
PHYSICAL REVIEW B 95, 085437 (2017)

Wigner crystallization in quantum wires within the Yukawa approximation
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One crucial and important aspect to account for the nature of the quantum wires is the understanding of the
effects associated to many-body interactions between confined electrons. The inclusion of such many-body forces
in any theoretical framework is a difficult and computationally demanding task. Then one has to make use of
coarse-grained descriptions that allow one to incorporate the contribution of all the electrons. In a simple physical
picture, the interaction between two electrons can be considered screened due to the presence of the other ones. If
the latter are homogeneously distributed inside the wire, the interaction between the former can then be assumed
of the Yukawa form. In this contribution, we report on the lower energy states of n-doped GaAs circular-quantum
wires with two electrons in the conduction band interacting through a repulsive Yukawa potential. By varying
the length and the electronic density of the wire, quite different trends in the electronic distribution are observed.
By changing the material parameters to InSb and InAs nanowires, we found that our results are consistent with
available experimental data that have reported the formation of Wigner crystals.
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I. INTRODUCTION

Technological progress in the epitaxial fabrication of
semiconductor quantum wires (QWRs) by diverse growth
techniques, such as molecular beam epitaxy (MBE) and
metal-organic chemical-vapor deposition, have allowed the
synthesis of high-quality QWRs of different materials and
geometries [1,2]. QWRs possess unique one-dimensional
(1D) quantum confinement properties and have emerged as
promising structures for the next generation of electronic
and optoelectronic devices, for example, photodetectors, solar
cells, field-effect transistors, light-emitting diodes, or low-
threshold lasers [3–7]. In addition, the strong 1D confinement
of electrical carriers, photons, and phonons makes the QWRs
very attractive laboratory systems for probing 1D physics of
great interest both experimentally and theoretically [8–13] in
condensed matter.

Parallel to the experimental advance in the fabrication and
characterization of QWRs, a vigorous theoretical modeling
area has been developed with an increasing level of sophisti-
cation that, nowadays, allows us to gain a deeper understanding
of the physical properties of QWRs. Theoretical predictions
have shown that the electron-electron (e-e) interactions in 1D
electron systems are unique and of importance to account for
interesting phenomena. For example, Wigner crystallization
is one of the most remarkable many-body effects in 1D
systems where electrons spontaneously form a self-organized
lattice [14]. The formation of such 1D electronic structure
has been predicted by using some complex models, see, e.g.,
Refs. [13,15–17], and, recently, some experimental signatures
of a Wigner crystal have been reported [8–10].

Several studies addressing the single-electron confinement
in QWRs of different geometries have been investigated
using tight-binding and effective bond-orbital models, as well
as classical envelope function schemes like the parabolic
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band approximation (PBA), the Luttinger model, and the
eight-band k-p model [18–21]. On the other hand, the
many-body correlations that emerge due to e-e interactions in
QWRs have been reported during the last few years within the
effective field theory, Hartree-Fock, and the density functional
theory approaches [8,12,22–26]. In general, such approaches
involve large computational times and complex mathematical
calculations when many-body forces are explicitly included
and only short wires [elongated quantum dots (QDs)],
containing a small number of electrons, have been considered.
Furthermore, due to the inherent difficulty of these models
to address the many-body effects and to deal with long
QWRs, critical values for the electronic concentration and
QWR length required to observe the Wigner crystallization
phenomenon remains unclear.

One way to overcome the inherent difficulties that arise
when many-body interactions are incorporated into the de-
scription of QWRs is the use of coarse-grained potentials that
are able to capture the effects of many-body forces. In particu-
lar, the use of Yukawa-like potentials to address the many-body
problem has been extensively used in other branches of
physics, such as soft matter [27] and nuclear physics [7].
Surprisingly, the problem of two electrons in a QWR, as far
as we know, has not been systematically studied by using a
repulsive Yukawa potential even when, at least qualitatively,
many experimentally observed trends can be reproduced with
this potential model that considers a pair of pointlike particles
interacting via a screened Coulomb potential. For instance, in a
recent contribution, the screening effects on the binding energy
of a neutral donor in parabolic QWRs were studied and authors
derived a modified Yukawa potential that takes into account
the contribution of the parabolic confining potential [28].
Furthermore, it has been recently shown that the interaction
between a pair of electrons in a quasi-one-dimensional electron
gas embedded in a semiconductor cylindrical QWR has a
Yukawa functional form [29].

The aim of this work is to numerically solve the Schrödinger
equation for two nonrelativistic electrons without spin con-
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fined in circular QWRs of infinite barriers interacting ef-
fectively through a Yukawa-like potential. The electronic
distribution into the wire is studied as a function of the
electronic density (n) and the length of the wire (L). By
varying the screening parameter κ in the Yukawa potential,
electronic densities ranging from the bare Coulomb regimen
(just two electrons) to high-doped GaAs QWRs are analyzed.
The length L of the wire is varied from 10 nm (into the regimen
of QD confinement) up to 10 μm (very long wires).

II. THEORETICAL APPROXIMATION

A. Two-electron system: Schrödinger equation and Yukawa
potential

The time-independent Schrödinger equation for the two-
electron wave function �e1,e2 is given by:

− h̄2

2m∗
e

2∑
i=1

∇2
i �e1,e2 + Veff�e1,e2 = E�e1,e2 , (1)

where h̄ ≡ h/2π, h is the Planck constant, m∗
e is the electron

effective mass, �e1,e2 ≡ �((�1,θ1,z1),(�2,θ2,z2)) and Veff =
Ve-w(�,θ ) + VY (r) is the total interaction potential, which
contains the electron-wall (e-w) interaction, Ve-w, in the
transversal confined ρ-θ plane, which is zero inside the QWR
and infinite outside, and the longitudinal e-e Yukawa-like
interaction (VY ), which has the form [27],

VY (r) = e2

4πεε0

exp [−κr]

r
, (2)

where r is the electron-electron separation distance, e is the
electron charge, ε the dielectric constant of the QWR, ε0 the
vacuum permittivity, and the screening parameter κ is given by

κ =
√

2e2n

ε0εkBT
, (3)

with n the electronic density, kB the Boltzmann constant, and
T the temperature. For simplicity, we will consider that the
pair of electrons are located along the z axis (Fig. 1), so that
their relative distance r along the wire is now z1-z2 and VY (r)
reduces to VY (z).

FIG. 1. Schematic representation of two electrons located in a
cylindrical quantum wire. For convenience, electrons are placed along
the z axis at (0,0,z1) and (0,0,z2).

In order to solve Eq. (1), it is convenient to rewrite it in
a simpler form by using the position of the center of mass
R = z1+z2

2 and the reduced mass μ = m∗
e

2 . Then, by using

z1 = R + r

2
, (4)

z2 = R − r

2
, (5)

one can redefine the nabla operators in terms of the coordinates
r and R as

∇1 = ∇r + 1
2∇R, (6)

∇2 = −∇r + 1
2∇R. (7)

Thus, Eq. (1) can be reexpressed as[
− h̄2

4m∗
e

∇2
R − h̄2

2μ
∇2

r + Veff(r)

]
�e1,e2 = E�e1,e2 . (8)

Equation (8) has two contributions: one that depends only on
the center of mass of the two-particle system (R) and the other
that is only a function of the relative distance between the
electrons (r). By setting �e1,e2 = A(r)B(R), one can rewrite
Eq. (8) as[

− h̄2

4m∗
eB

∇2
RB(R)

]
−

[
h̄2

2μA(r)
∇2

r A − Veff(r)

]
= E, (9)

where E = ER + Er contains two independent contributions.
The solution of Eq. (1) can be then reduced to the solution of
two simpler and independent equations, namely,

− h̄2

4m∗
e

∇2
RB(R) = ERB(R), (10)

− h̄2

2μ
∇2

r A(r) + Veff(r)A(r) = ErA(r). (11)

Equation (10) corresponds to a particle of mass 2m∗
e at the

center of the QWR, confined in the �-θ plane, and free to move
in the z axis. By choosing B(R) = F1(�R)F2(θR)F3(zR), the
solutions in the center of mass of Eq. (10) are given by

F1(�R) = Jα(�R), (12)

F2(θR) = eipθR , (13)

F3(zR) = f1sin(βzR) + f2cos(βzR), (14)

with ER = E�R
+ EθR

+ EzR
, Jα(�R) the Bessel functions of

order α, β2 = 4m∗
eEzR

/h̄2 and f1,f2 constant terms. With the
boundary condition Jα(�R = ρ) = 0, the eigenenergies El�R

become El�R
= h̄2C2

p,l

4m∗
eρ

2 , where Cp,l are the zeros of the Bessel
function with l = 1,2, . . . and p = 0 due to radial symme-
try. Using the boundary conditions F3(zR = ±L/2) = 0, the
eigenenergies EnzR

become EnzR
= h̄2n2π2

4∗m∗
eL

2 and En(n+1)zR
=

h̄2n2(n+1)2π2

m∗
eL

2 for the even and the odd solutions, respectively,
with n = 1,2 . . .. In this work, we consider α = 1 and C0,1 =
2.4048, which corresponds to the first zero of the Bessel
function and is associated to the cross-sectional ground state.

On the other hand, Eq. (11) corresponds to a particle of
reduced mass μ moving under the potential Veff. As infinite
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barriers are explicitly considered, this potential possesses only
the contribution of the Yukawa potential [Eq. (2)] along the
QWR. Equation (11) is numerically solved in a uniform grid by
using the finite differences method [30] with a bin size �r =
10−6L/2 and employing the following boundary conditions
A(r = ±L/2) = 0 and A(r = 10−6) = 1. In the Appendix,
the accuracy of the numerical solution of Eq. (11) is tested in
the case of the unconfined two-electron system.

B. Semiconductor quantum wires

In this work, free-standing circular GaAs QWRs of cross
sectional ratio ρ = 4 nm and L ranging from 10 nm to 10 μm
are considered. The natural length and energy scales are given
by the Bohr radius, aB = εh̄2/m∗

ee
2, and twice the Rydberg

energy, 2ERy = h̄2/m∗
ea

2
B , respectively. For GaAs at a temper-

ature (T ) of 300 K, these parameters take the values: aB =
10.26 nm and 2ERy = 10.78 meV, with ε = 12.9 and m∗

e =
0.0665me (me the electron mass). The screening parameter is
set to κC = 10−6 nm−1, κD = 1 nm−1, κHD = 100 nm−1, and
κUD = 5000 nm−1, which correspond, via Eq. (3), to electron
densities of nC = 106 cm−3 (covering the range of intrinsic
and bare Coulombic interaction), nD = 1018 cm−3 (doped
GaAs), nHD = 1022 cm−3 (highly-doped GaAs), and nUD =
1025 cm−3 (experimentally unachievable doping level [31]),
respectively. Our model focuses on direct wide band-gap
semiconductor compounds, then the small interaction between
conduction and valence bands is neglected in the calculations.
The model is easily applicable to other wide band-gap
compounds, for example, for free standing InSb QWRs the
parameters should be modified according to the follow-
ing values: m∗

e = 0.014me, ε = 16.8, aB (InSb) = 63.469 nm,
and 2ERy(InSb) = 1.338 meV. Analogously, for free stand-
ing InAs QWRs, m∗

e = 0.023me, ε = 15.15, aB (InAs) =
34.845 nm, and 2ERy(InAs) = 2.711 meV.
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FIG. 2. Electron-electron interaction as a function of the interpar-
ticle separation for different values of the electronic density n. Inset
shows the Yukawa potential contribution to Veff(r).

III. RESULTS AND DISCUSSION

A. Screening effects

In Fig. 2, the energy Er (Veff plus the kinetic energy) as
a function of the electron separation for different electronic
concentrations is displayed. As expected, the e-e interaction
energy is weaker when the carrier density increases as a
consequence of the enhancement of the screening effect.
The screening effect is specially noticeable when the e-e
distance is below 50 nm. For a short separation (<10 nm), the
e-e potential changes from ∼107 meV for κC = 10−6 nm−1

to ∼50.5 meV for κHD = 100 nm−1, reducing the energy
in ∼56.5 meV. On the other hand, for a large separation
(200 nm) and for the same values of κ , the energy changes
only in ∼1.06 meV. For an e-e separation above 200 nm,
the e-e energy is practically zero and independent of the
screening parameter. The inset in Fig. 2 shows the functional
form of VY (z). Strictly speaking, the bare Coulomb potential
is recovered when κ = 0, however, for the wire lengths
used in this work, this condition is virtually equivalent to
κC = 10−6 nm−1.

FIG. 3. 2D and 3D projections of |A(z)|2 for the ground state,
taken along the axis of the QWR, for different electronic concentra-
tions, ρ = 4 nm and L = 10 nm.
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B. Transversal and longitudinal electronic distribution

For QWRs (L > 80 nm), the electronic confinement in the
transversal direction (�-θ plane) is much stronger than the
confinement in the longitudinal direction (�-z plane). Thus,
one can consider that the system in the transversal direction
will remain in the ground state and that the excited states
will be those arising from the weak confined (longitudinal) z

direction. Due to the nature of our model and the position of
the e-e pair, the transversal states are exactly those obtained
from a single electron confined in a circular quantum well
of infinite barriers (which is not dependent on the length or
the extrinsic carrier concentration of the QWR). This is a

FIG. 4. Ground state probability profiles, |A(z)|2, along the
z axis, for κC = 10−6 nm−1, κD = 1 nm−1, κHD = 100 nm−1, and
κUD = 5000 nm−1, for different lengths of the wire: (a) 10 nm,
(b) 30 nm, (c) 400 nm, (d) 1 μm, (e) 2 μm, and (f) 10 μm.

well-known problem [32], therefore, we here do not provide
information of the well-known one-body problem.

The �-z (2D) projections of the electronic density |A(z)|2
for the ground state of 10-nm-long QWRs with different
carrier concentrations are shown on the left side of Fig. 3.
The right side shows the corresponding 3D projections, which
display additional details of the electronic distribution. As
observed in the ground state, the electrons exhibit twofold
symmetric distributions which, due to the screening effect,
can be overlapped when the electronic density is increased.
From this dependence, one obtains valuable information of
the electronic distribution in the limits of long and high doped
wires in a simple way.

C. Wigner crystallization in the ground state

We now turn our discussion to the formation of a Wigner
crystal. Despite the simplicity of our model, it can be used
to analyze the many-body 1D interacting system under a
number of different scenarios by an easy-to-do modification
in variables such as the e-e separation, the electronic density,
and the QWR length. In Fig. 4, the profiles of the ground
state electronic densities |A(z)|2, taken along the z axis, are
presented for six different wire lengths. The values of L were
chosen to cover the threshold between quantum-dot-like and
effective QWR-like confinement (for GaAs, Lth ∼ 80 nm).
The electronic density was varied from 106 cm−3 (for κC)
to 1022 cm−3 (for κHD) to cover the experimental achievable
electronic concentrations. Additionally, an unfeasible high
concentration of 1025 cm−3 (for κUD) has also been considered
to explore this limit.

FIG. 5. Peak position, 2zpeak/L, of the electronic distribution
presented in Fig. 4. The approximated charge added by κ , in units
of the electron charge, are presented for some representative wire
lengths. The horizontal line represents the condition for Wigner
localization. The vertical line defines the transition from QD-like
to QWR-like confinement as established by the minimal electronic
concentration (given for GaAs by κth = 10−1 nm−1) that allows
Wigner localization.
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For the lowest value of κC, the electronic density added
by the Yukawa component (106 cm−3) is practically zero for
all the wire lengths here considered. Therefore, for κC the
two electrons can be considered as interacting by a bare
Coulomb potential, which in turn forces the two electronic
distributions to be as separated as possible. The latter behavior
is better observed in Fig. 5, where the position, 2zpeak/L, of
the center of one of the peaks of the distributions in Fig. 4 is
plotted as a function of the QWR length for different electronic
concentrations. In Fig. 5, the approximately electronic charge
(in units of the electron charge) added by each value of κ for
different wire lengths is shown.

For κC, the pair of electrons interact without any additional
electronic charge, therefore, the interparticle spacing increases
in a progressive way, not affected by the transition length Lth,
i.e., from QD-like confinement to the regimen of an effective
QWR-like confinement. In contrast, for κD, in the regimen of
strong QD confinement, the very small extra charge (which is
a fraction of the electron charge) is able to produce a screening
effect that provokes that the electrons remain closer than for the
case of κC. Even more, in remarked contrast with the case of κC,

FIG. 6. 2D and 3D projection of the probability density |A(z)|2
for the first excited state, taken along the z axis, for different values
of the screening parameter, with ρ = 4 nm and L = 10 nm.

when the length of the wire is longer than 400 nm, an electronic
distribution, characterized by two perfectly independent peaks
and localized at ±L/4, is established, so defining the formation
of a Wigner molecule [14–17]. A similar behavior is observed
for κHD with the difference that the Wigner localization is
completely established for a longer wire length (∼ 10 μm).
In contrast, for a quite high electronic concentration (κUD),
the electronic interaction is completely screened even for very
long wires. Therefore, in this last case the charge distribution
remains centered at the origin as a unique maximum, impeding
the Wigner crystallization formation.

FIG. 7. Probability density, |A(z)|2, for the first excited state
for κC = 10−6 nm−1, κD = 1 nm−1, κHD = 100 nm−1, and κUD =
5000 nm−1; for different lengths of the wire: (a) 10 nm, (b) 30 nm,
(c) 400 nm, (d) 1 μm, (e) 2 μm, and (f) 10 μm.
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D. Wigner crystallization in excited states

The simplicity of our model also permits the straight-
forward examination of the excited states along the weak
confined z direction, which in turns allow us to obtain
additional information of the Wigner molecule formation in
the excited sates. The 2D and 3D projections in the plane
�-z of the electronic density |A(z)|2 for the first excited state
of 10 nm-long QWRs with different carrier concentrations
are shown in Fig. 6. In Fig. 7, the corresponding profiles
of the electronic densities |A(z)|2 of the first excited state
displayed in Fig. 6, along the z axis, are presented for different
wire lengths. We observe that for realistic doping levels, a
fourfold distribution is established. The trend can be observed
more clearly in Fig. 8, where the center position of one of
the maximal peaks of the electronic distribution is plotted
as a function of the wire length. The positions for the peak

FIG. 8. Peak position, 2zpeak/L, of the electronic distribution
|A(z)|2 presented in Fig. 7 for the lower energy states of the QWRs
at different electronic concentrations as a function of the wire length.
The horizontal lines represent the Wigner localization condition for
the ground and the two first excited states.

equidistant distribution (when the Wigner crystal is formed)
are displayed by horizontal lines in Fig. 8 for the ground, first,
and second excited states. We observe that for the electronic
concentrations from zero to 106 cm−3 (Coulombic regimen)
and the unachievable large doping levels around 1025 cm−3 or
larger, the Wigner crystal cannot be established. In the first
case, the peak distributions move away from the center as
the length increases and, in the second case, the distribution
is “frozen” at an almost constant position independently of
the wire length. In contrast, for electronic concentration in
the range of 107 cm−3 to 1022 cm−3 (moderate and highly
doped levels), similarly to the ground state, the electronic
distributions establish a Wigner crystal when the length of the
wire reaches a critical value. This critical length is almost the
same for the three states, however, it can be observed that for
more energetic states larger lengths are needed to completely
reach the Wigner crystal formation.

E. Comparison with available experimental results

We contrast our model with experimental data reporting
the formation of the Wigner molecule in InSb [8] and
InAs [9] semiconductor nanowires. In order to make a
direct comparison, in Fig. 9 the parameters of our model
were properly changed to match the reported experimental
conditions for InSb (κInSb = 0.5 nm−1) and InAs (nInAs =
1017 cm−3). In Ref. [8], experimental tunneling spectroscopy
measurements of electron localized states in epitaxially grown
InSb nanowires are reported. Their results show the onset
of Wigner localization for 160 nm wires and a theoretical
prediction of complete Wigner localization in a 300 nm long
InSb wire, which contains between two and three electrons.
As observed from Fig. 9, our results match remarkable well
with the latter values; the experimental data are marked by
the vertical arrows. On the other hand, in Ref. [9] the local

FIG. 9. Peak position, 2zpeak/L, of the ground state electronic
distribution, |A(z)|2, for InSb and InAs QWR as a function of the
wire length. The electronic concentrations were set to match the
corresponding Refs. [8] and [9]. The vertical lines define the threshold
length (Lth) from QD-like to QWR-like confinement for the two types
of wires. Inset displays the values of nth and Lth for the different types
of wires.
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electronic transport by scanning gate microscopy measure-
ments of epitaxially grown InAs nanowires is reported. In
the latter, the Wigner crystal formation is reported for wire
lengths between 500 and 600 nm. As observed from Fig. 9,
our results also reproduce correctly the reported experimental
values. Finally, it is worth noting that apparently in the InSb
wires, due to the very low electronic concentration, the Wigner
condition is not reached because the electronic interaction is
basically of Coulombic nature, again in good agreement with
our theoretical predictions discussed above.

IV. CONCLUDING REMARKS

In this work, we have introduced a Yukawa model that
allowed us to take into account the many-electron problem
into a quantum wire of circular cross section of variable
length and extrinsic doping level in a simple way. We
used the Yukawa model to study the ground and excited
states of a two-electron system confined in a quantum wire.
Additionally, within this approximation, we were able to
explore, in a simplified way, some new features of the Wigner
molecule formation in a systematic manner. By establishing
critical electronic densities and wire lengths, our model
showed density correlations of a nearly perfect 1D Wigner
crystal that are fully consistent with experimental reports. We
should point out that our model is especially well adapted
to study many-electron interactions (up to realistic levels of
1024 cm−3) and very long QWRs (>10 μm).

Last, but not least, we should stress that in this contribution
we studied the particular case of GaAs quantum wires,
nonetheless, our approximation can be straightforwardly ap-
plied to study the Wigner crystal formation in other systems,
such as coupled systems of QDs and QWRs, or the transport
phenomenon of electronic carriers when an external electric
field is applied. Work along these lines is in progress.
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APPENDIX : UNCONFINED TWO-ELECTRON SYSTEM

To test the accuracy of the algorithm for the numerical
solution of Eq. (11), we first evaluate the wave functions of

FIG. 10. Wave functions as a function of the e-e separation for
the ground, first, and second excited states for a two-electron system
in the continuum. The symbols represent the numerical data reported
in Ref. [33]. The lines are obtained by solving numerically Eq. (11)
by means of the finite difference method and using the parameters
reported in Ref. [33] with Er = 20 MeV.

two particles in the continuum (nonconfined conditions, ρ �
1 nm) interacting with the Yukawa potential given by:

VYt
(r) = C

exp [−r/r0]

r/r0
, (A1)

with C a prefactor, r0 = 1.35 × 10−13, and r the radial com-
ponent [33]. Equation (10) is solved in spherical coordinates.
The radial equation takes the form

− h̄2

2μ

1

r2

d

dr

(
r2 dA(r)

dr

)
+

(
VYt

+ l(l + 1)

r2

)
A(r) = ErA(r),

(A2)

with l = 0,1, and 2 for the ground, first, and second excited
state, respectively, Er = 20 MeV, L∗

r = 5 (in reduced units)
and the boundary conditions A(r = 10−6) = 1/L,A′(r =
10−6) = 0. The numerical results are explicitly compared with
those reported in Ref. [33] for the ground state, first, and second
excited states, see Fig. 10.

Additionally, the algorithm was tested for the solution of
Eq. (11) when the screening parameter takes the value κ → ∞,
i.e., in the limit of free electrons for the Yukawa potential of
Eq. (2). For high electron densities, n ∼ 1028 cm−3, a single
charge distribution localized in the center of the QWR is
obtained, that is, the free-electron limit is recovered (data not
shown).
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