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Nonperturbative quasiclassical theory of the nonlinear electrodynamic response of graphene
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An electromagnetic response of a single graphene layer to a uniform, arbitrarily strong electric field E(t)
is calculated by solving the kinetic Boltzmann equation within the relaxation-time approximation. The theory
is valid at low (microwave, terahertz, infrared) frequencies satisfying the condition h̄ω � 2EF , where EF is
the Fermi energy. We investigate the saturable absorption and higher harmonics generation effects, as well as
the transmission, reflection, and absorption of radiation incident on the graphene layer, as a function of the
frequency and power of the incident radiation and of the ratio of the radiative to scattering damping rates.
We show that the optical bistability effect, predicted in Phys. Rev. B 90, 125425 (2014) on the basis of a
perturbative approach, disappears when the problem is solved exactly. We show that under the action of a
high-power radiation (�100 kW/cm2) both the reflection and absorption coefficients strongly decrease and the
layer becomes transparent.
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I. INTRODUCTION

One of the most distinctive features of graphene, important
for its electronic and optoelectronic applications, is the
linear energy dispersion E±( p) = ±vF | p| of quasiparticles—
electrons and holes—in this material [1]. It was shown [2],
within the quasiclassical approach, that the linear energy
dispersion of graphene electrons should lead to its strongly
nonlinear electrodynamic response. Indeed, under the action
of a time-dependent electric field proportional to cos ωt the
electron momentum should oscillate, according to Newton’s
equation of motion, as sin ωt . In conventional materials with
the parabolic energy dispersion the velocity, and hence the cur-
rent, are proportional to the momentum, therefore the current
oscillates with the same frequency ω. In contrast, in graphene
the velocity v = ∇ pE±( p) = vF p/| p| is proportional not to
the momentum but, roughly, to the sign of the momentum. As
a result the time dependence of the current j has a steplike
form,

j ∝ ensvF sgn(sin ωt)

= ensvF

4

π

(
sin(ωt) + 1

3
sin(3ωt) + · · ·

)
, (1)

and contains higher frequency harmonics [2] (here ns is the
surface electron density in graphene).

Graphene is thus intrinsically a strongly nonlinear material,
and all the variety of nonlinear phenomena—harmonics gen-
eration, frequency mixing, saturable absorption, and so on—
should be observed in graphene in relatively low electric fields.
The prediction [2] was experimentally confirmed in many
papers where harmonics generation [3–9], four-wave mixing
[10–12], saturable absorption and Kerr effect [13–16], plas-
mon related nonlinear phenomena [17], and other effects [18]
were observed. This also stimulated further theoretical studies
of different nonlinear electrodynamic effects in graphene
[19–49], for recent reviews see [50,51]. Theoretically, ana-
lytical results for the nonlinear electromagnetic response of
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a uniform graphene layer were obtained both at low (mi-
crowave, terahertz,h̄ω � 2EF , Refs. [2,19,25,32,34]) and high
(infrared, optical,h̄ω � 2EF , Refs. [24,30,31,38,39,41,43,46–
48]) frequencies; here EF is the Fermi energy of graphene
electrons (or holes) and ω is the typical radiation frequency.
In the latter case the interband electronic transitions have to
be taken into account and the problem requires a quantum-
mechanical treatment. In the former case it is sufficient to
consider only the intraband transitions and the problem can be
solved within the quasiclassical Boltzmann equation.

In most so far published theoretical papers the nonlinear
electromagnetic response of graphene was studied within
the perturbation theory. In this paper we study the low-
frequency (h̄ω � 2EF ) electromagnetic response of graphene
nonperturbatively. We solve the quasiclassical Boltzmann
equation in the relaxation time (τ ) approximation

∂f ( p,t)

∂t
+ Fx(t)

∂f ( p,t)

∂px

= −f ( p,t) − f0( p)

τ
, (2)

Fx(t) = −eEx(t), not assuming that the ac electric field
Ex(t) acting on graphene electrons is weak; here f0( p) is
the equilibrium (Fermi-Dirac) distribution function. Having
found the nonperturbative electron distribution function we
then calculate the nonlinear current and analyze the saturable
absorption, harmonic generation, and some other nonlinear
effects.

The τ approximation (2) that we use in this work offers a
simple but efficient way to take into account the charge carrier
scattering processes. It often allows one to get even analytical
solutions of complicated nonlinear response problems (see
Refs. [31,32,34,38–40,46], as well as this work). The time τ

in (2) is a phenomenological parameter which may depend
on temperature, chemical potential, and radiation power.
The relaxation-time approximation may fail near resonances
related to interband transitions, in particular, when a nonlinear
response of intrinsic graphene (EF = 0) is considered [52,53].
In the present work we focus on the quasiclassical frequency
range h̄ω � 2EF , where the interband transitions are not the
case, which justifies the use of the approximation (2).

Among the nonlinear phenomena which turned out to be
useful to study within the nonperturbative theory is the so
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called optical bistability. This effect was predicted in graphene
at terahertz frequencies (h̄ω � 2EF ) in a recent work [34]. In
that paper the authors considered the incidence of radiation
(with the frequency ω and the intensity Ji) on a graphene
layer, and calculated the intensity of the transmitted wave at
the same frequency Jt . Solving the Boltzmann equation (2)
they showed that, at certain (large) values of the parameter

β =
(

2αEF

h̄ω

)2

, (3)

the dependence Jt (Ji) has an S-shaped form, i.e., the function
Jt (Ji) is multivalued; here α = e2/h̄c is the fine structure
constant. This result was derived in the collisionless approx-
imation ωτ � 1, and in low electric fields, meaning that the
solution of the Boltzmann equation was expanded in powers
of the parameter

Fω = eE0

h̄ωkF

, (4)

taking the third (∝F3
ω) and fifth (∝F5

ω) order terms into
account; here E0 is the electric field amplitude and kF is the
Fermi wave vector.

The results of Ref. [34] cause a few questions. First, the
low-frequency response of graphene was investigated in the
collisionless approximation ωτ � 1, in Ref. [2]. In the paper
[2] the right-hand side of Eq. (2) was assumed to be zero from
the outset, while in Ref. [34] equation (2) was first solved with
a finite right-hand side and after that the limit ωτ � 1 was
taken. The results of Refs. [2,34] coincide for the third-order
response (for the 3ω-Fourier component of the current), but
differ (by a factor of 3) for the ω-Fourier component. The
question why the two different methods give different results
under the same condition ωτ � 1 remained unclear (a short
comment on page 3 of Ref. [34] does not actually explain this
contradiction).

Second, the S-shaped Jt (Ji) characteristics were obtained
in Ref. [34] by using the perturbative theory in the electric
field parameter Fω, which supposes, strictly speaking, that Fω

should be small, Fω � 1. But the characteristic point of the S-
shapedJt (Ji) curve, in which the derivative dJt /dJi becomes
infinite, dJt /dJi = ∞, lie at Fω � 1, see Fig. 3 in Ref. [34].
This causes some doubts in the validity of the prediction; the
question, whether the predicted bistability survives if we solve
the problem exactly, not expanding the result in powers of Fω,
remained unanswered.

The third question concerns the applicability area of the
predicted effect. As seen from Fig. 3 of Ref. [34], the optical
bistability takes place only if β � 2. This means that the
condition h̄ω � αEF should be satisfied. On the other hand,
ωτ should be much larger than unity. This leaves a narrow
window for the frequency αEF /h̄ � ω � 1/τ and imposes
rather strong restrictions on the Fermi energy EF � 137h̄/τ

and the mean free path l = vF τ , kF l � 137. The question
arises, whether and how the predicted effect is modified if we
do not assume that ωτ � 1 and kF l � 137.

In this paper we answer the three above formulated
questions. We solve the problem exactly, not assuming that
the frequency parameter ωτ is large and the field parameter
Fω is small. We show that, if to solve the problem exactly

(nonperturbatively), the “optical bistability” effect disappears.
The Jt (Ji) characteristics of graphene remains a nonlinear
but single-valued function which physically corresponds to
the saturable absorption but not to the optical bistability. We
also show that at small values of the frequency parameter ωτ

(the limit that was not considered in Ref. [34]) the nonlinear
features are in fact more pronounced than in the limit ωτ � 1.

The paper is organized as follows. In Sec. II we formulate
the nonperturbative nonlinear response problem and solve it.
In Sec. III we analyze the obtained results in several different
cases including the Kerr and harmonics generation effects. In
Sec. IV the results are summarized and conclusions are drawn.
Some technical details are given in the Appendixes.

II. THEORY

A. Formulation of the problem

We consider a homogeneous two-dimensional (2D) elec-
tron gas under the action of a uniform electric field Ex(t).
The 2D layer occupies the plane z = 0 and the spectrum
of electrons in it, E( p) ≡ E(px,py), can be parabolic, like
in a semiconducting GaAs quantum well, or linear, like in
semimetallic graphene. Furthermore, we consider an exper-
imentally relevant situation, when the electric field Ex(t) is
zero at t < 0 and is switched on at t = 0 being, in general,
an arbitrary function Ẽx(t) at t > 0, Ex(t) = θ (t)Ẽx(t). The
distribution of electrons in the momentum space is described,
respectively, by the Fermi-Dirac function

f0( p) ≡ f0(px,py) =
[

1 + exp

(E( p) − μ

T

)]−1

(5)

at t < 0 and by Boltzmann equation (2) at t > 0; here μ is the
chemical potential and T is the temperature. The scattering
of electrons is taken into account within the momentum
relaxation time approximation, Eq. (2), where τ is assumed
to be energy independent. Our task is to find the distribution
function f ( p,t) ≡ f (px,py,t), which satisfies Boltzmann
equation (2) at t > 0 and the initial condition

f (px,py,t = 0) = f0(px,py) (6)

at t = 0, not imposing any restriction of the value of the
scattering parameter ωτ and not expanding the solution in
powers of the electric field.

B. Solution of Boltzmann equation

The formulated problem is often solved by the method
of characteristics, see, e.g., Ref. [34]. We use the Fourier
technique which, in our opinion, is more transparent. First,
we notice that the momentum component py in Eq. (2) is a
parameter, and the functions f0(px,py) and f (px,py,t) tend to
zero at px → ±∞. Therefore we can expand these functions
in Fourier integrals over px :

f (px,py,t) =
∫ ∞

−∞
dseispx f̃ (s,py,t), (7)

f0(px,py) =
∫ ∞

−∞
dseispx f̃0(s,py). (8)
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Substituting these expansions in Boltzmann equation (2) we
get an inhomogeneous ordinary differential equation for the
function f̃ (s,py,t),

df̃ (s,py,t)

dt
+

(
isF (t) + 1

τ

)
f̃ (s,py,t)

= f̃0(s,py)

τ
, t > 0, (9)

with the initial condition

f̃ (s,py,t = 0) = f̃0(s,py) (10)

(s and py are parameters here). Equation (9) can be solved
by the separation of variables and the variation of constants
techniques, which leads to the general solution

f̃ (s,py,t) = A0e
−γ t−is

∫ t

−∞ F (t ′)dt ′ + γ f̃0(s,py)

×
∫ t

−∞
e−γ (t−t ′)−is

∫ t

t ′ F (t ′′)dt ′′dt ′, (11)

where γ = 1/τ and A0 is the integration constant. At t < 0
the force Fx(t) equals zero, hence, the integrals

∫ t

−∞ F (t ′)dt ′

and
∫ t

t ′ F (t ′′)dt ′′ vanish and we get

f̃ (s,py,t < 0) = A0e
−γ t + f̃0(s,py). (12)

Comparing (12) with (10) we see that A0 = 0. Substituting
now (11) into (7) we obtain, see Appendix A,

f (px,py,t) = γ

∫ t

−∞
e−γ (t−t ′)f0

(
px −

∫ t

t ′
F (t ′′)dt ′′,py

)
dt ′.

(13)

The function (13) satisfies Boltzmann equation (2) and the
initial condition (6). At t > 0 it can be rewritten as [54]
(Appendix A)

f (px,py,t) = e−γ tf0

(
px −

∫ t

0
F̃ (t ′′)dt ′′,py

)

+ γ

∫ t

0
e−γ (t−t ′)f0

(
px−

∫ t

t ′
F̃ (t ′′)dt ′′,py

)
dt ′.

(14)

The difference between the results of Refs. [2,34] can now
be clarified. In Ref. [2] the limit τ → ∞ was taken from the
outset. Assuming γ = 1/τ → 0 in (14) we get

lim
γ→0

f (px,py,t) = f0

(
px −

∫ t

0
F̃ (t ′′)dt ′′,py

)
. (15)

This result coincides with the one obtained in Ref. [2] [if
to assume that the force F̃ (t) contains only one frequency
harmonic]. One sees that the limit γ → 0 (τ → ∞) actually
means γ t � 1 or t � τ , i.e., the result of Ref. [2], Eq. (15),
is valid under the conditions

ωτ � 1 and t � τ in Ref. [2]. (16)

In the opposite limit, γ t � 1, Eq. (14) gives

lim
γ t→∞ f (px,py,t)

=
∫ ∞

0
e−ξ f0

(
px −

∫ t

t−ξτ

F̃ (t ′′)dt ′′,py

)
dξ, (17)

see Appendix A. This result coincides with the one obtained
in Ref. [34] [if to assume that the force F̃ (t) contains only one
frequency harmonic]. It is thus valid at

ωτ � 1 and t � τ in Ref. [34]. (18)

Thus, being both obtained under the condition ωτ � 1, the
results of Refs. [2,34] are valid in different time intervals,
Eqs. (16) and (18), respectively. Below we will only consider
the steady-state solution (17), which is valid at t � τ and
which we will simply call f (px,py,t).

C. Response to a monochromatic excitation

If F̃ (t) is a periodic function with a period T , the
distribution function f (px,py,t), Eq. (17), is also periodic
with the same period. Assume now that the external force is
given by a monochromatic sine function,

F̃ (t) = −eE0 sin ωt, (19)

and calculate the induced electric current

jx(t) = − e

S

∑
pσv

∂E( p)

∂px

f (px,py,t)

= − e

S

∑
pσv

∂E( p)

∂px

×
∫ ∞

0
e−ξ f0(px − p0(t,ξτ ),py)dξ.

(20)

Here S is the sample area, σ and v are the spin and valley (if
applicable) quantum numbers, and

p0(t,ξτ ) ≡
∫ t

t−ξτ

F̃ (t ′)dt ′ = eE0

ω
[cos ωt − cos ω(t − ξτ )].

(21)

From (20) one immediately sees that, if the spectrum of
electrons is parabolic, the system response is linear at arbitrary
values of the electric field. Substituting ∂E/∂px = px/m and
replacing the variable px − p0(t,ξτ ) → px , we get

jx(t) = −ens

m

∫ ∞

0
e−ξ dξp0(t,ξτ )

= nse
2τ

m
E0

sin ωt − ωτ cos ωt

1 + (ωτ )2
, (22)

where

ns = 1

S

∑
pσv

f0( p) (23)

is the two-dimensional (2D) equilibrium electron density.
Introducing the complex-valued linear-response Drude con-
ductivity

σD(ω) = σ0

1 − iωτ
, σ0 = nse

2τ

m
, (24)

we see that Eq. (22) can be rewritten as

jx(t) = (
σ ′

D(ω) sin ωt − σ ′′
D(ω) cos ωt

)
E0, (25)
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where ′ and ′′ mean the real and imaginary parts of σD(ω). This
is the standard linear Drude response of a 2D gas of massive
electrons.

Now consider graphene in which electrons have the linear
energy dispersion

E( p) = vF | p| = vF

√
p2

x + p2
y, (26)

where vF ≈ 108 cm/s is the Fermi velocity. Substituting (26)
into (20) we get

jx(t) = −egsgvvF

(2πh̄)2

∫ ∞

0
e−ξ dξ

×
∫ ∫

pxdpxdpy√
p2

x + p2
y

f0[px − p0(t,ξτ ),py], (27)

where gs = gv = 2 are the spin and valley degeneracies.
Furthermore, assuming that the temperature is low, T/EF →
0, we transform Eq. (27) to the form

jx(t) = −egsgvvF p2
F

(2πh̄)2

∫ ∞

0
I[�(Fω,ωt,ωξτ )]e−ξ dξ, (28)

where pF = h̄kF is the Fermi momentum

I(�) = 2
∫ 1

0
dy

(√
1 + �2 + 2�

√
1 − y2

−
√

1 + �2 − 2�
√

1 − y2
)
, (29)

and the function

� ≡ �(Fω,ωt,ωξτ ) = p0(t,ξτ )

pF

= Fω[cos ωt − cos ω(t − ξτ )] (30)

is proportional to Fω, see Eq. (4). The electric field parameter
Fω determines how much energy electrons get from the field
during one oscillating period eE0vF /ω, as compared to their
average energy EF . Equation (28), together with (29) and (30),
determines the time dependence of the electric current under
the action of an arbitrarily strong ac electric field (19).

Equations (28)–(30) have been also derived in Ref. [34],
see also [50] and references therein. Having obtained the
expression (29), Peres et al. [34] presented it in terms of the
hypergeometric function 2F1(− 1

2 , 1
2 ; 2; �2),

I(�) = π� 2F1

(
−1

2
,
1

2
; 2; �2

)
. (31)

This presentation is valid only at � � 1, i.e., it is unsuitable
for the description of the unperturbed solution; for example,
at � > 1 the right-hand side of Eq. (31) is complex while the
integral (29) is real at all real �. Having presented the integral
I(�) in the form (31) the authors of Ref. [34] further expanded
the hypergeometric function in powers of � ∝ Fω up to the
fifth order and then used thus an expanded (approximate)
expression for the integral I(�) (29) and for the current (27).
This lead them to the prediction of the optical bistability effect
in graphene, which is further discussed in Sec. III C below.

We proceed in a different way. Our goal is to solve the
problem exactly not using the Taylor expansion in powers of

Fω. To this end, we transform the integral (29) as

I(�) = 2
√

1 + �2

∫ 1

0
dy

×
(√

1 + 
√

1 − y2 −
√

1 − 
√

1 − y2

)
, (32)

where

 = 2�

1 + �2
, (33)

and present the integral (32) in terms of (another) hypergeo-
metric function,

I(�) = π
�√

1 + �2
2F1

(
1

4
,
3

4
; 2; 2

)
. (34)

The formula (34) is valid at  � 1 and hence, at any value of
� ∝ Fω.

The corresponding expression for the current then assumes
the form

jx(t) = −ensvF

∫ ∞

0
e−ξ dξ

�√
1 + �2

× 2F1

[
1

4
,
3

4
,2;

(
2�

1 + �2

)2
]

; (35)

it is valid at arbitrary values of the electric field parameter Fω.
Rewriting the function �, Eq. (30), as

� = −2Fω sin(ωτξ/2) sin(ωt − ωτξ/2) = −a sin x, (36)

where a = 2Fω sin(ωτξ/2) and x = ωt − ωτξ/2, we present
the current in the form

jx(t) = ensvF

∫ ∞

0
e−ξM

[
2Fω sin(ωτξ/2),ωt − ωτξ/2

]
dξ,

(37)

where

M(a,x) = a sin x√
1 + (a sin x)2

2F1

[
1

4
,
3

4
,2;

(
2a sin x

1 + (a sin x)2

)2
]
.

(38)

The function M(a,x) is an odd and periodic function of x with
the period 2π . It can therefore be expanded in the sine-Fourier
series

M(a,x) =
∞∑

k=1

Ak(a) sin kx, (39)

where

Ak(a) = 1

π

∫ π

−π

M(a,x) sin kxdx. (40)

In particular, all functions Ak(a) with an even k equal zero,
A2n(a) = 0, and for Ak(a) with an odd k one can write
A2n+1(a) = aB2n+1(a), where

B2n+1(a) = 4

π

∫ π/2

0

sin x sin(2n + 1)x√
1 + (a sin x)2

× 2F1

[
1

4
,
3

4
,2;

(
2a sin x

1 + (a sin x)2

)2
]
dx. (41)
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FIG. 1. The functions Bk(a) for (a) k = 1 and (b) k = 3,5,7,9.

The functions Bk(a) for k = 1,3,5,7,9 are shown in Fig. 1,
their properties are discussed in Appendix B. They determine
the field dependence of the system response. If the field
is small, Fω � 1, the parameter a ∝ Fω tends to zero and
all Bk(a) except B1(a) vanish. Notice that at small a (the
low-field limit) the values of Bk(a) fall down very quickly
with k, Bk(a) ∝ ak−1; for example, at a = 0.1 B5/B3 =
B3/B1 ≈ a2/32 = 1/3200. But at large a (bigger than 1), the
functions Bk(a) become quite comparable to each other and fall
down slowly with k: for example at a = 3 B5/B3 ≈ 0.39 and
B3/B1 ≈ 0.26. At a � 1 one gets B2n+1(a) ≈ 4/[πa(2n +
1)], see (B2).

Using Eq. (39) we can now present the current (37)
in the form of the Fourier expansion over odd frequency
harmonics:

jx(t) = ensvF

∞∑
n=0

(
sin[(2n + 1)ωt]J (2n+1)

S

− cos[(2n + 1)ωt]J (2n+1)
C

)
. (42)

The first term in the sum, with

J (2n+1)
S (ωτ,Fτ ) = Fτ

∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2

×B2n+1

(
Fτ

sin(ωτξ/2)

ωτ/2

)
× cos[(2n + 1)ωτξ/2]dξ, (43)

represents the current oscillating “in phase” with the external
electric field (19). The second term in (42), with

J (2n+1)
C (ωτ,Fτ ) = Fτ

∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2

×B2n+1

(
Fτ

sin(ωτξ/2)

ωτ/2

)
× sin[(2n + 1)ωτξ/2]dξ, (44)

represents the current components oscillating “out of phase”
with the field E0 sin ωt . In Eqs. (43) and (44) we have
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F
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(b)

FIG. 2. The (a) real and (b) imaginary parts of the function S1(ωτ,Fτ ) [Eq. (51), n = 0] as a function of ωτ at different values of the field
parameter Fτ .
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FIG. 3. The (a) real and (b) imaginary parts of the function S1(ωτ,Fτ ) [Eq. (51), n = 0] as a function of Fτ at different values of the
frequency parameter ωτ .

introduced a frequency independent field parameter

Fτ = eE0τ

h̄kF

= ωτFω, (45)

which is more convenient to use analyzing the frequency
dependence of the nonlinear response.

Let us analyze the result (42). First, we define an infinite
set of generalized “conductivities”

σ(2n+1)ω,ω(ωτ,Fτ )

= ensvFFτ

E0

∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2

×B2n+1

(
Fτ

sin(ωτξ/2)

ωτ/2

)
ei(2n+1)ωτξ/2dξ. (46)

Then Eq. (42) assumes the form

jx(t) =
∞∑

n=0

(
σ ′

(2n+1)ω,ω sin[(2n + 1)ωt]

− σ ′′
(2n+1)ω,ω cos[(2n + 1)ωt]

)
E0, (47)

similar to the relation (25). One sees that thus defined functions
σ(2n+1)ω,ω determine the (2n + 1)ω-Fourier components of
the current responding to the ω-Fourier component of the
external field (19). In the low-field limit Fτ � 1 all functions
σ(2n+1)ω,ω, except one, vanish, and one gets the conventional
Drude result,

σ(2n+1)ω,ω(ωτ,Fτ → 0) = δn0
σ0

1 − iωτ
,

σ0 = nse
2τ

(pF /vF )
= e2

πh̄

EF τ

h̄
, (48)

with the mass m replaced by the effective (electron density
dependent) mass of graphene electrons at the Fermi level
pF /vF = EF /v2

F , compare with (24). If the field parameter
Fτ is finite, the functions σ(2n+1)ω,ω(ωτ,Fτ ), n > 0, describe
the higher (odd) harmonic generation, while the function
σω,ω(ωτ,Fτ ) determines the intensity dependent response
of the system at the incident-wave frequency (Kerr effect).
Calculating the averaged (over time) energy dissipated in the
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FIG. 4. The (a) real and (b) imaginary parts of the function S3(ωτ,Fτ ) [Eq. (51), n = 1] as a function of ωτ at different values of the field
parameter Fτ .
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FIG. 5. The (a) real and (b) imaginary parts of the function S5(ωτ,Fτ ) [Eq. (51), n = 2] as a function of ωτ at different values of the field
parameter Fτ .

system due to the scattering 〈 j E〉t ,
〈 j E〉t = 1

2σ ′
ω,ω(ωτ,Fτ )E2

0 , (49)

we see that the Joule heat is determined by the real part of the
function σω,ω(ωτ,Fτ ) only; the higher-harmonic conductivi-
ties σ(2n+1)ω,ω do not contribute to 〈 j E〉t .

Let us rewrite now the conductivities σ(2n+1)ω,ω in the
dimensionless form

σ(2n+1)ω,ω(ωτ,Fτ ) = σ0S2n+1(ωτ,Fτ ), (50)

with

S2n+1(ωτ,Fτ ) =
∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2

×B2n+1

(
Fτ

sin(ωτξ/2)

ωτ/2

)
ei(2n+1)ωτξ/2dξ,

(51)

and analyze the frequency (ωτ ) and field (Fτ ) dependencies
of the dimensionless functions S2n+1.

III. RESULTS AND THEIR DISCUSSION

A. Kerr effect

First we consider the function S1(ωτ,Fτ ) which determines
the saturable absorption and Kerr effects. Figure 2 shows
the frequency dependence of S1(ωτ,Fτ ) at a few values
of the electric field parameter Fτ . The curves corresponding
to Fτ = 0 are conventional Drude dependencies, since in
the limit Fτ → 0 one gets S1(ωτ,0) = 1/(1 − iωτ ). When
Fτ grows both real and imaginary parts of the conductivity
decrease. The suppression of real part S ′

1(ωτ,Fτ ) at large Fτ

corresponds to the saturable absorption. In the limit ωτ → 0
one gets

S1(0,Fτ ) =
∫ ∞

0
ξe−ξB1(Fτ ξ )dξ

≈
{

1 − 3
4F2

τ , Fτ � 1,

4
πFτ

, Fτ � 1.
(52)

Figure 3 illustrates the field dependence of S1(ωτ,Fτ ) at
several values of the parameter ωτ . When the field grows,
both the real and imaginary parts of S1(ωτ,Fτ ) decrease. This

0 0.5 1 1.5 2 2.5 3
ωτ

-0.005

0

0.005

0.01

0.015

R
e 

S
7(ω

τ,
F

τ)

Fτ=1.0
Fτ=2.0
Fτ=5.0
Fτ=10.0

(a)

0 0.5 1 1.5 2 2.5 3
ωτ

0

0.005

0.01

Im
 S

7(ω
τ,

F
τ)

Fτ=1.0
Fτ=2.0
Fτ=5.0
Fτ=10.0

(b)

FIG. 6. The (a) real and (b) imaginary parts of the function S7(ωτ,Fτ ) [Eq. (51), n = 3] as a function of ωτ at different values of the field
parameter Fτ .

085432-7



S. A. MIKHAILOV PHYSICAL REVIEW B 95, 085432 (2017)

0 2 4 6 8 10
Fτ

-0.01

0

0.01

0.02

0.03

R
e 

S
3(ω

τ,
F

τ)

ωτ=0.2
ωτ=1.0
ωτ=5.0
ωτ=10.0

(a)

0 2 4 6 8 10
Fτ

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Im
 S

3(ω
τ,

F
τ)

ωτ=0.2
ωτ=1.0
ωτ=5.0
ωτ=10.0

(b)

FIG. 7. The (a) real and (b) imaginary parts of the function S3(ωτ,Fτ ) [Eq. (51), n = 1] as a function of Fτ at different values of the
frequency parameter ωτ .

reduction is stronger at small values of ωτ and much weaker
at ωτ � 1. The field and frequency dependencies of the real
part of the conductivity, Fig. 3(a), evidently agree with those
recently measured in the experiment of Ref. [18] [see Fig. 1(c)
there].

B. Harmonics generation

Now consider the functions S2n+1(ωτ,Fτ ), n � 1, respon-
sible for the harmonics generation. Figures 4–6 illustrate the
frequency dependence of the functionsS3(ωτ,Fτ ),S5(ωτ,Fτ ),
and S7(ωτ,Fτ ) at a few fixed values of the field parameter
Fτ . Both real and imaginary parts of S2n+1(ωτ,Fτ ) are quite
large at small values of ωτ and then quickly decrease (with
oscillations) at ωτ � 1. The number of oscillations grows
with n.

Figures 7–9 illustrate the field dependence of the functions
S3(ωτ,Fτ ), S5(ωτ,Fτ ), and S7(ωτ,Fτ ) at a few fixed values of
the frequency ωτ . The most interesting features seen on these
plots are: (a) the absolute values of the functionsS2n+1(ωτ,Fτ )
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FIG. 8. The real and imaginary parts of the function S5(ωτ,Fτ )
[Eq. (51), n = 2] as a function of Fτ at different values of the
frequency parameter ωτ .

at ωτ � 1 are much larger than those at ωτ � 1, (b) while at
small values of the field Fτ � 1 the values of S2n+1(ωτ,Fτ )
are very small and substantially decrease with the index n, at
Fτ � 1 all quantities S2n+1(ωτ,Fτ ) substantially grow and the
scale of the functions S2n+1(ωτ,Fτ ) with different n becomes
quite comparable with each other. The last finding is very
important. It shows that, while the perturbative solutions,
obtained at Fτ � 1, predict very weak amplitudes of the
harmonics with n � 1, the nonperturbative solution shows that
at Fτ � 1 all higher harmonics are quite comparable in their
amplitude (this is illustrated in Fig. 10). The crucial condition
for observation of higher harmonics at microwave/terahertz
frequencies (ωτ � 1) is thus Fτ � 1. The condition Fτ > 1
can be rewritten as

E0(kV/cm) τ (ps)√
ns(1012 cm−2)

> 1.16, (53)

i.e., at τ � 1 ps and the density �1011–1012 cm−2 the field of
order of one to few kV/cm is already “strong” in the sense that
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FIG. 9. The real and imaginary parts of the function S7(ωτ,Fτ )
[Eq. (51), n = 3] as a function of Fτ at different values of the
frequency parameter ωτ .
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FIG. 10. The absolute values of the functions |S2n+1(ωτ,Fτ )|,
2n + 1 = 1,3,5,7,9, as a function of the index 2n + 1 at Fτ = 3 and
different values of the frequency parameter ωτ .

Fτ � 1 and the higher harmonics (third, fifth, seventh, ninth)
become observable.

C. Is there an optical bistability in graphene?

As we have mentioned in Sec. I, an optical bistability effect
was predicted in a single graphene layer in Ref. [34]. An
electromagnetic wave with the frequency ω and the amplitude
E0 was assumed to be incident on a single isolated graphene
layer and the amplitude of the transmitted wave Et (with
the same frequency ω) was calculated. It was shown that the
Et (E0) dependence is a multivalued function having the S
shape.

The result of Ref. [34] was obtained within the perturbation
theory. Now we can check whether the bistability effect
survives if the electromagnetic response of graphene is
calculated nonperturbatively.

Similar to Ref. [34], we consider the incidence of radiation
on a single graphene layer placed at the plane z = 0. The
electric and magnetic fields of the wave are then

Ex(t) = Eω
0 e−iωt

{
eiωz/c + ρae

−iωz/c, z < 0,

τae
iωz/c, z > 0,

(54)

Hy(t) = Eω
0 e−iωt

{
eiωz/c − ρae

−iωz/c, z < 0,

τae
iωz/c, z > 0,

(55)

where ρa and τa are complex reflection and transmission
amplitudes of the wave, and the complex amplitude of the
field Eω

0 is twice as big as the real amplitude [as in Eq. (19)],
|Eω

0 | = 2E0. Applying the conventional boundary conditions
at the plane z = 0 we obtain the transmission (τa) and reflection
(ρa) amplitudes,

τa = 1 + ρa = 1

1 + 2π
c

σω,ω(ωτ,Fτ,z=0)
, (56)

as well as the relation between the field at the plane z = 0 and
the field of the incident wave,

Eω
z=0 = τaE

ω
0 . (57)
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Γ/γ=0.2
Γ/γ=0.1

FIG. 11. The ratio �/γ = �τ of the radiative decay rate � to the
scattering relaxation rate γ at different values of τ (in ps) and of the
electron density ns (in units of 1012 cm−2).

Here the field-dependent complex conductivity σω,ω(ωτ,Fτ ) is
defined in Eq. (46) and the field parameterFτ,z=0 is determined
by the electric field Eω

z=0 at the plane z = 0. The relation
between the electric field parameters Fτ,z=0 and Fτ0 [the latter
one is proportional to the absolute value of the incident-wave
field, see Eq. (45)] then assumes the form

Fτ,z=0 = |τa|Fτ0 = Fτ0∣∣1 + 2π
c

σω,ω(ωτ,Fτ,z=0)
∣∣ . (58)

This can be rewritten as

Fτ,z=0|1 + �τS1(ωτ,Fτ,z=0)| = Fτ0, (59)

where

� = 2
e2

h̄c

EF

h̄
= 2

e2

h̄c
vF

√
πns (60)

is the radiative decay rate first derived in Ref. [19] [see Eq. (24)
there]. Figure 11 shows the ratio of the radiative decay rate to
the scattering relaxation rate �τ = �/γ at different values of
the electron density ns and the scattering time τ . The larger the
electron density and their mobility, the bigger the parameter
�τ .

Now consider the relation (59) between the field parameters
Fτ0 (proportional to the electric field of the incident wave) and
Fτ,z=0 (proportional to the electric field at the plane z = 0).
The dependence Fτ,z=0(Fτ0) is shown in Fig. 12. One sees
that, if �/γ � 1, the difference betweenFτ,z=0 andFτ0 is very
small. If �/γ � 1, such a difference does exist: at small values
of the field the parameter Fτ,z=0 grows substantially slower
than Fτ0; when the field gets stronger, the parameter Fτ,z=0

grows together with Fτ0 with the slope dFτ,z=0/dFτ0 � 1.
The difference between the field at z = 0 and the incident-
wave field is more pronounced at ωτ � 1. This behavior can
be understood by analyzing the formulas (59) and (52) [the
expansion (52) is valid at ωτ � 1]. AtFτ,z=0 � 1 the function
S1 ≈ 1 and we get from (59)

Fτ,z=0 ≈ Fτ0

1 + �/γ
, ωτ � 1, Fτ,z=0 � 1; (61)
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FIG. 12. The field parameter Fτ,z=0 related to the electric field at the plane z = 0 as a function of the field parameter Fτ0 related to the
electric field of the incident wave at (a) ωτ = 0.2, (b) ωτ = 1, and (c) ωτ = 5 and at a few different values of the ratio �/γ . The thin blue
lines in (a) show the asymptotes (61) and (62) to the curve with �/γ = 10.

if Fτ,z=0 � 1 the function S1 ≈ 4/πFτ,z=0 and we get

Fτ,z=0 = Fτ0 − 4�

πγ
, ωτ � 1, Fτ,z=0 � 1. (62)

The asymptotes (61) and (62) (to the curve with �/γ = 10)
are shown in Fig. 12(a) by thin blue lines.

The “optical bistability” effect predicted in Ref. [34] is not
seen in Fig. 12 at all (small and large) values of both parameters
ωτ and �/γ . Since in Ref. [34] the problem was solved
within the perturbation theory, by expanding the conductivity
in powers of the electric field up to O(E4), it is reasonable to
assume that the reason of the disagreement is related to the use
of this expansion. To check this, we have expanded the function
S1(ωτ,Fτ,z=0) in powers of the electric field up to the same
order as it was done in Ref. [34] (see Appendix B) and obtained
the result shown in Fig. 13. The perturbation-theory solution
does lead to the multivalued, S-shaped dependencies of the
output-input characteristics (as seen below, the intensity of the
transmitted and the incident light is proportional to |Fτ,z=0|2
and |Fτ0|2, respectively), but this “bistability” disappears if
the problem is solved exactly.

D. Scattering of radiation at an isolated graphene layer. Power
induced transparency enhancement

To complete the study let us now consider the reflection,
transmission, and absorption coefficients of the wave incident
on an isolated graphene layer (in this section we consider only
the response of graphene at the frequency ω neglecting the
harmonics generation effect). To this end we introduce the
intensity of the incident wave Ji related to the real amplitude
E0 of the electric field of the incident wave,

Ji = c

8π
E2

0 , (63)

the intensities of the transmitted Jt and reflected Jr waves,

Jt = c

8π
E2

0 |τa|2, (64)

Jr = c

8π
E2

0 |ρa|2, (65)

and a characteristic intensity value

J0 ≡ c

8π

(
h̄kF

eτ

)2

= h̄c

8e2

h̄ns

τ 2
≈ 1.8 × ns[1012 cm−2]

[τ (ps)]2

kW

cm2
;

(66)
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FIG. 13. The field parameter Fτ,z=0 as a function of Fτ0 at
�/γ = 10 and two (small and large) values of ωτ , calculated within
the perturbation theory (thin curves, labeled PT), as it was done in
Ref. [34], and nonperturbatively (thick curves, this work). One sees
that the “bistability effect” disappears if the problem is solved exactly.

using (66) the field parameters Fτ0 and Fτ,z=0 can be written
as the ratio of the incident and transmitted waves intensities to
J0:

F2
τ0 = Ji

J0
, F2

τ,z=0 = Jt

J0
. (67)

The transmission T , reflection R, and absorption A coeffi-
cients then assume the form

T = Jt

Ji

= 1∣∣1 + 2π
c

σω,ω(ωτ,Fτ,z=0)
∣∣2

= 1∣∣1 + �
γ
S1(ωτ,Fτ,z=0)

∣∣2 , (68)

R = Jr

Ji

=
∣∣�
γ
S1(ωτ,Fτ,z=0)

∣∣2

∣∣1 + �
γ
S1(ωτ,Fτ,z=0)

∣∣2 , (69)

A =
2�

γ
S ′

1(ωτ,Fτ,z=0)∣∣1 + �
γ
S1(ωτ,Fτ,z=0)

∣∣2 . (70)

The field factor Fτ,z=0 in Eqs. (68)–(70) depends on Jt ,
Fτ,z=0 = √

Jt /J0, Eq. (67), therefore, in order to find the
required dependencies of T , R, and A on the incident wave
intensity Ji , one should first find the relation between Jt and
Ji from Eq. (68) and then substitute the thus found intensity
Jt (Ji) in Eqs. (69) and (70). The functions T , R, and A in
Eqs. (68)–(70) depend on three dimensionless parameters ωτ ,
�/γ , and Ji/J0.

First, consider the linear response limit Ji/J0 � 1.
Then Fτ0 and Fτ,z=0 are small as compared to unity and
S1(ωτ,Fτ,z=0 → 0) ≈ 1/(1 − iωτ ). The T , R, and A coef-
ficients are then

T = γ 2 + ω2

(γ + �)2 + ω2
= 1 − �2 + 2γ�

(γ + �)2 + ω2
, Ji/J0 � 1,

(71)

R = �2

(γ + �)2 + ω2
, Ji/J0 � 1, (72)

A = 2�γ

(γ + �)2 + ω2
, Ji/J0 � 1. (73)

The linear-response dependencies (71)–(73) are shown in
Figs. 14(a)–17(a). One sees that there exist four physically
different regimes. If the radiative decay rate is smaller than
the scattering rate, � � γ , Fig. 14, the energy of the incident
wave is mainly dissipated into the lattice due to the scattering of
electrons by phonons and impurities. The reflection coefficient
(red dotted curves) is much smaller than the absorption
coefficient (green dashed curves) at all frequencies, and the
transmission coefficient is approximately equal to one minus
absorption coefficient. At low frequencies (ωτ � 1) A is

0 1 2 3 4 5
ωτ

0

0.2

0.4

0.6

0.8

1

T
, R

, A

Transmission
Reflection
Absorption

Γ/γ=0.2

(a)

0 20 40 60 80 100
Ji/J0

0

0.2

0.4

0.6

0.8

1

T
, R

, A

Transmission
Reflection
Absorption

Γ/γ=0.2ωτ=0.2

(b)

FIG. 14. The transmission, reflection, and absorption coefficients as a function of (a) the frequency parameter ωτ at �/γ = 0.2 and low
intensity of the incident wave Ji → 0 (the linear response regime), and (b) of the intensity of the incident wave Ji/J0 at ωτ = 0.2. At larger
values of ωτ the behavior of T , R, and A is similar.
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FIG. 15. The transmission, reflection, and absorption coefficients as a function of (a) the frequency parameter ωτ at �/γ = 1 and low
intensity of the incident wave Ji → 0 (the linear response regime), and of the intensity of the incident wave Ji/J0 at (b) ωτ = 0.2, (c) ωτ = 1,
and (d) ωτ = 5.

smaller than 50% in this regime (much smaller if � � γ ),
while the transmission is larger than 50% (much larger if
� � γ ).

If the incident wave intensity grows, Fig. 14(b), the absorp-
tion and reflection coefficient fall down while the transmission
one substantially grows [in the example of Fig. 14(b), �/γ =
0.2, from 70% at Ji/J0 → 0 up to 95% at Ji/J0 = 100
and 97.6% at Ji/J0 = 400]. Figure 14(b) shows the Ji

dependencies of the T RA coefficients at ωτ = 0.2; at other
frequencies these dependencies are qualitatively the same.

Another interesting case is realized at �/γ = 1, Fig. 15.
In this situation, in the linear-response regime and at low
frequencies, ωτ � 1, the radiative and dissipative losses are
equal, the system absorbs 50% of the incident radiation (this
corresponds to the matched load regime), and the transmission
and reflection coefficients equal 25% each, Fig. 15(a). When
the intensity of the incident wave increases, the reflection
and absorption coefficients dramatically decrease, while the
transmission coefficient substantially grows, Figs. 15(b)–
15(d). For example, at ωτ = 0.2 and Ji/J0 = 200, Fig. 15(b),
the system absorbs about 15%, reflects less than 0.7%, and
transmits more than 84%.

The third interesting case is analyzed in Fig. 16. Here
� = 2γ and the linear-response reflection and absorption

coefficients are equal at all frequencies (at least in the Drude
model), Fig. 16(a). At ωτ � 1 the graphene layer absorbs and
reflects about 44.4% and transmits ∼11.1%. When the incident
wave intensity grows, the behavior of the T RA coefficients
differs from that one in the two previous cases. The reflection
coefficient quickly falls down as before [red dotted curves
in Figs. 16(b)–16(d)] reaching the values below 1%–2% at
Ji/J0 � 200. But the behavior of A is different. At small
values of Ji/J0 it first grows up reaching at small frequencies
∼50% and only after that falls down. This growing effect
is especially pronounced at ωτ � 1, Figs. 16(b) and 16(c).
The transmission coefficient continuously grows with Ji/J0

at all frequencies reaching ∼80% at ωτ � 1 andJi/J0 ∼ 400,
Figs. 16(b) and 16(c), and even ∼95% at higher frequencies,
Fig. 16(d).

Finally, Fig. 17 shows the transmission, reflection, and ab-
sorption coefficients at � � γ , when the radiative losses sub-
stantially exceed the dissipative losses (�/γ = 5 in Fig. 17).
Such a situation is realized when either the density or the
mobility of the electrons (or both) are large. In this case the
transmission coefficient of the 2D layer, in the linear response
regime Ji → 0, is very small at low frequencies ωτ � 1,
see Fig. 17(a). The energy of the incident wave is ei-
ther reflected or absorbed, with R/A = �/2γ � 1. In the
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FIG. 16. The transmission, reflection, and absorption coefficients as a function of (a) the frequency parameter ωτ at �/γ = 2 and low
intensity of the incident wave Ji → 0 (the linear response regime), and of the intensity of the incident wave Ji/J0 at (b) ωτ = 0.2, (c) ωτ = 1,
and (d) ωτ = 5.

illustrative example of Fig. 17 (�/γ = 5) the layer transmits,
at low frequencies, less than 3% and reflects almost 70%.

When the intensity Ji increases, the absorption coef-
ficient first grows up, from ∼28% up to 50% at ωτ �
1, in the example of Fig. 17(b), and then falls down at
Ji → ∞. The reflection coefficient falls down with the
growing Ji as in all considered cases. The transmission
coefficient continuously increases with Ji , from just a few
percent up to 50%–80% dependent on the frequency and the
intensity Ji .

Thus, in all considered cases the reflection coefficient
strongly decreases while the transmission coefficient strongly
increases with the growing intensity Ji . The absorption
coefficient either monotonously falls down with Ji at small
values of �/γ , or first grows and then decreases at large values
of �/γ . The bistability behavior of the coefficients T , R, A,
as a function of Ji/J0, is never observed in agreement with
results of Sec. III C.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have theoretically studied the nonlinear
electrodynamic response of graphene at low (microwave,
terahertz) frequencies, h̄ω � 2EF , not using the perturbative

theory. We have defined a set of generalized, electric field
dependent conductivities σ(2n+1)ω,ω(ωτ,Fτ ), Eq. (46), which
determine the current response of graphene at the frequency
harmonics (2n + 1)ω if the incident electromagnetic radiation
is characterized by a single harmonic ω. We have investi-
gated the conductivities σ(2n+1)ω,ω(ωτ,Fτ ) as functions of the
frequency parameter ωτ and of the external electric field
parameter Fτ , Eq. (45). We have shown that, while at low
fields, at Fτ � 1, the higher harmonics amplitudes fall down
very strongly with the harmonics number n (proportional to
Fn

τ ), at higher fields, Fτ � 1, the higher harmonics have much
larger relative amplitudes ∝1/n.

We have also investigated the scattering-of-radiation prob-
lem and studied the transmission, reflection, and absorption
coefficients of the monochromatic radiation as a function of
the frequency (ωτ ), of the ratio �/γ , of the radiative decay rate
�, to the scattering rate γ , and of the dimensionless intensity
Ji/J0, where the characteristic power density in graphene is
defined in Eq. (66). We have found that at large values of
Ji/J0, the reflection and absorption coefficients strongly fall
down, while the transmission of graphene substantially grows
and tends to 80%–90% even if at low intensities the layer
mainly reflected the radiation (at large values of �/γ ) and
the transmission consisted of only a few percent, see, e.g.,
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FIG. 17. The transmission, reflection, and absorption coefficients as a function of (a) the frequency parameter ωτ at �/γ = 5 and low
intensity of the incident wave Ji → 0 (the linear response regime), and of the intensity of the incident wave Ji/J0 at (b) ωτ = 0.2, (c) ωτ = 1,
and (d) ωτ = 5.

Figs. 16 and 17. A strong transparency enhancement effect is
thus the case in graphene at large values of the incident wave
power.

We have shown that the optical bistability effect, predicted
within the perturbation theory in Ref. [34], disappears if we
solve the problem nonperturbatively. It should be noticed that
in Ref. [44] the authors claimed not only to predict but also
to experimentally observe the bi- and multistability effect
in exfoliated graphene. However, the theoretical part in this
paper is also based on a perturbative (third-order) approach.
As for the experimental data (Fig. 10 in Ref. [44]), they
only demonstrate a slight difference of the output-vs-input
optical characteristics at the growing and decreasing input
power, which does not actually look as a strong and sharp
hysteresis that would be expected if the true bistability was the
case.

The presented theory substantially contributes to the further
understanding of the nonlinear electrodynamic properties of
graphene, now within the nonperturbative approach, and paves
new ways to the development of nonlinear graphene-based
optoelectronics.
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APPENDIX A: DETAILS OF SOLVING THE
BOLTZMANN EQUATION

In order to derive Eq. (13) we substitute the second term in
Eq. (11) into the Fourier expansion (7),

f (px,py,t) = γ

∫ ∞

−∞
dseispx f̃0(s,py)

×
∫ t

−∞
e−γ (t−t ′)−is

∫ t

t ′ F (t ′′)dt ′′dt ′. (A1)
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Substituting now for f̃0(s,py) the inverse Fourier transform of
(8) and changing the order of integration we obtain

f (px,py,t) = γ

2π

∫ ∞

−∞
dp′

xf0(p′
x,py)

×
∫ t

−∞
e−γ (t−t ′)dt ′

∫ ∞

−∞
dseis(px−p′

x−
∫ t

t ′ F (t ′′)dt ′′).

(A2)

The integral over ds gives the delta function,
∫ ∞
−∞ · · · ds =

2πδ(px − p′
x − ∫ t

t ′ F (t ′′)dt ′′). Then, integrating over dp′
x we

obtain Eq. (13):

f (px,py,t) = γ

∫ t

−∞
e−γ (t−t ′)f0

(
px −

∫ t

t ′
F (t ′′)dt ′′,py

)
dt ′.

(A3)

In order to derive (14) from (13) we rewrite now the integral
over dt ′ as a sum of two integrals, the first one from −∞ to 0
and the second from 0 to t ,

f (px,py,t) = γ

∫ 0

−∞
e−γ (t−t ′)f0

(
px −

∫ t

t ′
F (t ′′)dt ′′,py

)
dt ′

+ γ

∫ t

0
e−γ (t−t ′)f0

(
px −

∫ t

t ′
F (t ′′)dt ′′,py

)
dt ′.

(A4)

In the first integral t ′ < 0 < t , and the lower limit in the integral
over dt ′′ can be replaced by zero. Then the function f0 does
not depend on t ′, and the integral over dt ′ can be taken. In both
integrals the function F (t ′′) can be replaced by F̃ (t ′′), so that
finally we obtain Eq. (14),

f (px,py,t) = e−γ tf0

(
px −

∫ t

0
F̃ (t ′′)dt ′′,py

)

+ γ

∫ t

0
e−γ (t−t ′)f0

(
px −

∫ t

t ′
F̃ (t ′′)dt ′′,py

)
dt ′.

(A5)

In order to get Eq. (17) from the exact solution (14) we
introduce a new variable ξ = γ (t − t ′) in the second integral

(the first integral vanishes in the limit γ t → ∞) and obtain

f (px,py,t)γ t→∞ =
∫ γ t

0
e−ξ f0

(
px −

∫ t

t−ξ/γ

F̃ (t ′′)dt ′′,py

)
dξ.

(A6)

Equation (17) follows from here in the limit γ t � 1.

APPENDIX B: ASYMPTOTES AND TAYLOR EXPANSIONS
OF THE FUNCTIONS B2n+1(a) AND OF

THE CONDUCTIVITY σω,ω(ωτ,Fτ )

The hypergeometric function 2F1(α,β,γ ; z) which enters
the definition (41) of the functions B2n+1(a) is determined by
the series

2F1(α,β,γ ; z) =
∞∑

n=0

(α)n(β)n
(γ )n

zn

n!
= 1 + αβ

γ

z

1

+ α(α + 1)β(β + 1)

γ (γ + 1)

z2

2!
+ · · · . (B1)

Both at a � 1 and at a � 1 the last argument (z) of this
function is small, therefore to calculate the asymptotes of
B2n+1(a) we can use a finite number of terms in the expansion
(B1). This gives the following behavior of the functions
B2n+1(a) at large and small values of the argument a. At a � 1
we obtain

B2n+1(a) ≈ 4

πa

∫ π/2

0
sin[(2n + 1)x]dx

= 4

π (2n + 1)a
, a � 1. (B2)

If a � 1 we get

B1(a) ≈ 1 − 3

25
a2 − 5

29
a4 + O(a6), (B3)

B3(a) ≈ 1

25
a2 + 5

210
a4 + O(a6), (B4)

B5(a) ≈ − 1

210
a4 − 35

216
a6 + O(a8), (B5)

B7(a) ≈ 5

216
a6 + 315

222
a8 + O(a10). (B6)

In order to find the Taylor expansion of the conductivity
σω,ω(ωτ,Fτ ) = σ0S1(ωτ,Fτ ), defined in (50) we substitute the
expansion (B3) in the definition of the function S1(ωτ,Fτ ) and
obtain, after straightforward calculations:

S1(ωτ,Fτ ) =
∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2
B1

(
Fτ

sin(ωτξ/2)

ωτ/2

)
eiωτξ/2dξ

≈
∫ ∞

0
e−ξ sin(ωτξ/2)

ωτ/2

[
1 − 3

32

(
Fτ

sin(ωτξ/2)

ωτ/2

)2

− 5

512

(
Fτ

sin(ωτξ/2)

ωτ/2

)4

+ · · ·
]
eiωτξ/2dξ

= 1

1 − iωτ
− 9

16
F2

τ

1

(1 − 2iωτ )[1 + (ωτ )2]
− 75

64
F4

τ

1

(1 − 3iωτ )[1 + (ωτ )2][1 + (2ωτ )2]
+ O

(
F6

τ

)
. (B7)
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