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Dual view on sliding phases in U(1) symmetric systems
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The proposal of sliding phases (SP) is revisited from the perspective of duality. A generic argument is
formulated as essentially a no-go theorem for SP in translationally invariant nonfrustrated systems with short-
range interactions—classical or quantum. Its validity is demonstrated on an asymmetric bilayer and its multilayer
variation models where the duality allows obtaining asymptotically exact analytical solution. This solution is in
drastic contrast with the perturbative renormalization group prediction and is strongly supported by Monte Carlo
simulations. An alternative path toward finding SP is suggested. Its key ingredient is a long-range gauge-type
interaction suppressing the interlayer Josephson coupling.
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I. INTRODUCTION

The idea of the sliding phases SP has been emerging in
several different contexts—liquid crystals, superconductors,
1D quantum systems, correlated disorder, and spin liquids—
within a general theme of a possible dimensional decoupling
(reduction) when a D-dimensional system breaks into a stack
of systems of essentially lower dimensionality. It can be traced
back to the suggestion of vanishing shear modulus in layered
liquid crystals where each layer is a quasisolid positionally
decoupled from its neighbors [1]. This mechanism has been
further explored in Refs. [2,3]. In layered superconductors
magnetic field parallel to the layers has been proposed to
suppress the interlayer Josephson coupling [4]. However, the
frustration due to magnetic field turned out to be insufficient
to fully suppress the coupling as shown in Ref. [5].

In the context of quantum 1D chains the possibility of the
decoupling between chains has been explored as a pathway
toward non-Fermi liquid in high Tc materials [6,7]. The main
argument for such a decoupling is based on using the scaling
dimensions of the Josephson coupling determined with respect
to the Luttinger liquid parameter in each chain: if it is larger
than 2, the coupling should become irrelevant [7]. These
proposals have been criticized in Refs. [8,9] where it was
shown that the interchain tunneling is always relevant. In
Refs. [10] it has been shown that the dimensional reduction
is not possible due to pair tunneling in quantum wires. This
analysis is based on RG developed for bosonized models with
nonzero conformal spin (see Ref. [11]).

The results [1–3] refer to noncompact variables—
translation of one layer against its neighbors. That SP can
occur in the case of compact XY variables has been proposed
in Ref. [12], where the interlayer gradient couplings between
classical XY variables in each layer have been considered
as a “knob” controlling scaling dimensions of the Josephson
coupling and of the vortex fugacity in each layer. The SP would
occur if the first one is irrelevant above some temperature
Td , while vortices in each layer are still bound into neutral
pairs. This approach was also developed for the case of
quantum 1D Luttinger liquids coupled by both the Josephson
and the gradient terms [13–16] (which are the analog of
the Andreev-Bashkin drag effect [17] in neutral superfluids
or Biot-Savart interactions in superconductors[18]). More

recently, the dimensional reduction was considered in the
context of layered disorder [19,20] and non-Fermi liquids in
the spin-liquid regime [21].

It is important to note that the proposal of SP is based on
applying the renormalization group (RG) logic to compact
variables characterized by global U (1) symmetry. While
these early suggestions were more of a purely academic
interest, expanding capabilities of ultra-cold-atoms techniques
in recent years emphasize the importance of these suggestions
especially in the context of possible new phases in composite
lattices [22] and in the presence of disorder [19,20]. In more
general terms, the question is if it is possible to realize
a phase transition, rather than a crossover, from a low- to
higher-dimensional behavior.

Here we propose an alternative approach to the problem
of SP. It is based on the dual formulation of a field model
of compact variables in terms of positive defined statistics of
random closed loops of integer currents obeying Kirchhoff’s
conservation law [23]. In this language, spontaneous symmetry
breaking is equivalent to the formation of a “soup” of fully
disordered macroscopic loops. Accordingly, the SP implies
that, while proliferating along the layers, such loops do not
proliferate perpendicular to them. This immediately leads to
the generic requirement for the SP to exist: The energy cost
E⊥ for a loop element to invade a neighboring layer must be
macroscopically large with respect to the layer size L because
otherwise the entropy for such an invasion will dominate and
will cause simultaneous proliferation of the loops along and
perpendicular to the layers.

In order to illustrate the above general statement, we will
consider a classical XY layered system characterized by
gradient interlayer interactions and the Josephson coupling
u. The gradient terms are chosen in such a way that the SP is
supposed to exist in some range in accordance with the RG
prediction for zero conformal spin. We will present results of
the large-scale Monte Carlo simulations of this system in its
dual representation—in terms of the closed loops. The main
finding is that, in accordance with the generic argument, no SP
state exists in such a system. As a comparison, the standard
asymmetric XY layered model where no SP are expected to
occur will be analyzed too. As will be seen, both models
demonstrate essentially the same behavior. Furthermore, using
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dual representation, it becomes possible to find exact analytical
solution for the renormalized Josephson coupling ur in the
asymptotic limit u → 0. The validity of this solution will be
demonstrated numerically for both models. Thus, the main
conclusion is that, rather than following the RG prediction,
the model of SP demonstrates 3D behavior.

Our paper is organized as follows. In Sec. II we introduce
the bilayer model and provide the RG solution for SP. Then, we
construct the dual representation in Sec. II B. The asymptotic
analytical solution for the renormalized Josephson coupling ur

as well as the numerical results will be discussed in Sec. II C.
Then, in Sec. III the stack of bilayers will be discussed. Finally,
in Sec. IV we discuss the implications of our analytical and nu-
merical results and also provide an alternative model for the SP.

II. BILAYER MODEL OF SP

The purpose of the following analysis is to introduce
a simplest model that admits the RG solution predicting
sliding phases. This result will then be tested numerically
and analytically in the asymptotic limit of vanishingly small
Josephson coupling.

Consider two classical asymmetric parallel layers, each
being a square lattice of linear size L (in terms of the
intersite shortest distance). These layers host two U (1) fields
ψ1 = exp(iφ1) and ψ2 = exp(iφ2) on the layers z = 1,2,
respectively. The continuous (low-energy) action,

Hφ =
∫

d2x

[
1

2
Kzz′ �∇φz

�∇φz′ − u cos(φ2 − φ1)

]
, (1)

features the gradient interaction represented by the (Luttinger
parameter) matrix Kz,z′ as well as by the interlayer Josephson
term ∼u. Here �∇φz refers to the x,y derivatives along the
planar directions. The summation over the repeated indexes is
used here and hereafter. Stability of the system is guaranteed
if det(Kzz′ ) > 0, that is,

K11K22 − K2
12 > 0. (2)

In the partition function,

Z =
∫

Dφ1Dφ2 exp(−Hφ), (3)

the measure of the functional integration must account for the
compactness of the phases φz. This can be achieved by using
the discrete lattice formulation described in Appendix A and
further discussed in Sec. II B. Let’s first, however, discuss the
RG approach to the system.

A. Scaling dimensional analysis for the bilayer

Here we will present the analysis to the system Eqs. (1)
and (3) based on RG in line with the approach suggested in
Refs. [12]. It is important that in this analysis the compact
nature of the “angles” φ1,2 is ignored.

Derivation of the RG equations and their solutions for the
bilayer are presented in Appendix B along the line as described
in Refs. [24,25]. Despite the asymmetric nature of the system,
the resulting RG flow Eqs. (B11) and (B12) for the Josephson
coupling and Eqs. (B17) and (B18) for the vortex fugacity
turn out to be identical to the standard RG equations for
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Tn 

Josephson SP  TBS 
(a) 
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Tn T 

),( 21 qqT

),( 21 qqT

FIG. 1. Two options for phases in the bilayer model: (a) with the
SP according to RG; (b) without SP.

the Sine-Gordon model (see Refs. [24,25]). Thus, in order to
identify the critical points (see Fig. 1) Td of the SP and T(q1,q2)

of the Berezinskii-Kosterlitz-Thouless (BKT) transition, it is
enough to evaluate the scaling dimensions (see Ref. [26]) of the
inter-layer Josephson and vortex fugacity, and find the range
Td < T < T(q1,q2) of parameters where both are irrelevant. We
begin with the first critical point T = Td of the transition from
the phase where the interlayer Josephson coupling is relevant
(called “Josephson” in Fig. 1) to the SP.

If the vortex fugacity is irrelevant, the compact nature of
the phases is usually ignored. Then, introducing the variables
φ+ = φ1 + φ2 and φ− = φ2 − φ1 in Eqs. (1) and (3) and, then,
integrating out φ+, the resulting partition function becomes

Z− =
∫

Dφ−e−H− ,

H− =
∫

d2x

[
K

2
( �∇φ−)2 − u cos φ−

]
, (4)

where the notation

K = K11K22 − K2
12

K11 + K22 + 2K12
(5)

is introduced. Equations (4) and (5) represent the standard
Sine-Gordon model in 2D. The scaling dimension of the
operator ∼u is �u = 1/(4πK). Thus, the Josephson term
becomes irrelevant if �u > 2, that is, at K < Kd = 1/(8π ),
so that the renormalized u should flow to zero as ur ∼ uLb →
0, b = 2(1 − Kd/K) < 0. Such a behavior is supposed to
occur together with the persistence of the algebraic order along
the planes. Without loss of generality let’s assume K11 < K22

and introduce the notations: T = 1/K11 as a measure of
temperature, and Y = K22/K11 > 1, X = K12/K11. Then, the
condition K < 1/(8π ) for SP becomes

T > Td = 8π (Y − X2)

1 + Y + 2X
. (6)

In order to guarantee the algebraic order in each layer no
BKT transition should occur in the layers. In other words, all
backscattering harmonics Vq1,q2 in the action Eq. (B1) must
be irrelevant below some temperature T(q1,q2) exceeding Td

in Eq. (6). In order to determine possible types of vortices
responsible for the transition, we examine the form Eq. (1)
in the limit u = 0 using the Kosterlitz-Thouless argument for
the BKT transition. Specifically, a composite vortex (q1,q2)
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induced by the drag term ∼K12 [12,27,28] with circulations
q1,q2 in the layers 1 and 2, respectively, is introduced at the
same position x,y along the layers. The free energy of such a
composite vortex is

Fv = {
π

[
(q1 + Xq2)2 + (Y − X2)q2

2

] − 2T
}

ln L. (7)

Then, the stability against the BKT transition is guaranteed by
the positivity of Fv or

T < T(q1,q2) = π

2

[
(q1 + Xq2)2 + (Y − X2)q2

2

]
, (8)

where the minimization with respect to q1,q2 must be per-
formed. This condition corresponds to the requirement that
the scaling dimension �q1,q2 = π

∑
a,b Kabqaqb of the most

dangerous backscattering amplitude Vq1,q2 in Eq. (B13) is
above 2.

Proliferation of simple vortices q1 = ±1, q2 = 0 or q1 =
0, q2 = ±1 corresponds to T(1,0) = π/2 and T(0,1) = πY/2 >

T(1,0), respectively. The minimal solution with composite
vortex can exist only as long as X �= 0, that is, when K12 �= 0.

Solutions for Eqs. (6) and (8) exist for integer values
of X � 3. Introducing δ = Y − X2 > 0 [due to the stability
requirement Eq. (2)], one should distinguish cases δ > 1 and
δ < 1. In the first case, the dominant vortex is (1,0) and
the solution for Td < T(1,0) exists if 1 < δ < (1 + X)2/15. If
0 < δ < 1, the dominant vortex is composite (−X,1) and the
condition Eqs. (6) and (8) become

8πδ

δ + (1 + X)2
< T <

π

2
δ. (9)

For X 	 1, Td → 0 while T(q1,q2) → (π/2)min(1,δ) as long as
δ is kept constant. Such a limit corresponds to the largest range
of T , where SP are to be anticipated for the two-layer model.
However, for practical purposes of simulations using too large
X leads to slower convergence. Thus, we choose X = 5, Y =
25.5 corresponding to a reasonably wide range where SP is
anticipated to exist. Then, Eq. (9) becomes 8π/73 < T < π/4
or 0.344 < T < 0.785. [The simulations discussed below have
been conducted at T in the middle of the interval Eq. (9), that
is, T ≈ 0.565. More specifically, K11 = 1/T = 1.77,K22 =
25.5K11,K12 = 5K11.]

Proliferation of the composite vortex pairs with vorticities
(q1,q2) corresponds to disordering of the original fields
exp(iφ1,2). At the same time the composite field � =
exp[i(q1φ1 + q2φ2)] remains (algebraically) ordered. This
mechanism constitutes the formation of thermally induced
bound phases (or using the language of superfluidity—
thermally paired superfluid [29]). For the values chosen above
this composite field is � = exp[i(φ1 + Xφ2)]. Since X > 1
we call such a composite phase as thermally bound superfluid
(TBS). This effect does not require that X is necessarily integer.
If X is noninteger, its closest integer part will determine
the power of ψ2. In Fig. 1 the TBS exists in the range
T(q1,q2) < T < Tn. Full symmetry is restored above Tn—that
is, no algebraic order exists in any composite or original fields.

Concluding this section, the presented analysis based on
the RG finds the range of temperatures where the sequence of
phases is as presented in Fig. 1(a): at T < Td the Josephson
coupling is relevant. At Td < T < T(q1,q2) there is the SP
where the symmetry U (1) is promoted to U (1)× U (1). In the

X 

Y 

Jz,i 

Jz,ij 

Z 

Z=1 

Z=2 

Z=3 

FIG. 2. A J -current configuration characterized by Wz =
1, Wx = 0, Wy = 0. Horizontal oriented arrows show J currents
along planes, with |Jz,ij | = 1. The vertical ones indicate J currents
between the planes, with Jz,i = 1, with the dashed lines showing
currents that are completing periodic boundary conditions.

range T(q1,q2) < T < Tn, the TBS phase is characterized by the
composite field �. Thus, the broken symmetry is partially
restored through the subgroup ZN , where N = 1 + q2. At
higher temperatures, T > Tn, the composite field � becomes
disordered too. In what follows we will show that the actual
sequence of phases is correctly depicted in Fig. 1(b) rather
than in Fig. 1(a).

B. Dual representation

As described in detail in Appendix A, the bilayer model
Eqs. (1) and (3) can be reformulated in terms of the dual
variables that account for the compact nature of the variables
φ1,2. (The logic behind this transformation is along the line of
the J -current model, Ref. [23].) The partition function Eq. (3)
is now represented as

Z =
∑

{Jz,ij },{Jz,i }
e−HJ , (10)

with the action

HJ =
∑
〈ij〉

1

2
(K−1)zz′Jz,ij Jz′,ij +

∑
i

1

2uV

J 2
z,i , (11)

where (K−1)zz′ is the matrix inverse to Kzz′ introduced in
Eq. (1) and uV is the Villain value of the Josephson coupling
u. Since we are interested in the limit u 
 1, it is uV ≈
1/[2 ln(2/u)] [30,31] (for more details see Appendix A).
The summation runs over the integer bond currents Jz,ij =
−Jz,ji , z = 1,2 defined between neighboring sites i and j and
oriented from site i to site j within each corresponding layer
as well as over the integer currents Jz,i oriented along the bond
connecting the site i in the layer 1 to the site i in the layer 2.
All the configurations are restricted by the Kirchhoff’s current
conservation rule—the total of all J currents incoming to any
site must be equal to the total of all outcoming currents from
the same site.

The resulting configurational space consists of closed loops
of the bond currents as schematically depicted in Fig. 2.
Further simulations can be effectively performed by the Worm
Algorithm [32]. As will be shown, in addition to being very
effective in numerics, the language of loops also allows
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obtaining analytic expression for the renormalized Josephson
coupling ur , which is exact in the asymptotic limit u → 0,
while strong algebraic order persists along the layers.

If u = 0, there are two sorts of loops—one in each layer.
Thus, each configuration is characterized by definite values
of the windings Wz,α in the zth layer along the α = x̂,ŷ

directions of the planes. These quantities are defined as a
total of all J currents crossing any line perpendicular to the
direction α. (The Kirchhoff’s rule guarantees that windings
are independent of the choice of the line.) It is straightforward
to show that statistics of these windings determine the
renormalized values K̃zz′ of the matrix Kzz′ along the line
of the approach [33]. More specifically,

K̃zz′ = 1

2

∑
α=x̂,ŷ

〈Wz,αWz′,α〉. (12)

This expression is valid for periodic boundary conditions
(PBC). It is important to note that K̃zz′ represents an exact
linear response with respect to the Thouless phase twists.
In other words, if there are externally imposed infinitesi-
mal constant gradients ∇αφ1,2 → 0 (violating the PBC) of
the phases φ1,2, the free energy acquires the contribution
δF = 1

2L2 ∑
z,z′,α K̃zz′∇αφz∇αφz′ . On the other hand, in

the presence of the gradient the integrand of the partition
function gets the factor exp(iL

∑
z,α Wz,α∇αφz). Comparing

both expressions leads to the relation Eq. (12).
As a test of consistency, we have checked numerically that

in the regime where the SP state is supposed to exist (that is,
X = 5, Y = 25.5, T ≈ 0.565), the deviations of K̃zz′ from the
bare values Kzz′ are within the statistical error less than 1%
for all tested sizes of the layers 10 � L � 1000. Significant
deviations are observed only as the system approaches fully
disordered state—that is, T → Tn, Fig. 1, where the fields ψ1,2

as well as the composite one � become disordered. In this case,
K̃zz′ flow to zero as L increases. The deviations remain small
(about 2–3%) even in the regime where � is the only ordered
field. The emergence of the TBS is detected by observing that
windings Wz,α in the layers 1 and 2 are changing exactly by the
increment �W1 = 1, �W2 = X (plus or minus), respectively.

At finite values of u the loops belong to both layers so that
no separate windings can be introduced. However, the sums
Wα = W1,α + W2,α remain well defined and can be used to
evaluate the rigidity ρα of the fields along the layers. In a
general case of Nz layers ρ = ρx = ρy :

ρ = 1

2Nz

∑
α

〈
W 2

α

〉
, (13)

Wα = 1

L

∑
〈ij〉,a=1,2,...Nz

Ja,ij , (14)

where for a given α = x̂,ŷ in Eq. (14) the bond 〈ij 〉 (as well
as Ja,ij ) is oriented along the direction α.

Our focus here on the renormalized value ur of the
Josephson coupling u in the SP regime. In the case of Nz

layers, if the periodic boundary conditions are also imposed
perpendicular to the layers (along z direction), the interlayer

response ur is given by windings Wz along z direction:

ur = Nz

L2

〈
W 2

z

〉
, Wz = 1

Nz

∑
i

Jz,i , (15)

where the summation
∑

i of the currents Jz,i (oriented along z

direction) is performed over all sites of all layers. Similarly to
the cases Eqs. (12) and (13), Eq. (15) represents the full linear
response at zero momentum—that is, the renormalized value
ur of the Josephson coupling u.

At this point, we should comment on how to interpret the
PBC for two layers, Nz = 2. While in the cases Nz � 3 it
is a natural procedure to link the z = Nzth layer to the first
one, z = 1, by the Josephson term, the case Nz = 2 needs an
auxiliary construction because the layers 1 and 2 are coupled
already directly. The formal procedure, then, consists of adding
a third layer, z = 3, with no rigidity along x,y directions and
coupled by the Josephson term to both layers, z = 1,2. If the
coupling u13 between the layers 1 and 3 and the coupling u23

between the layers 2 and 3 add up as 1/u13 + 1/u23 = 1/uV ,
in the dual action Eq. (11) the sum in the last term can be
extended to the layers z = 1,2,3 in the periodic manner. The
key to this procedure is the Kirchhoff’s rule: the J current
from a site (x,y) along z direction from the layer 2 to the layer
3 must be exactly the same as the current from the site (x,y) in
the layer 3 to the layer 1. Then, in the form Eq. (11) the same
value uV can be used for the currents from the layer 1 to the
layer 2 directly or through the layer 3 as shown in Fig. 2.

C. Asymptotic expression for ur

As mentioned above, the dual representation allows obtain-
ing analytically asymptotic solution for ur . Let’s begin with
the simplest case of zero stiffnesses Kzz′ and arbitrary number
of layers, Nz = 2, 3, 4. The action in this case in the field
representation becomes ∼ ∑

z

∫
d2x[−u cos(φz+1 − φz)], or

in the dual form,

HA = Nz

2uV

∑
i

J 2
z,i , Jz,i = 0, ± 1, ± 2, . . . , (16)

where the summation runs over all sites i of only one layer, say,
z = 1. In this expression the Kirchhoff rule dictates that the
current Jz,i at a given site along z direction must be the same
for all values of z. Thus, such a current with Jz,i constitutes
one closed loop characterized by the winding W = Jz,i . This
allows constructing the partition function exactly as

ZA =
[ ∑

W=0,±1,±2,...

exp

(
− Nz

2uV

W 2

)]L2

, (17)

where L2 is the number of sites in one layer. The stiffness
Eq. (15) can be found by taking into account that the
total winding along z direction is Wz = ∑

i Jz,i , where the
summation runs over L2 sites of only one layer. Then, using
statistical independence of different sites we find

ur = 2Nz

∑
W=1,2,... W

2 exp(−NzW
2/2uV )

1 + 2
∑

W=1,2,... exp(−NzW 2/2uV )
. (18)

This expression shows that, as long as Nz is finite, the
Josephson coupling remains relevant even if there is no
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in-plane order. In the limit uV 
 1 only the term W = 1 is
important, so that Eq. (18) becomes

ur = 2Nz

2 + exp(Nz/2uV )
∼ 2Nz exp(−Nz/2uV ). (19)

The exponential decay versus Nz in Eq. (19) is a direct
consequence of the absence of the stiffness along the layers,
that is, ρ = 0 in Eq. (14), so that the shortest loop is “vertical”
with the number M = Nz of the vertical currents Jz=1,i =
Jz=2,i = . . . = Jz=M,i .

Thus, it is natural to anticipate that the dimensional
decoupling in a strong sense, when ur scales to zero as some
negative power of L as prescribed by RG, should not occur
even in the absence of the algebraic order along the planes,
when ρ → 0. The stiffness along z direction remains finite in
the limit L → ∞ as long as Nz is finite.

This example indicates that short-range interplane cor-
relations rather than long-range intraplane coherences are
responsible for finite interplane Josephson coupling. In terms
of the original variables φz, the result Eq. (19) implies that
ur ∼ uNz (because uV ≈ 1/[2 ln(2/u)] in the limit u → 0).
This can be viewed as the perturbative result of Nzth order
with respect to u.

If there is a finite strong stiffness ρ 	 1, Eq. (19) can
also be used, with Nz substituted by some effective value
M = 1,2,3, . . ., that is

ur = 2M

2 + exp(M/2uV )
→ 2M exp(−M/2uV ). (20)

The value of M is determined by the length of a “cheapest”
string of J currents along z directions. The loop proliferation
can be viewed from the perspective of the Worm Algo-
rithm [32] where one open end of a string of J currents walks
randomly until it meets another open end so that a closed
loop is formed. Then, most of the path is residing in a layer
with only occasional jumps between neighboring layers (in the
limit uV → 0). Such an elementary jump has the probability
∼ exp(−M/2uV ), so that all higher values M are exponentially
suppressed. In other words, the situation is reminiscent of the
“ideal gas” of rare fluctuations of the J currents of length M

in z direction.
Thus, generically, it is expected that ur ∝ uM in the limit

u → 0 because then uV ≈ 1/[2 ln(2/u)] [30,31]. Below we
will show that for the model we consider M = 2 and, thus,
ur ∝ u2.

In the standard XY model (with no drag effect and no asym-
metry between the layers) in its J -current representation [23],
characterized by finite in-plane stiffness ρ and small interlayer
coupling uV , the “cheapest” string in z direction has M = 1 in
Eq. (20). The standard XY model and its comparison with the
multilayer extension of the bilayer model will be discussed in
more detail in the Sec. III D. Below we will show that M = 2
in Eq. (20) for the bilayer in the SP regime and will present
the numerical support for this. In other words, contrary to the
RG prediction, the Josephson interlayer coupling ur remains
finite in the limit L → ∞.

D. Numerical results for Nz = 2

Here we discuss the results of Monte Carlo simulations
of the bilayer in the regime of SP. The action Eq. (11) can
be represented in the notations T ,X, Y, δ [introduced below
Eq. (5)] as

HJ =
∑
〈ij〉

[
T

2
J 2

1,ij + T

2δ
(J2,ij − XJ1,ij )2

]
+

∑
i

J 2
z,i

2uV

,

(21)

where the values of the parameters have been discussed at
the end of Sec. II A: X = 5, δ = 1/2, T = (Td + T(X,−1))/2 ≈
0.565.

The structure of the loops is determined by the energy
of creating a J -current element along a given direction. A
typical energy to create a J -current element along a bond in
the plane 2 can be estimated as δE2 ≈ T/(2δ) ≈ 0.5. Thus,
large loops with a typical values | �J2| = 1 can exist in the
plane 2. In contrast, the energy to create an isolated element
in the plane 1 (with no J2 currents along the same bond in the
layer 2) requires much more energy: δE1 ≈ T (1 + X2/δ)/2 ≈
15. Accordingly, the probability to create such an element
is exponentially suppressed as ∼ exp(−15), and no entropy
contribution (due to four optional directions along the plane)
can compensate for such a low value. This implies that no large
isolated loops can exist in the layer 1. The only option to create
a large loop in the layer 1 is if each element J1,ij is mirrored by
the current J2,ij = XJ1,ij along the same bonds in the layer 2.
A typical energy of this combined element is δE12 ≈ T/2 ≈
0.25. This strong asymmetry between the layers has immediate
implication for the windings along z direction—the minimal
length M of the element Jz,i must be M = 2 in Eq. (20). Thus,
the stiffness ur in the limit u 
 1 becomes

ur = 4

2 + exp(1/uV )
≈ 4e−1/uV = u2, (22)

where the asymptotic expression uV = 1
2 ln(2/u) [30,31] has

been used. Accordingly, for the simple XY model (with no
drag interaction) the corresponding dependence is ur ∝ u1.
This will be discussed below.

As discussed above, the power u2 stems from the value
M = 2 in Eq. (20). Formally speaking, Eq. (22) appears to
be as though the weak layer (z = 1) is incoherent and, thus,
is eliminated in second order of perturbation with respect to
u—very much like the situation discussed in Sec. II C. It is,
however, important to note that the weak layer is coherent
and the application of the perturbative approach in terms of
the original variables—the phases φz—is not that apparent. In
contrast, the dual representation leading to the picture of the
“ideal gas” of the vertical currents gives the result ur ∼ u2

quite naturally.
The results of the simulations is shown in Fig. 3. The first

striking feature to notice is that ur , while changing over 7
orders of magnitude, does not depend on the layers size L.
Second, ur versus uV follows the analytical result Eq. (22)
with high accuracy—even for values uV ∼ 1. Both features are
in the striking conflict with the RG prediction stating that ur

should scale as ∝ L2(1−T/Td ) ≈ L−1.28 → 0 in the SP regime. It
should be also noted that the stiffness along the layers Eq. (13)
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FIG. 3. Monte Carlo results for the interlayer stiffness ur vs. its
bare value uV for the bilayer for various layer sizes (shown in the
legend). Error bars are shown, and for the majority of the data points
these are smaller than symbols. The fit line is the solution Eq. (22).

remains finite and much larger than ur , that is, ρ = 32.3 ± 0.1
for all simulated sizes from L = 8 to L = 960. This justifies
the validity of Eq. (22) even in the case uV ∼ 1.

III. STACK OF BILAYERS

As it became evident from the previous analysis, no SP
can occur in the double layer. Referring to the sketch of the
possibilities, Fig. 1(b) is realized instead of Fig. 1(a). Here
we will address a possibility of SP in a Nz-layers setup. In
other words, we will be looking for a behavior where the
renormalized Josephson stiffness ur decays as a function of Nz

in the limit L → ∞, while the stiffness along planes remains
finite. This would be a “weaker” version of the SP in a clean
system (cf. the SP in the layered disorder case [20]).

We consider the PBC setup: the odd z = 1,3,5,7, . . . and
the even z = 2,4,6,.. layers are characterized by the inplane
stiffnesses K11 and K22 > K11, respectively, with the nearest
layers coupled by the current-current term ∝ K12 (the same
for all pairs of layers) as well as by the Josephson coupling
−u

∑
x,y,z cos(φz+1 − φz), where ψz(x,y) = exp[iφz(x,y)] is

the XY variable defined on a site (x,y) belonging to the
layer z.

In the linearized with respect to the gradients of φz

approximation analogous to Eq. (1) the model becomes

HN =
∑

z=1,3,5,...

{
Hz −

∫
d2xu[cos(φz+1 − φz)

+ cos(φz−1 − φz)]

}
, (23)

where the summation runs over odd values of z and the notation

Hz =
∫

d2x

[
K11

2
( �∇φz)

2 + K22

2
( �∇φz+1)2

+ K12 �∇φz( �∇φz+1 + �∇φz−1)

]
(24)

is used. The Gaussian part of the action can be diagonalized
by using Fourier representation along z direction with doubled
unit cell. Then, the matrix Kzz′ becomes dependent on the
wave vector qz = 4πnz/Nz, nz = 0,1,2, . . . ,Nz/2 − 1 along
z axis. The corresponding partition function becomes

Z =
∫

Dφz exp(−HN ), (25)

where the measure of functional integration Dφz must explic-
itly account for the definition of the phases φz(x,y) modulo
2π .

A. RG solution

The corresponding RG equation for ur Eq. (B19) is
analogous to that discussed in Appendix B for the bilayer.
Then the critical temperature of the dimensional decoupling
becomes

T −1
d = 1

4πNz

(Nz/2)−1∑
m=0

1 + Y + 4X cos2 qm

Y − 4X2 cos2 qm

, (26)

where the wave vectors along z take values dictated
by the periodic boundary conditions qm = 4πm/Nz,m =
0,1,2, . . . ,(Nz/2) − 1. Here we use the same notations T =
1/K11, X = K12/K11, Y = K22/K11 introduced in Sec. II A.
Thus, RG predicts irrelevance of ur at T > Td .

The upper limit on T is determined by the loss of algebraic
order along the layers. (At ur = 0 there should be no 3D
vortices.) Clearly, if T is as high as > πY/2 	 1, all layers
will become disordered. Less drastic situation occurs when
only weak layers (odd) are disordered π/2 < T < πY/2. In
this case the Josephson coupling between even layers will
be supported by the proximity effect. We, however, will be
considering the situation T < π/2, which implies algebraic
order in all layers.

We considered also a possibility of proliferation of the
composite vortices. One option is a composite vortex char-
acterized by phase windings q1 = 1 and q2 = X > 1 in odd
and even layers, respectively, forming a string of length Nz

perpendicular to the layers. In this case the vortex energy will
have a factor ∼Nz, which makes such vortices too energetically
costly to play any role in the limit Nz 	 1, provided the
system is not too close to the instability (when the matrix
of the gradient interactions acquires zero eigenvalue, that is,
Y − 4X2 = 0). In our simulations we have been avoiding this
region. Thus, such “infinite” vertical vortices are excluded.
Another option is when composite vortices occur as finite
length vertical strings—say, of length 2 (along z axis) with
q1 = ±1 in an odd layer and q2 = −[2X]q1 in the neighboring
(even) layer. However, a simple analysis shows that energy of
such (and longer) composite vortices turns out to be higher than
that of the simple vortex with q1 ± 1, q2 = 0 destroying order
in the odd layers. Thus, we impose the requirement Td < π/2
in order to have a finite range Td < T < π/2 for the SP to
exist within the RG approximation. This implies

1

Nz

Nz/2−1∑
m=0

1 + Y + 4X cos2 qm

Y − 4X2 cos2 qm

> 8. (27)
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It can surely be achieved for large enough X in the limit
Nz 	 1. Replacing the summation by integration in this limit
and considering δ 
 1, Eq. (27) gives δ < X2/64. For the
simulations we have chosen δ = 0.3 and X = 6, which gives
Td ≈ 0.983 with T = 1.28 chosen in the middle of the interval
between T(1,0) = π/2 ≈ 1.57 and Td . The chosen value of Td

corresponds to the limit Nz → ∞, and for any finite Nz, the
actual Td from Eq. (26) is below this value.

It is worth reminding that, according to RG, ur should
exhibit suppression as some power of L → ∞ in the range
Td < T < T(1,0). However, as shown below analytically and
then numerically, there is no such suppression in the asymp-
totic limit uV 
 1.

B. Dual formulation

The dual formulation of the model Eqs. (23), (24), and (25)
in terms of the closed loops of integer J currents (along bonds
in and between the layers) can be achieved similarly to the case
Nz = 2. Using Villain approach (see Appendix A) to the dis-
crete gradients : �∇φz → (∇ij φz + 2πmz,ij ) along the planes
and −u cos(φz+1 − φz) → (uV /2)(φz+1 − φz + 2πmi,z)2 for
the Josephson terms, where mz,ij refers to integer defined on
the bond ij belonging to the plane z and mz,i stands for an
integer on a bond connecting site i in the plane z to the same
site in the plane z + 1, the partition function Eq. (25) follows
as a result of explicit integration over all φz(i) and summations
over all bond integers.

The J currents enter through the Poisson identity∑
m=0,±1,±2,.. f (m) ≡ ∑

J=0,±1,±2,..

∫
dx exp(2π iJx)f (x)

applied to each bond integer. This allows explicit integration
over all phases φz as well as over the bond integers mz,ij ,mi,z.
There are two types of J currents: inplane J

(a)
z,ij , a = 1,2

within each “elementary cell” (along z) and between the
planes Ji,z. The label a = 1,2 refers to J current defined
on the bond ij belonging to a plane with odd and even z,
respectively. Jz,i denotes the current from the site i from the
plane z to the plane z + 1. The integration over phases φ

generates the Kirchhoff constraint—similarly to the bilayer
case.

Finally, the J -current ensemble can be represented as

Z =
∑
{ �J }

exp(−HJ ),

HJ = 1

2

∑
ij ;z,z′

Vab(z − z′)J (a)
z,ij J

(b)
z′,ij ′ + 1

2uV

∑
i,z

J 2
z,i , (28)

where the matrix Vab(z − z′) is defined in terms of the
matrix Kzz′ . It reflects the asymmetry between odd and even
layers. Explicitly, V11(z) = YV22(z), for z = z − z′ being even,
describes the interaction between odd layers, and V22(z)
is defined between even layers; V12(z) = −X[V22(z + 1) +
V22(z − 1)] refers to the interaction between odd and even
layers (that is, z is odd), and

V22(z) = 2T

Nz

∑
qm

cos(qmz)

Y − 4X2 cos2(qm)
, (29)

with z = 0, ± 2, ± 4, . . . and the summation running over
qm = 4πm/Nz,m = 0,1, . . . ,N/2 − 1.

C. Asymptotic solution

Analogously to the case of the bilayer, the dual represen-
tation allows constructing the asymptotic solution for ur for
arbitrary Nz. We begin by finding the renormalized Josephson
coupling in the asymptotic limit u → 0, L → ∞ with Nz kept
fixed. The dual formulation Eq. (28) for Nz layers allows
obtaining the asymptotic expression for ur within the same
logic used for deriving Eq. (22). We will repeat it here. The
loop formation can be viewed as a process of random walks
of two ends of a broken loop—exactly along the line of the
Worm Algorithm [32]. Such a walk of each end is controlled by
energetics of creating one bond element |J | = 1 in a randomly
chosen direction—either along a given plane or perpendicular
to it. Similarly to the case of the two layers, the energy to
create such an element alone along an odd layer costs energy
	 T ∼ 1, while the same element along an even layer costs
energy ∼1. The only option for creating a loop in an odd layer
is if its energy is compensated by parallel elements in the even
plane. This feature is caused by the strong current-current
interaction ∼X. Thus, if the walk occurs along z direction
from some even layer z toward the neighboring odd layer
z + 1, the subsequent move along the odd layer will be too
energetically costly so that the walker would either move
further toward z + 2 layer or will go back to the original layer
z. Thus, the interlayer elements are characterized by either
Ji,z = Ji,z+1 = ±1 or Ji,z = Ji,z+1 = 0. The weight of such a
process is either exp(−1/uV ) or 1, respectively. Even if the
walker makes a step or two along the layer z + 1 (which is a
highly improbable event) and then chooses to go toward the
layer z + 2, the contribution to the partition function will be
further reduced exponentially by the energy of the element J

along the odd plane. Thus, such processes can be ignored, and
we arrive at the conclusion that ur given by Eq. (22) must be
valid for arbitrary Nz in the asymptotic limit. The validity of
this solution will be verified numerically as explained below.

It is instructive to discuss the dependence on Nz in the
situation when L 	 1 is fixed and uV → 0. In this situation the
renormalized Josephson stiffness ur does exhibit the SP-like
behavior ur ∼ exp(− . . . Nz) (which, however, transforms into
the solution Eq. (22) as L → ∞). The reason for this, however,
is of a purely geometrical nature (which has nothing to do with
the drag interactions). Indeed, for any finite Nz 	 1, the sys-
tem becomes essentially of (quasi-) 1D nature as long as uV →
0. In this case, there is such a value u∗ of uV below which
there is essentially only one macroscopic vertical loop with
Wz = ±1 for a given area L2, with higher ones exponentially
suppressed. This situation corresponds to the contribution
of zero modes to the stiffness along z direction. These
modes are characterized by ∇x,yφz(x,y) = 0, which leads
to the effective Hamiltonian H0 = ∑

z urL
2 cos(φz+1 − φz),

with ur ≈ 2 exp(−1/uV ) being the renormalized mesoscopic
stiffness. Zero modes become dominant excitations as long as
urL

2 
 K11.
The dual form of the zero mode action takes a form

H̃0 = Nz

2L2ur

W 2
z , (30)

where the duality procedure has been implemented as
explained earlier. Calculation of the Josephson stiffness
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FIG. 4. Monte Carlo results for the interlayer stiffness ur of the
model Eqs. (28) and (29) in the SP regime. Dashed orange line is the
analytical solution Eq. (22). Dotted black line represents the offset
ur = 0.1 of the analytical solution Eq. (22). The first and the second
numbers in the legend indicate values of L and Nz, respectively

according to Eq. (15) gives the resulting stiffness

u(0)
r ∼ exp

(
−Nz exp(1/uV )

8L2

)
(31)

in the main exponential approximation in the limit u(0)
r 


ur ≈ 4e−1/uV . Thus, if uV is taken to zero, there is such a
value uV = u∗ below which this inequality will be satisfied
for fixed L,Nz 	 1. The corresponding value can be obtained
from Nz exp(1/u∗)

8L2 � 1, which gives

u∗ ≈ 1

ln(8L2/Nz)
(32)

in the main logarithmic approximation. Thus, for fixed L,Nz

the solution Eq. (22) is valid as long as uV > u∗ and it must
cross over to Eq. (31) as long as uV 
 u∗. However, as L →
∞, the crossover value of uV , Eq. (32), goes to zero, which
means the recovery of the asymptotic solution Eq. (22) for
any finite uV . This effect will be seen in the simulations as
discussed below. It is important to mention, though, that such a
suppression has nothing to do with SP because the RG solution
(discussed above) implies the suppression of ur → 0 in the
limit L → ∞ for fixed uV , while the asymptotic solution gives
finite ur , Eq. (22), in the same limit.

D. Numerical results for Nz > 2

The model Eq. (28) has been simulated by the Worm Algo-
rithm [32]. The renormalized interlayer stiffness ur was found
for a range of layer sizes 6 � L � 640 and layer numbers
10 � Nz � 40. The resulting data is presented in Figs. 4 and 5.
As can be seen in Fig. 4, the solution Eq. (22) plays the role
of the envelop for the family of the curves ur versus 1/uV

for various L and Nz. We note that the stiffness ρ along
the layers [as determined by Eq. (13)] remains independent
of the sizes and much larger (ρ = 22.6 ± 0.5) than ur . This
justifies the applicability of the asymptotic limit for Eq. (22).
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14

ln(L2/Nz)
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 N =20
 N =10
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N =16

FIG. 5. The values of u∗ determined numerically from the data
shown in Fig. 4 by finding the crossings of the curves ur with the
offset (dotted) line in Fig. 4. The linear fit of this line gives the slope
γ = 1.00 ± 0.02.

We have also controlled that the system is far enough from
any possible composite phases [28] state by measuring the
lowest order correlator 〈exp(iφz(x,y)) exp(−iφz′(x ′,y ′))〉 and
observing that it exhibits long-range order. (In the composite
phase state such a correlator is short ranged.) Thus, the system
is well in the putative SP state. Its behavior, however, is
drastically different from the RG prediction.

At this point we should discuss the deviations of the
numerical curves from the analytical result seen in Fig. 4.
As discussed above, this behavior is a consequence of zero
modes. The value of uV = u∗ below which the suppression
begins decreases as

(u∗)−1 = γ ln(L2/Nz), γ = 1.00 ± 0.02, (33)

for L2/Nz 	 1 in the main logarithmic approximation. This
behavior is demonstrated in Fig. 5, where the value u∗
corresponds the offset for ur taken at 1/10 of the value given
by the analytical Eq. (22). The result Eq. (33) is consistent
with the analytical formula Eq. (32).

Clearly, such a quasi-1D suppression (zero modes effect)
is also present in the standard XY model (where no SP are
anticipated to exist). In order to demonstrate this explicitly we
have also simulated a simple XY model given by the system

ZXY =
∫

Dφz exp(−HXY ),

HXY = −
∑
〈ij〉,z

[K̃ cos(∇ij φz) + u cos(∇zφz)], (34)

with some K̃ 	 1 (guaranteeing that no BKT transition
occurs in each layer for u = 0), and 0 < u 
 K̃ . In the dual
representation this system is described by

HXY → H̃XY =
∑
〈ij〉,z

1

2K̃
J 2

z,ij +
∑
i,z

1

2uV

J 2
i,z, (35)

where Jij,z and Ji,z are the same J currents introduced above
for the model Eq. (28). The results of the simulations of
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this model are presented in Figs. 6 and 7. In the asymptotic
limit the interlayer stiffness is described by Eq. (20) with
M = 1. Then, according to the above discussion, the value u∗
determining where the deviations from the analytical formula
begin is given by (u∗)−1 = 2 ln(L2/Nz), that is, with the slope
γ = 2, which should be compared with the numerical value
γ = 1.95 ± 0.05 in Fig. 7. Thus, both models demonstrate
essentially the same 3D behavior, with the only difference
being the slope of the renormalized Josephson coupling ln ur

versus its bare value uV .

IV. DISCUSSION

The RG approach to 2D systems proves to be very effective
in many cases, including 2D XY model when it can be
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FIG. 7. The values of u∗ determined numerically from the data
shown in Fig. 6 by finding the crossings of the curves ur with the
offset (dotted) line in Fig. 6. The linear fit of this line gives the slope
1.95 ± 0.05.

mapped on the Sine-Gordon (SG) one [34]. A successful
implementation of the RG analysis to the Josephson coupling
was demonstrated in Ref. [35] where a single weak link can
make one channel Luttinger liquid insulating.

The merit of RG, however, should be taken with caution
when applied to the dimensional reduction situations in layered
systems hosting compact U (1) variables. In this case there is
no exact mapping between XY and SG representations at finite
interlayer Josephson coupling, and the approximation ignoring
the compact nature of the variables becomes uncontrolled. As
our analysis of one particular layered system shows, no SP
exists in such a system despite the RG prediction: the system
shows essentially the 3D behavior of the asymmetric XY

model. Clearly, the simplest example presented here reveals
the flaw in extending RG to the dimensional decoupling
situations [12–16] when the effective model corresponds to
zero conformal spin [11]. (At nonzero spin, tunneling of pairs
can take over [10].) As shown in Sec. II C, the interlayer
Josephson coupling exists even when there is no intralayer
order—which is consistent with the proximity effect.

The dual formulation in terms of the closed loops gives a
very important insight. Specifically, the SP means that as layer
size L → ∞, a suppression of the Josephson coupling between
layers would require that the number of times elements of
closed loops fluctuate between layers must scale slower than
L2 so that the density of such events is zero in the limit L = ∞.
The loops statistics, however, is controlled by local energies of
creating finite elements and the entropy due to six directions
in 3D versus four along layers. Thus, as long as there is a
finite energy to cross between neighboring layers, the entropy
will lead to a finite density of crossings for large enough L.
Similar argument can be applied to quantum wires in terms
of the quantum to classical mapping where imaginary time is
treated as an extra dimension.

The dual approach and the argumentation along the line of
the numerical algorithm [32], treating closed loops formation
as a process of the worm head wandering around and
eventually finding its tail, allowed us to expose the actual
stages of the renormalization of the Josephson coupling: (i) At
small scales Josephson coupling is controlled by exponentially
suppressed random and independent (in the asymptotic limit)
events of crossings between layers. It can be viewed as an
ideal gas of J currents between the layers. This stage leads to
the renormalized coupling, in general, represented by Eq. (20)
with M = 1,2,3, . . .. (ii) If the number of layers Nz increases,
with L being fixed, quasi-1D fluctuations further suppress the
coupling exponentially as demonstrated in Eq. (31).

Here we have discussed a local model characterized by short
range interactions between the interlayer J -current elements.
This feature in combination with the low density of such
elements justifies the “ideal gas,” which in its turn leads to finite
values of the renormalized interlayer Josephson coupling.

The question may be raised if a presence of long-range
forces between the interplane J currents Jz,i can change the
situation and lead to the SP or its weaker version—where ur →
0 with the growing number of layers Nz in the limit L = ∞.
In this respect we note that in order to realize this, fluctuations
of the difference of the J currents with positive and negative
orientations must be macroscopically suppressed. In this case,
the fluctuation of the winding numbers in z direction 〈W 2

z 〉 will
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scale slower than L2 so that ur ∼ 〈W 2〉/L2 → 0. This may
be caused by interactions between the interlayer J currents
decaying not faster than second power of their separation along
planes. More specifically, the following additional repulsive
term,

HSP = 1

2

∑
i,j ;z

U (�xi − �xj )Jz,iJz,j , (36)

in the simple XY J -current model Eq. (35) with U (�x) having
the long-range tail ∼1/|�x|σ with σ < 2 will generate the
energy contribution ∼W 2

z L−σ in terms of the windings in z

direction. Consequently, the renormalized Josephson coupling
Eq. (15) would scale as ur ∼ Lσ−2 → 0.

As one particular example, long-range forces can be intro-
duced in the standard XY model Eq. (34) by some effective
gauge-type term −u cos(∇zφ − gzAz) + ( �∇Az)2, where �∇Az

refers to the derivatives along the layers of some soft mode Az,
with gz being a constant. The resulting interaction in the dual
form Eq. (36) becomes U ∼ g2

z ln(|�x|) and, thus, it suppresses
the interlayer Josephson as ur = Nz〈W 2

z 〉/L2 ∼ 1/(L2 ln L)
in the limit L → ∞ for fixed Nz. At the moment we do not
comment on how realizable in practice such a mechanism is.

Here we have analyzed a clean system and found no SP. The
situation is completely different in the presence of layered
disorder [19,20] when the weakly sliding phases occur due
to rare fluctuations of disorder resulting in a large stack of
insulating layers simply blocking the flow perpendicular to
the layers. The number of such layers scales logarithmically
with the total number of layers, so that ur ∼ N−c

z with some
nonuniversal exponent c > 0. This effect does not need any
drag-type interactions and can occur in a simple XY model.
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APPENDIX A: LATTICE FORMULATION

In order to introduce the cross-gradient term ∼K12 in Eq. (1)
(cf. Refs. [3,13,14,16]) consistent with the compact nature of
the phases, we use an effective gauge-type field Aij defined on
bonds of the lattice:

HA,φ =−
∑
〈ij〉

[
t1 cos(∇ij φ1−Aij ) + t2 cos(∇ij φ2−g2Aij )

+ 1

2g
A2

ij

]
−

∑
i

u cos[φ2(i) − φ1(i)], (A1)

where t1 > 0, t2 > 0, g > 0 and g2 are parameters; 〈ij 〉 de-
notes summation over nearest-neighbor sites within each layer;
∇ij φz ≡ φz(i) − φz(j ); Aij is a bond vector field (that is,
Aij = −Aji) oriented along the bond 〈ij 〉. Accordingly, the
partition function Eq. (3) should be rewritten as

Z =
∫

DADφ1Dφ2 exp(−HA,φ), (A2)

where the temperature is absorbed into the the parameters
t1, t2, u, g. Our focus here is on verifying the applicability
of the RG analysis to the renormalization of the Josephson
coupling u. Hence, we will not discuss physical origins of the
variables and the parameters.

If the fugacity of the inplane vortices is irrelevant, the terms
− cos(∇ij φ1 − Aij ) and − cos(∇ij φ2 − g2Aij ) in Eq. (A1)
can be replaced by (∇ij φ1 − Aij )2/2 and (∇ij φ2 − g2Aij )2/2,
respectively. Then, the Gaussian integration over Aij can be
carried out explicitly in Eq. (A2), so that Eq. (A1) in terms of
the phases becomes exactly Eq. (1). where the 2 × 2 matrix
Kzz′ , z,z′ = 1,2 is related to the original parameters as

K11 = t1
(
1 + gg2

2 t2
)

1 + g
(
t1 + g2

2 t2
) ,K22 = t2(1 + gt1)

1 + g
(
t1 + g2

2 t2
) ,

K12 = − gg2t1t2

1 + g
(
t1 + g2

2 t2
) . (A3)

(As a matter of taste, we will keep g2 < 0 in order to have
K12 > 0.)

The stability requirement Eq. (2) is guaranteed by

K11K22 − K2
12 = t1t2

1 + g
(
t1 + g2

2 t2
) > 0. (A4)

The condition Eq. (9) for the existence of SP for the chosen
values Y = 25.5, X = 5 in terms of the parameters t1, t2, g2, g,
implies that gt2|g2|(1 − 5|g2|) = 5, gt1(5.1|g2| − 1) = 1, t1 ≈
0.177|g2|/[(1 − 4|g2|)(5.1|g2| − 1), and 10/51 < |g2| < 1/5.

The partition function Z, Eq. (A2), with the full action
Eq. (A1) can be evaluated by the high-temperature expansion
method (see, e.g., Ref. [36]) in terms of t1, t2, u with further
explicit integration over the variables. This approach allows
obtaining Z in terms of the integer bond variables—powers
of the corresponding Taylor series. We will be utilizing the
Villain approximation [30] for the cosines to obtain the so-
called J -current version [23] of Eqs. (A2) and (A1):

Z =
∑

{ma,ij ,mi }

∫
Dφ

∫
DAe−HV , (A5)

HV =
∑
〈ij〉

[
t̃1

2
(∇ij φ1 − Aij + 2πm1,ij )2

+ t̃2

2
(∇ij φ2 − g2Aij + 2πm1,ij )2 + 1

2g
A2

ij

]

+
∑

i

uV

2
(φ2(i) − φ1(i) + 2πmi)

2, (A6)

where ma,ij = −ma,ji = 0, ± 1, ± 2, . . . (a = 1,2) are inte-
ger numbers defined along bonds between two nearest sites i

and j along the planes, and mi = 0, ± 1, ± 2, . . . is an integer
assigned to a site i and oriented from the layer 1 to the layer 2.
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The Villain approximation proves to be very accurate for
establishing the transition points as well as in general if the
effective constants t̃1, t̃2, uV are properly expressed in terms
of the corresponding bare values t1, t2, u (see Ref. [31]). The
“renormalization” can be essentially ignored for t1, t2 � 1,
so that in what follows we will be using t̃1 = t1, t̃2 = t2.
Similarly, for the Josephson coupling u ∼ 1 one should
take uV = u and, if u 
 1, the corresponding relation is
uV = 1/[2 ln(2/u)] [30,31]. After using the Poisson identity,∑

m f (m) = ∫
dmf (m) exp(2πimJ ) for arbitrary function f ,

for each integer and performing the integrations over φi and
A, the resulting expression becomes the dual formulation
Eqs. (10) and (11) of the original system Eqs. (1) and (3).

APPENDIX B: RG EQUATIONS FOR THE BILAYER

Here we will provide the derivation of the RG equations
based on the quantum to classical mapping. In our case it
should rather be viewed as classical to quantum mapping.
Treating one of the layers direction (say y) as imaginary
time τ and using Haldane’s approach [37] in terms of the
phases φi and the “angles” θi counting particles as mutually
conjugated variables, the corresponding action in D = 1 + 1
becomes [20,22]

HQ =
∫ L

0
dx

∫ β

0
dτ

{
i

π
∂xθz∂τφz + 1

2
Kzz′∂xφz∂xφz′

+ 1

2π2
(K−1)zz′∂xθz∂xθz′ − u cos(φ1 − φ2)

−
∑
q1,q2

Vq1,q2 cos[2(q1θ1 + q2θ2)]

}
, (B1)

where (K−1)zz′ are the matrix elements of the matrix inverse
of Kzz′ ; β = L (that is, the “speed of sound” Vs = L/β =
1) and the summation over the repeated indexes (z,z′ = 1,2)
labeling layers is used here and below. The last summation
terms account for the backscattering events with q1,q2 being
arbitrary integers (from −∞ to +∞), which represent charges
of the instantons (or composite vortices—in the “language” of
the original classical layers).

We begin by looking for a solution where all the harmonics
amplitudes Vq1,q2 are irrelevant. In this case the Gaussian
integration of the θi variables leads the effective low-energy
action Eq. (1). In this regime the renormalization of u and
Kzz′ can be obtained within the standard RG procedure (see,
e.g., Ref. [25]). It consists of the repeated elimination of the
high momenta harmonics from some cutoff � to �/(1 + s)
with s → 0 and further rescaling of the unit of length (and
time) by the factor (1 + s). More specifically, the variables
φz,

φz = φ(<)
z + φ(>)

z , (B2)

are separated into the low-energy φ(<)
a and the high-energy φ(>)

a

parts, where the latter is to be integrated out from the partition
function Z = ∫

DφDθ exp(−HQ). This (with the rescaling)
will generate the effective action H

(<)
Q , which depends on the

low-energy harmonics only and the renormalized values of
Kzz′ and u. To the lowest order the resulting RG equation for
u can be represented as

du

dl
=

(
2 − 1

2s
〈(φ(>)

1 − φ
(>)
2 )2〉s

)
u, (B3)

where the averaging 〈. . .〉s is performed over the harmonics in
the narrow shell � < |�q| < �/(1 + s) in the gaussian part of
the action Eq. (1).

The renormalization of Kzz′ is determined by the terms ∼u2

in the lowest order. The resulting equations are

dK11

dl
= Cu2

s
(〈(φ(>)

1 − φ
(>)
2 )2〉s), (B4)

dK22

dl
= Cu2

s
(〈(φ(>)

1 − φ
(>)
2 )2〉s), (B5)

dK12

dl
= −Cu2

s
(〈(φ(>)

1 − φ
(>)
2 )2〉s), (B6)

where C > 0 stands for a constant which depends on the cutoff
procedure. As usual, this constant can be absorbed into the
definition of u, and we choose it as C = 1.

Using the notations K22 = K11Y,K12 = K11X in the Gaus-
sian integral 〈(φ(>)

1 − φ
(>)
2 )2〉s/s, the above equations become

du

dl
=

(
2 − 1

4πK11

1 + Y + 2X

Y − X2

)
u, (B7)

dK11

dl
= u2

2πK11

1 + Y + 2X

Y − X2
, (B8)

d(K11Y )

dl
= u2

2πK11

1 + Y + 2X

Y − X2
, (B9)

and

d(K11X)

dl
= − u2

2πK11

1 + Y + 2X

Y − X2
. (B10)

Equations (B8), (B9), and (B10) imply K11 = C1/(1 +
X), Y = 1 + C2(1 + X), where C1 > 0,C2 > 0 are constants
of integration. Finally, Eqs. (B7) and (B8) can be expressed in
terms of two variables u and Kφ ≡ K11 − C1/(2 + C2) as

du

dl
=

(
2 − 1

4πKφ

)
u, (B11)

and

dKφ

dl
= u2

2πKφ

. (B12)

These are the standard RG equations, which are fully inte-
grable. The SP phase corresponds to Kφ < 1/(8π ), which is
represented by Eq. (6) (with T ≡ 1/K11). In this phase u flows
to zero and the Luttinger matrix Kzz′ remains essentially scale
independent.

The SP implies that Luttinger liquids in both wires remain
gapless. Thus, the condition Kφ < 1/(8π ) should be consistent
with the requirement that all the harmonics Vq1,q2 are irrelevant.
In the regime Kφ < 1/(8π ) (where u is irrelevant), Eq. (B1)
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can be expressed in terms of the “angles” θa as

Hθ =
∫ L

0
dx

∫ β

0
dτ

{
1

2π2
(K−1)ab

�∇θa
�∇θb

−
∑
q1,q2

Vq1,q2 cos[2(q1θ1 + q2θ2)]

}
. (B13)

The RG equation for the most relevant harmonic can be
obtained along the same lines as discussed above. It is

dVq1,q2

dl
=

(
2 − 1

2s
〈(q1θ

(>)
1 + q2θ

(>)
2 )2〉s

)
Vq1,q2 . (B14)

Evaluation of the correlator 〈(q1θ
(>)
1 + q2θ

(>)
2 )2〉s within the

Gaussian part of the action Eq. (B13) gives

dVq1,q2

dl
= [2 − πKabqaqb]Vq1,q2 , → dVq1,q2

dl

= {
2 − πK11

[
(q1 + Xq2)2 + (Y − X2)q2

2

]}
Vq1,q2 .

(B15)

As can be immediately seen, this equation features the critical
point of the transition into the composite phase described by
Eq. (8) (where T ≡ 1/K11).

The renormalization of the K matrix in the second order in
the amplitude Vq1,q2 is given by

d(K−1)ab

dl
= qaqbV

2
q1,q2

Krsqrqs. (B16)

Equations (B16) have two integrals. Using the notations
(K−1)22 = Ỹ (K−1)11 and (K−1)12 = X̃(K−1)11 (which are
related to the previously introduced variables as Ỹ = 1/Y and
X̃ = −X/Y ), we find Ỹ = q2

2q−2
1 − B1q

2
2/(K−1)11 and X̃ =

q2q
−1
1 − B2q1q2/(K−1)11, where B1,B2 are constants of inte-

gration. Using these relations in Eqs. (B15) and (B16), we find

dVq1,q2

dl
=

[
2 − πq2

1

Kθ

]
Vq1,q2 , (B17)

dKθ

dl
= q4

1

Kθ

V 2
q1,q2

, (B18)

where the notation Kθ = (K−1)11 − q2
1B2

2/(2B2 − B1) is in-
troduced.

Equations (B17) and (B18) are also the standard RG
equations. For Kθ < πq2

1/2 the most “dangerous” harmonic
Vq1,q2 is irrelevant, that is, the system remains in the superfluid
regime with two gapless modes (provided the SP phase exists).

The above analysis implies that the SP phase exists if
two conditions hold: Kθ < πq2

1/2 and Kφ < 1/(8π ). These
conditions are represented by Eqs. (8) and (6), respec-
tively. As further analysis in the main text (Sec. II A)
has shown, Eq. (9) is one of the solutions satisfying both
inequalities.

RG for arbitrary Nz

The equation for ur in the case of a stack of bilayers, as
discussed in Sec. III, can be obtained along the same line as
for the bilayer (see also Ref. [38] in the context of the bosonic
composite phases in a layered system):

dur

d ln l
=

(
2 − 1

2s
〈(φz+1 − φz)

2〉s
)

ur . (B19)

We note that, due to the PBC along z direction, the mean
〈(φz+1 − φz)2〉 does not depend on z. Using discrete Fourier
representation along z direction with doubled unit cell con-
taining two layers (the odd and the even) with two sorts
of phases φz = φ(1)(z) and φz = φ(2)(z) along odd and even
layers, respectively, the part Hz in Eq. (23) can be diagonalized
and the correlator in Eq. (B19) found. This gives Eq. (B19)
rewritten as

dur

d ln l
= 2

(
1 − T

Td

)
ur, (B20)

where Td is given by Eq. (26).
The flow equations for the matrix K can also be found

along the same line as described in Ref. [38]. In this case
the matrix Kzz′ , which now depends on the wave vector qz,
remains essentially unrenormalized as long as T > Td .
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