. 5. Stress-temperature curve obtained from the computation
detailed in the Appendix for solid solutions Al(Mg) with different
concentrations. The full lines represent the result from a classical
calculation Eq. (A10) and the dashed lines are obtained from Eq. (A7)
accounting for quantum statistics of the crystal vibrational modes.
The solid solution concentrations are those studied in Ref. [39].

bcc iron models [7,38]. The good agreement between the
Einstein approximation and the exact ZPE calculation through
the diagonalization of the Hessian matrix shows that the
main quantum contribution comes from vibrational modes
with short wavelengths since the acoustic modes are skipped
through the Einstein approximation.

In order to evaluate how the critical resolved shear stress
(CRSS) of a solid solution is modified by the ZPE contribution,
we have applied the transition state theory as presented in
Ref. [7]. The details of our derivation have been reported in the
Appendix where quantum statistical mechanics and classical
statistical mechanics have been used to obtain Eq. (A7) and
Eq. (A10), respectively. The comparison between Eq. (A7)
and Eq. (A10) allows us to work out a shift of the CRSS
proportional to δZs , the difference between the ZPE at saddle
state and the ZPE at ground state. Our estimation for the CRSS
in Al(Mg) solid solution at different concentrations has been
reported in Fig. 5 where one can notice clearly the softening
due to a negative ZPE difference between the saddle state and
the ground state.

IV. CONCLUSION

We have reported our study of the variation of quantum
zero-point energy (ZPE) along the minimum energy path of
different dislocations in different systems. In pure crystals,
Al, Ni, and Cu, a variation of ZPE with the same magnitude
as the Peierls barriers but with opposite sign indicates that
dislocations may glide with weaker resistance due to quantum
fluctuations in the 3 different crystals. This result generalizes
what was found for the specific case of screw dislocation in
bcc Fe [7]. We believe that the ubiquity of ZPE in various

simulations for different model materials, with always the
same trend, can be viewed as a confirmation of the physical
realism of such an effect. It is particularly important to multiply
the different system because of the uncertainty of interatomic
potentials used in the simulations. In solid solutions Al(Mg) or
Cu(Ag), the same trend has been observed although the ZPE
variation ratio to the potential energy barrier is less important
than in pure crystals. In Al(Mg) such a ratio is about one tenth
while in Cu(Ag) it falls to one hundredth. The integration of the
Orowan equation has allowed us to show that quantum effects
yield a softening at low temperature. However we have not
identified any inversion of the slope of the stress-temperature
curve as was observed experimentally [39,40]. Even though
our theoretical assumptions about the statistics of solid solution
seem rather rough and would require some consolidations, our
results indicate that the ZPE variation is not the main reason
for the inversion of the stress-temperature curve observed
experimentally in various fcc solid solutions.

Finally, we have tested the Einstein approximation to
compute the ZPE in different systems. The satisfactory agree-
ment between the Einstein approximation and the exact ZPE
calculation shows that the main quantum contribution comes
from vibrational modes with short wavelengths. We interpret
such a result as the fact that the interaction between the acoustic
modes, i.e., with long wavelengths, and the dislocations can be
neglected. Such a result confirms what was found in bcc Fe [7]
where the ZPE variation could be computed from a truncated
Hessian matrix, restricted to few atoms situated around the
dislocation core. However our computation of the quantum
effect relying solely on the harmonic approximation calls for a
more sophisticated method to properly determine the quantum
dislocation glide. To that purpose, some approaches, based
on the imaginary time path integrals [41], could be employed
latter on, such as the centroid method [42,43] or the reversible
work method [44].
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APPENDIX : TEMPERATURE VARIATION OF CRITICAL
SHEAR STRESS IN Al(Mg)

We use the transition state theory to integrate the Orowan
equation [7]: ε̇ = ρdbV̄ , which relates the deformation rate ε̇

to the mobile dislocation density ρd and the average velocity
of these dislocations V̄ . As in experimental tests, we have
fixed ε̇ = 7 × 10−4 s−1 [39]. Neglecting the traveling time of
dislocations between two successive anchored configurations,
we can write the average velocity as V̄ = d	 where d is
the distance between two successive anchored configurations
and 	 is the frequency of dislocation depinning from solute
atoms through thermally activated process. To estimate d and
	 we employ a series of rather rough approximations allowing
us to work out the profile of the stress-temperature curve
only from atomic scale data. However we keep clearly in
mind that our theoretical treatment needs to be refined on
several aspects. In a solid solution [24], we remark that the
dislocations pass the anchoring configurations by crossing
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first the weakest obstacle along its line. Then the dislocation
segments in close interaction with this obstacle form a bulge
which extends all along the dislocation line. We estimate the
jump frequency 	 associated with this process by considering
an atomic simulation cell with a segment of edge dislocation
of a given length Lsim in interaction with a single solute atom.
We have verified that the final result is not modified taking
different values for Lsim.

According to the classical transition state theory [45], the
rate 	 for a three-dimensional system made of Nat atoms of
equal mass m is expressed as an integral over the system phase
space

	 = 1

Zr

∫ 3Nat∏
i=1

dXidPi

h3Nat
δ(X − Xs)

|P · ds |
m

θ (P · ds)

× e[−βH(P,X)], (A1)

where thick symbols stand for 3Nat-dimensional vectors, X
represents the atomic positions, while P is the associated
momentum. Xs is the atomic configuration associated with
the transition state, i.e., the unstable dislocation configuration
between Peierls valleys, ds is the corresponding unstable
eigenmode, H(P,X) is the Hamiltonian of the system to which
the work of the applied stress is properly subtracted, and Zr

is the reactant partition function, i.e., the harmonic partition
function of the crystal with a dislocation at rest. The functions
δ and θ are the standard Dirac and Heaviside functions,
respectively. Following the same treatment as in [7], we obtain

	 = kBT

h

hβνs/2

sin (hβνs/2)

∏3Nat−3
i=1

[
2 sinh

(
hβ

2 ϑi

)]
∏3Nat−4

j=1

[
2 sinh

(
hβ

2 νj

)]e−βHD , (A2)

where HD represents the activation enthalpy for crossing the
obstacle, and ϑi and νj are the eigenfrequencies of the system
at rest and at the saddle state, respectively. In comparison
with [7], we notice that the Goldstone mode is absent from
our problem because there is no translational symmetry in the
present case as the dislocation is supposed to pass the pinning
configuration by crossing an isolated obstacle along its line.
To estimate the activation enthalpy HD , we develop HD with
respect to the applied stress σ , which yields the standard linear
equation

HD = �E − σbA∗, (A3)

where A∗ is known as the activation area, and �E is the energy
barrier estimated from our computations with a single solute
atom in interaction with the dislocation. The sole parameters
we have to determine for the solid solution are thus A∗ and d,
the distance between anchored configurations. To that purpose
we just remark that HD must be zero when the applied stress
σ reaches the critical shear stress σc, such that A∗ = �E/σcb.
The accurate computation of σc is very difficult and it is not
analytical [15]. Here we choose for the sake of simplicity
to estimate roughly σc from the stress required to pass a
regular row of obstacles distant from the average distance
between solute atoms dsol = a/c, where a is the lattice distance
along the dislocation line and c is the atomic concentration of
impurity. The force equilibrium condition between the Peach
and Koehler forces and the obstacle forces, denoted by fo,
yields the equality σc = foc/(ba). Applying the same in the

case of our simulation we obtain σsim = fo/bLsim, where σsim

stands for the critical shear stress applied to our simulation cell
to force the dislocation glide. We therefore approximate the
critical stress of the solid solution by σc = cσsimLsim/a. We
also estimate the distance between anchored configurations
d from the distance between solute atoms dsol through the
assumption of proportionality, recognizing that the larger
the concentration, the shorter the distance between anchored
configurations. In the direction of glide for the edge dislocation
we have d ≈ b/c. After having recognized from the efficiency
of the Einstein approximation [Eq. (7)] that the acoustic modes,
i.e., of low frequencies and large wavelengths, do not interact
with the dislocation and that the frequency associated with the
unstable mode of the saddle state verifies ωs � kBT /h̄, one
can reduce Eq. (A2) to obtain

	 = kBT

h

∏
ϑi>ωt

[
2 sinh

(
hβ

2 ϑi

)]
∏

νj >ωt

[
2 sinh

(
hβ

2 νj

)]e−β�E(1−σ/σc), (A4)

where ωt corresponds to the frequency threshold above
which the vibrational modes are affected by the presence
of the dislocation glide. A low-temperature approximation
with the thermal energy kBT small compared to h̄ωt/2
leads to 2 sinh( hβ

2 ϑi) ≈ exp ( hβ

2 ϑi), whereas within classical
approximation kBT � hϑi/2 leads to 2 sinh( hβ

2 ϑi) ≈ hϑiβ.
At low temperature we thus obtain the formula

	 = kBT

h
e−β[�E(1−σ/σc)+δZs ], (A5)

where δZs stands for the ZPE difference between the saddle
state and the ground state. The Orowan equation can be
rewritten with help of Eq. (A5):

ε̇ = ρd

b2

c

kBT

h
e−β{�E[1−aσ/(cσsimLsim)]+δZs }, (A6)

and after using the rough approximations for σc = cσsimLsim/a

and d = b/c, it can be solved analytically:

σ = σsimcLsim

a�E

[
�E + δZs + kBT ln

(
ε̇

ch

ρdb2kBT

)]
. (A7)

At high temperature we proceed similarly but with the
classical approximation we obtain from Eq. (A4) the following
expression for the crossing rate:

	 = ν0e
−β[�E(1−σ/σc)], (A8)

where ν0 =
∏3Nat−3

i=1 [ϑi ]∏3Nat−4
j=1 [νj ]

is usually of the order of the Debye

frequency. The Orowan equation can be rewritten with the
help of Eq. (A8):

ε̇ = ρdbdν0e
−β�E(1−aσ/σc), (A9)

which leads to the analytical expression for the applied stress:

σ = σsimcLsim

a�E

[
�E + kBT ln

(
ε̇

c

ρdb2ν0

)]
. (A10)

From the comparison between Eq. (A7) and Eq. (A10) one
remarks that a negative ZPE variation δZs < 0 such as the one
found for the edge dislocation in Al(Mg) implies a reduction
of σ in comparison to classical approximation. Indeed the dif-
ference between the quantum theory Eq. (A7) and the classical
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estimations Eq. (A10) is given by [δZs + kBT ln(ν0h/kBT )]
which tends to equal [δZs] for sufficiently low temperatures.

Using our simulation data for the Al(Mg) system in order
to estimate the parameters of Eq. (A7) and Eq. (A10), we have
determined the critical shear stress for different concentrations
at different temperatures. Our results are reported in Fig. 5.
In comparison to the classical calculation we found that
the quantum fluctuations yield a reduction of the critical

shear stress for dislocations crossing obstacles. However,
we have found no inversion of the stress-temperature curve
at low temperature like that evidenced experimentally [39].
Our comparison of the predictions made from Eq. (A7)
with experimental data from [39] and [40] shows that we
obtain the correct magnitude for the critical stress but the
uncertainty is still too large to validate our theoretical
approach.
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