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We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject
to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system
are fixed: the latter is achieved by the postselection in the end of the evolution. The statistics may drastically
differ from the nonconditioned case, and the interference between initial and final states can be observed in the
probability distributions of measurement outcomes as well as in the average values exceeding the conventional
range of nonconditioned averages. We develop a proper formalism to compute the distributions of measurement
outcomes, and evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the
manifestations of the interference between initial and final states in various regimes. We consider analytically
simple examples of nontrivial probability distributions. We reveal peaks (or dips) at half-quantized values of the
measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating
anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical
evaluation of the probability distribution aiming at extending the analytical results and describing a realistic
experimental situation of a qubit in the regime of resonant fluorescence.
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I. INTRODUCTION

The concept of measurement is one of the most important,
characteristic, and controversial parts of quantum mechanics.
Due to the intrinsically probabilistic nature of the measurement
and associated paradoxes [1], it continues to attract research at-
tention and stimulate new experiments. The ability to control a
quantum system that is of increasing importance in the context
of quantum information processing requires an adequate yet
sufficiently general description of the measurement process.
Such description is provided by the theory of continuous
weak linear measurement (CWLM), where a sufficiently weak
coupling between the quantum system and multiple degrees of
freedom of a detector mediates their entanglement and results
in conversion of discrete quantum information into continuous
time-dependent readings of the detector [2–8]. The description
follows from the general linear response theory and gives
an explicit connection between quantum measurement and
quantum noise [9].

Recent experimental advances have made possible the
efficient continuous measurement and monitoring of elemen-
tary quantum systems (qubits) giving the information on
individual quantum trajectories [10–12]. The individual traces
of quantum evolution can be postselected by a projective
measurement at the end of evolution, thus enabling the
experimental investigation of conditioned quantum evolution
where both initial and final states are known [13–16]. For
experimentally relevant illustrations, we concentrate in this
paper on a setup of resonance fluorescence [13]. In this
setup, a transmon qubit with ground state |g〉 and excited
state |e〉 is enclosed in a nonresonant three-dimensional (3D)
superconducting cavity connected to two transmission lines.
A resonant field drives the qubit via the weakly coupled
line, while most of the fluorescence signal exits via the other
line which is coupled strongly. The amplitude of the signal
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is proportional to σ−, the average of the lowering operator
σ̂− = |g〉〈e| of the qubit, and oscillates with the Rabi frequency
� set by the resonant drive.

A heterodyne detection setup is used to measure this
signal. The measurement proceeds in many runs of equal time
duration. At each run, the qubit is prepared in a state |e〉 or |g〉
and the signal is monitored at the time interval 0 < t < T . At
the end of the interval, t = T , one can projectively measure
the qubit to find it either in the state |e〉 or |g〉 with high
fidelity using a microwave tone at the bare cavity frequency.
With such a setup, the fluorescence signal can be interpreted
as a result of a weak continuous measurement, that can be
conditioned not only on an initial state but also on a final state
by postselecting with the result of the projective measurement.
The authors have concentrated on the conditioned signal at a
given moment of time that is averaged over many runs. Its time
traces reveal interference patterns interpreted in terms of weak
values [17] and associated with the interference of initial and
final quantum states in this context [18,19].

The concept of weak values has been introduced in [17] to
describe the average result of a weak measurement subject to
postselection in a simplified setup. The authors have shown
that the average measurement results may be paradoxically
large as compared to the outputs of corresponding projective
measurements. Since that, the concept has been extended in
various directions, e.g., to account for the intermediate mea-
surement strength, the Hamiltonian evolution of the quantum
states during the measurement (see [20,21] for review). In [18],
the average measurement outputs have been investigated in
the context of continuous weak measurement; this has been
further elaborated in [22–24]. As to the detailed statistics
of the measurement outcomes, in this context it has been
considered only for simplified meter setups that correspond
to measuring the light intensities in quantum optics [20,21].
There is a tendency to term “weak value” a result of any
weak measurement that involves postselection. This may be
confusing in general. For instance, the duration of a weak
measurement can exceed the relaxation time of the system
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measured. The averaged measurement output in this case is
not affected by postselection and equals to the expectation
value of the operator measured with the equilibrium density
matrix. This is very far from the original definition of weak
values [17]. We prefer to stick to the original definition.

We notice that the experiment discussed gives access not
only to the conditioned averages, but also to the conditioned
statistics of the measurement results. For instance, at each run
one can accumulate the output signal on a time interval that is
(0,T ) or a part of it and record the results. After many runs, one
makes a histogram of the records that depends on the initial as
well as on the final state of the qubit.

This paper elaborates on the method to evaluate the
distribution of the accumulated signal and gives the detailed
theoretical predictions of the conditioned statistics for ex-
amples close to the actual experimental situation, and in a
wide range of parameters. In this paper, we put forward and
investigate two signatures of the conditioned statistics. First
is the half-quantized measurement values. A nonconditioned
CWLM distribution under favorable circumstances peaks at
the values corresponding to quantized values of the measured
operator, in full correspondence with a textbook projective
measurement. We demonstrate that a conditioned distribution
function displays peculiarities, that are either peaks or dips, at
half-sums of the quantized values.

The second signature pertains the case of zero or small
overlap between initial and final states and time intervals
that are so short as the wave function of the system does
not significantly change. In this case, we reveal unexpectedly
large values of the cumulants of the distribution function of
time-integrated outputs for such short intervals, that we term
sudden jump. For the average value of the output, the fact
that it may by far exceed the values of typical outcome of
a projective measurement can be understood from the weak
value theory [17]. We extend these results to the distributions
of the output and reveal the role of decoherence at small time
intervals.

We stress that the signatures by themselves present no
new phenomena. Rather, the basic quantum phenomena such
as interference manifest themselves in these signatures in
the context of CWLM statistics. As such, we permit a
reinterpretation of these phenomena in the context considered.

Our approach to the CWLM statistics is based on the
theory of full counting statistics in the extended Keldysh
formalism [25]. The statistics of measurements of

∫
dtV̂ (t),

V (t) being a quantum mechanical variable representing linear
degrees of freedom of the environment, are generated via a
characteristic function method and the use of counting field
technique. It provides the required description of the whole
system consisting of the measured system, the environment,
and detectors.

Here, we develop this formalism first introduced in [6,26] to
include the conditioned evolution. We focus on the preselected
and postselected measurements. In this case, a quantum system
is initially prepared in a specific state. After that, it is subject
to CWLM during a time interval T . The postselection in a
specific state takes place in the end of the procedure. We show
that the evolution of a qubit whose past and future states are
known can be inferred and understood from the measured
statistics of measurement outcomes. The measurement of the

statistics can reveal purely quantum features in experimentally
relevant regimes.

We show how interference arises even at relatively small
time scales and how the information about the initial qubit
state is lost during the time evolution making the interference
to vanish at sufficiently long time scales. We exemplify how
different features in the distributions can be understood as the
manifestations of the qubit evolution during the measurement.
And, we numerically study various parameter regimes of
interest in the case of a measurement of a single observable.

Actually, we show with our results that one can have very
detailed theoretical predictions of CWLM distributions that
can account for every detail of the experiment. This enables
investigation and characterization of quantum effects even if
the choice of parameters is far from the optimal one and these
effects are small.

The structure of the paper is as follows. We develop
the necessary formalism in Sec. II, starting from a Bloch
master equation for the qubit evolution that is augmented
with counting fields to describe the detector statistics, and
explain how the postselection is introduced in this scheme.
The scheme can be applied to various experimental scenarios,
in particular, we focus on the setup described in [13]. It is
important to illustrate how the Cauchy-Schwartz inequalities
impose restrictions on the parameters entering the Bloch
master equations, this resulting in several different time scales.
In Sec. III, we examine a measurement of a general observable
and explain how the half-quantized peculiarities arise in the
distributions of measurement outcomes depending on the
initial and final states. In Sec. IV, we concentrate on the case of
zero overlap and take the Hamiltonian dynamics into account
to arrive at essentially non-Gaussian probability distributions.
In these sections, we mostly concentrate on a simple limit
where the time interval T is much smaller than the typical
time scales of qubit evolution; this gives the opportunity for
analytical results. Next, we extend our study to longer time
intervals. In Sec. V, we present numerical simulations at the
scale of decoherence time for three relevant cases: the case
of an ideal detector, and the experimentally relevant case with
and without detuning. In Sec. VI, we concentrate on the time
scales of Hamiltonian dynamics and experimentally relevant
parameters. We conclude in Sec. VII.

II. METHOD

The description of CWLM can be achieved by several
methods, all of them taking into account the stochastic nature
of the measurement process. In simple situations such as
nondemolition measurements [3], one can use the quantum
filtering equation [27]. More sophisticated approaches include
effective action method [2,8], path-integral formulation [6,7],
and past states formalism [19]. A powerful numerical method
of experimental significance is the stochastic update equa-
tion [28] that allows to monitor density matrix taking into ac-
count the measurement results. In this method, the distribution
of outcomes is obtained numerically by collecting statistics
of the realizations of “quantum trajectories.” In contrast to
this, the method of [6] permits the direct computation of the
generating function of the probability distribution.
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The present goal is to formulate a method to compute
probability distributions of a continuous measurement in the
course of a conditioned quantum evolution. We will extend the
method presented in [6] where the central object is a Bloch
master equation for the evolution of the measured quantum
system that is augmented with the counting fields. Evaluating
the trace of the extended density matrix from this equation
as a function of the counting fields provides the generating
function for the probability distribution of the detector output.
To outline the formalism, we will focus first on the simplest
setup where a single detector measures a single-qubit variable
Ô. In the end of the section, we will give a generalization to
the case of two variables.

In general, the dynamics of an isolated quantum system
is governed by a Hamiltonian Ĥq . For a realistic system,
weak interaction with an environment representing the outside
world will generate decoherence and relaxation. In the CWLM
paradigm, the quantum system is embedded in a linear
environment described in the same manner by a Hamiltonian
Ĥd . The quantum system interacts with the environment via a
coupling Hamiltonian Ĥc,

Ĥ = Ĥq + Ĥc + Ĥd (1)

with

Ĥc = ÔQ̂, (2)

Ô being an operator in the space of the quantum system,
that value is to be measured. Since Ĥd is a Hamiltonian of a
linear system, it can generally be represented by a boson bath
Hamiltonian. The input of the detector is characterized by an
input variable Q̂ that is linear in boson fields. The output of
the detector is represented by the output variable V̂ that is also
linear in boson fields.

The dynamics and statistics of the measurement process
are fully characterized by the two-time correlators of the
operators Q̂(t), V̂ (t). If we assume that qubit dynamics is
slower than a typical time scale of the environment, the five
relevant quantities correspond to zero-frequency values of the
correlators:

SQQ = 1

2

∫ t

−∞
dt ′〈〈Q̂(t)Q̂(t ′) + Q̂(t ′)Q̂(t)〉〉, (3a)

SQV = 1

2

∫ t

−∞
dt ′〈〈Q̂(t)V̂ (t ′) + V̂ (t ′)Q̂(t)〉〉, (3b)

SV V = 1

2

∫ t

−∞
dt ′〈〈V̂ (t)V̂ (t ′) + V̂ (t ′)V̂ (t)〉〉, (3c)

aV Q = − i

h̄

∫ t

−∞
dt ′〈[V̂ (t),Q̂(t ′)]〉, (3d)

aQV = − i

h̄

∫ t

−∞
dt ′〈[Q̂(t),V̂ (t ′)]〉, (3e)

where 〈〈ÂB̂〉〉 = 〈(Â − 〈Â〉)〉〈(B̂ − 〈B̂〉)〉 for any pair of
operators Â,B̂.

These five quantities define the essential characteristics
of the measurement process and have the following physical
meaning. SQQ is the noise of the input variable. It is responsible
for the inevitable measurement back-action and associated

decoherence of the qubit. SV V is the output variable noise: it
determines the time required to measure the detector outcome
with a given accuracy. The cross noise SQV quantifies possible
correlations of these two noises. The response function aV Q

determines the detector gain: it is the susceptibility relating
the detector output to the qubit variable measured, 〈V̂ 〉 =
aV Q〈Ô〉. The response function aQV is correspondingly the
reverse gain of the detector: it gives the change of the qubit
variable proportional to the detector reading. Conforming to
the assumption of slow qubit dynamics, the noises are white
and responses are instant.

The values of these noises and responses are restricted by
a Cauchy-Schwartz inequality [9]

SQQSV V − |SQV |2 � h̄2

4
|aV Q − aQV |2. (4)

For a simple system like a single qubit, it is natural to make
the measured operator dimensionless, with eigenvalues of the
order of one or, even better, ±1. With this, one can define and
relate the dephasing rate 2γ = 2SQQ/h̄2 and the acquisition
time ta ≡ 4SV V /|aV Q|2 required to measure the variable with
O with a relative accuracy �1. If one further assumes the direct
gain to be much larger than the reverse gain, aV Q � aQV , it is
implied by the central equation of [9] [Eq. (8)]

γ ta � 1. (5)

This figure of merit shows that one cannot measure a quantum
system without dephasing it.

The statistics of the detector variable V̂ can be evaluated
with introducing a counting field χ (t) coupled to the output
variable V̂ . This field plays the role of the parameter in the
generating function C[{χ (t)}] of the probability distribution
of the detector readings V (t).

This generating function is computed in the extended
Keldysh scheme [25] where the evolution of the “ket” and
“bra” wave functions is governed by different Hamiltonians
Ĥ+ and Ĥ−, respectively. The extra term describing interac-
tion with the counting field reads as Ĥ± = Ĥ ± h̄χ (t)V̂ (t)/2.
The generating function has then the form

C[{χ (t)}] = Trq(ρ̂[{χ (t)}]), (6)

ρ̂ being a quasi-density matrix of the qubit in the end of
evolution

ρ̂(χ ; t) = Trd
(−→
T e−i/h̄

∫
dtĤ−

ρ̂(0)
←−
T e+i/h̄

∫
dtĤ+)

. (7)

Here, Trq(. . . ) and Trd (. . . ) denote the trace over qubit and

detector variables, respectively, and
−→
T (

←−
T ) denotes time

(reversed) ordering in evolution exponents. ρ̂(0) is the initial
density matrix for both qubit and detector systems.

Assuming white noises and instant responses, one can
derive an evolution Bloch master equation for the quasi-density
matrix that is local in time, like Eq. (13) in [6]. For the simplest
setup, under assumption of a single coupling operator Ô it
reads as

∂ρ̂

∂t
= − i

h̄
[Ĥq,ρ̂] − SQQ

h̄2 D[Ô]ρ̂ − χ2(t)

2
SV V ρ̂

−SQV

h̄
χ (t)[ρ̂,Ô] + iaV Qχ (t)

2
[ρ̂,Ô]+. (8)
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Here, [. . . , . . .] and [. . . , . . .]+ refer to commutator and
anticommutator operations, respectively, and D[Â]ρ̂ ≡
( 1

2 [Â†Â,ρ̂]+ − Âρ̂Â†). Here, we have also assumed aV Q �
aQV , a general condition for a good amplifier. A single cou-
pling operator is an idealization, in a more realistic situation,
the quantum system is also coupled to the environment with
other degrees of freedom not related to the equation; this
is manifested as intrinsic relaxation and decoherence. This
modifies the above equation.

We give the concrete form of this equation for the
experimental situation of [13]. There is a qubit with two levels
split in z direction under conditions of strong resonant drive
that compensates the splitting of the qubit levels. The effective
Hamiltonian reads as

Ĥq = h̄

2
�σ̂x + h̄

2
�σ̂z, (9)

� being the Rabi frequency proportional to the amplitude of
the resonant drive, and � being the detuning of the drive
frequency from the qubit energy splitting. The interaction
with the environment induces decoherence, excitation, and
relaxation of the qubit, with the rates γd, γ↑, γ↓, respectively.
The measured quantity is the amplitude of the irradiation
emitted from the qubit, so O is convenient to choose to be
either σx or σy . With this, the equation reads as

∂ρ̂

∂t
= − i

h̄
[Ĥq,ρ̂] − γdD[σ̂z]ρ̂ − γ↑D[σ̂+]ρ̂

−γ↓D[σ̂−]ρ̂ − SQV

h̄
χ (t)[ρ̂,Ô]

+ iaV Qχ (t)

2
[ρ̂,Ô]+ − χ2(t)

2
SV V ρ̂, (10)

σ̂+ (σ̂−) being the rising and lowering operators of the qubit,
and σ̂z = |e〉〈e| − |g〉〈g| the standard Pauli operator.

The rates and noises are restricted by the following Cauchy-
Schwartz inequality: 1

4 (γ↑ + γ↓)SV V − |SQV |2 � h̄2

4 |aV Q|2.
All the parameters entering the equation can be characterized
from experimental measurements. We provide an example of
concrete values in Sec. V.

We will concentrate on a single measurement during a time
interval (0,T ). To define an output of such measurement,
we accumulate the time-dependent detector output during
this time interval and normalize it by the same interval V ≡
1
T

∫ T
0 V (t ′)dt ′. The counting field χ (t) corresponding to this

output is conveniently constant χ (t) ≡ χ on the time interval
(0,T ) and 0 otherwise. Our goal is to evaluate the probability
distribution P (V ) of the measurement results, conditioned to
an initial qubit state given by ρ̂(0), and to a postselection of
the qubit in a specific state |	〉 at the time moment T . This
involves the projection on the state |	〉, represented by the
projection operator P̂	 = |	〉〈	|.

The probability distribution of the detector outcomes with
no regard for the final qubit state can be computed from the
generating function defined by Eq. (6):

P (V ) = T
2π

∫
dχ e−iχV T C(χ ; T ). (11)

The joint statistics are extracted from the quasi-density matrix
ρ̂(χ ; T ) at the end of the interval.

Upon the postselection, the quasi-density matrix is pro-
jected on the final state measured, P̂	ρ̂(χ ; T ), so the condi-
tioned generating function of the detector outcomes reads as

C̃(χ ; T ) = Trq[P̂	ρ̂(χ ; T )]

Trq[P̂	ρ̂(χ = 0; T )]
, (12)

where the proper normalization is included.
This is the second central equation in our method. Together

with Eq. (8) it permits an efficient evaluation of the conditioned
probability distributions as the Fourier transform of this
generating function. Sometimes it is convenient to normal-
ize the time-integrated output introducing O = V/aV Q that
immediately corresponds to the eigenvalues of Ô (we stress
that O are coming from the averaging of an environmental
operator rather than Ô).

In this paper, we will concentrate on the distributions
of a single variable. For completeness, we mention that
the approach can be extended to joint statistics of simul-
taneous measurement of two noncommuting observables,
e.g., σ̂x and σ̂y . For the case of identical but independent
detectors with associated output variables V̂x,V̂y and count-
ing fields χx(t),χy(t), the corresponding equation reads as
(i labels {x,y})

∂ρ̂

∂t
= − i

h̄
[Ĥq,ρ̂] −

∑
i

SQQ(i)

h̄2 D[σ̂i]ρ̂

−
∑

i

(
SQV

h̄
χi(t)[ρ̂,σ̂i] + iaV Qχi(t)

2
[ρ̂,σ̂i]+

−χ2
i (t)

2
SV V ρ̂

)
(13)

for the situation where the qubit decoherence is due to the
detector back-actions only. The parameters are restricted by
inequalities similar to Eq. (4) for each set of noise and response
functions corresponding to a given detector.

The form of this equation that can account for the realistic
experimental situation [13] is similar to Eq. (10):

∂ρ̂

∂t
= − i

h̄
[Ĥq,ρ̂] − γdD[σ̂z]ρ̂ − γ↑D[σ̂+]ρ̂

−γ↓D[σ̂−]ρ̂ −
∑

i

S
(i)
QV

h̄
χi(t)[ρ̂,σ̂i]

+
∑

i

ia
(i)
V Qχi(t)

2
[ρ̂,σ̂i]+ −

∑
i

χ2
i (t)

2
S

(i)
V V ρ̂, (14)

where i = x,y and we account for detector-dependent noises
and response functions. Two inequalities put restrictions on
the parameters involved:

1

4
(γ↑ + γ↓)S(x)

V V − ∣∣S(x)
QV

∣∣2 � h̄2

4

∣∣a(x)
V Q

∣∣2
, (15a)

1

4
(γ↑ + γ↓)S(y)

V V − ∣∣S(y)
QV

∣∣2 � h̄2

4

∣∣a(y)
V Q

∣∣2
. (15b)

Here, we have assumed an ideal and fast postselection so
that the system measured is projected on a known pure state
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|	〉. This is the case of the experimental setup [13]. In reality,
there can be errors in the postselection. We note that such
errors can also be accounted for in the formalism outlined.
To this end, one replaces the projection operator P̂	 with a
density-matrix-like Hermitian operator ρ̂f satisfying Tr[ρ̂f ] =
1. For instance, if after a faulty projection measurement with
the result “1” the system is in an orthogonal state |	2〉 with
probability pe, the corresponding ρ̂f reads as

ρ̂f = (1 − pe)|	1〉〈	1| + pe|	2〉〈	2|. (16)

III. HALF-QUANTIZATION:
A STRAIGHTFORWARD CASE

The outcomes of an ideal projective measurement of a
quantum variable Ô are confined to the eigenvalues Oi of
the corresponding operator. If a CWLM approximates well
this ideal situation, one expects the distribution of outcomes to
peak nearOi , and it is indeed so. In this section, we argue that if
the measurement outcomes are conditioned on a final state, the
distribution also has peculiarities at half-sums (Oi + Oj )/2 of
the eigenvalues. We prove first this counterintuitive statement
for a restricting limiting case where the measurement interval
T is much smaller than the typical time scales of the system
dynamics. The results are summarized in Eq. (20). The
resulting distributions may formally correspond to negative
probabilities in the limit of vanishing overlap between initial
and final states. To correct for this, and to extend the limits of
validity to larger time intervals, we concentrate further on a
specific but constructive case of nondemolition measurement.
With this, we investigate the influence of decoherence on
half-quantization. The results are given by Eq. (23).

To start, we take the measurement interval T to be much
smaller than typical time scales of the quantum system
dynamics. This immediately implies that the accuracy of
the measurement will be too low to make it practically
useful. However, the resulting distribution comes out of a
straightforward calculation since the state of the quantum
system does not have time to change significantly during the
measurement.

In Eq. (8), we may then neglect all terms describing the
dynamics and containing no χ (t). Let us also assume no
correlation between the noises of the input and output variables
of the detector SQV = 0. With this, Eq. (8) can be simplified
to the following form:

∂ρ̂

∂t
= −χ2(t)

2
SV V ρ̂ + iaV Qχ (t)

2
[ρ̂,Ô]+. (17)

Let us concentrate on a piecewise constant χ (t) ≡
χ�(t)�(T − t) corresponding to the accumulation of the
signal during the measurement interval. We take ρ̂(χ ; 0) =
ρ̂(0) as the initial condition. After the time interval of the
measurement T , the quasi-density matrix becomes

ρ̂(χ ; T ) = e− SV V
2 χ2T ei

aV Q

2 χT Ôρ̂(0)ei
aV Q

2 χT Ô. (18)

The generating function of the outcome distribution is
given by Eq. (12) and involves the projection P̂	 on the
final state |	〉. The calculations are straightforward in the
basis of the eigenstates of the operator Ô, Ô|i〉 = Oi |i〉. It
is also convenient to normalize the output variable on the

value of Ô introducing a rescaled variable O ≡ V/aV Q. The
resulting distribution is a linear superposition of shifted normal
distributions

g(x) = 1

σ
√

2π
exp

(
− x2

2σ 2

)
(19)

with the same variance σ 2 = SV V /(T a2
V Q) = ta/4T ,

P̃ (O) =
∑

i

Wiig(O − Oi) +
∑
i �=j

Wijg

(
O − Oi + Oj

2

)

(20)

and the weights Wij given by

Wij = 	j	
∗
i ρ

(0)
ij

〈	|ρ(0)|	〉 ;
∑
i,j

Wij = 1. (21)

Let us discuss this result. The terms of the first group
are normal distributions centered at the eigenvalues of Oi .
The coefficients in front of these terms are proportional to
the product of the initial probability to be in the state i,
ρ(0)ii , and the probability to be found in final state after
being in the state i, |	i |2. If there would be no quantum
mechanics, the system on its way from initial to final state
should definitely pass one of the eigenstates of Ô shifting
the measurement output by the corresponding eigenvalue. The
sum of the probabilities Wii would be 1. In fact, it is not 1:
owing to quantum interference, the system does not have to
pass a definite state i. One can say that “bras” and “kets”
may pass the different states, and this shifts the output by a
half-sum of the corresponding eigenvalues. These interference
contributions disappear if there is no postselection in the final
state. Indeed, summing Wij over a complete basis of possible
final states |	〉 gives zero. These coefficients also disappear
in case of diagonal ρ̂(0). Although the form (20) suggests that
real values Wi,j + Wj,i could be interpreted as “probabilities”
of “half-quantized” outcomes, this does not work since these
values can be negative as well as positive, and the contributions
centered at half-quantized values can be peaks as well as dips.
This is typical for an interference effect. The double-peak
structure of the distribution has been discussed earlier in the
context of CWLM [3,4,6,29]. The interpretation in terms of
half-quantization is an addition introduced in this paper.

A double-peak probability distribution has been predicted
in the context of postselected measurements [30,31]. While
this effect is also based on interference, it is clearly distinct
from the half-quantization considered here since it is observed
for an operator with continuous spectrum and, in fact, in
distinction from the effect described here, permits a classical
interpretation [31]. The half-quantization also does not bear
any resemblance with the three-box paradox [32] since the
latter involves a third quantum state absent in our setup.

Nevertheless, the interference signatures can be revealed
by a close inspection of the probability distribution of the
outcomes of the conditioned measurement. We notice that the
limit of small T we presently concentrate on is not favorable
for such inspection since the peaks (or dips) are hardly sepa-
rated,Oi � √

σ , so that P (O) ≈ g(O), that is, hardly depends
on the quantum system measured. To enhance the effect,
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one would increase T . However, at sufficiently large T the
quantum system would relax to equilibrium; this suppresses
the interference effects. Numerical calculations presented in
Secs. V and VI show that the interference contributions
become quite pronounced in the case of intermediate T .

In this section, we mention a special case where the
interference effects become enhanced and significant even in
the limit T → 0. This is the case of a small overlap between
the initial state ρ̂(0) and the postselected final state |	〉,
〈	|ρ̂(0)|	〉 → 0.

The coefficients Wij diverge upon approaching this limit,
and Eq. (20) becomes invalid giving a negative probability
density. To consider the case properly, we need to regularize
Eq. (18) taking into account the dephasing which comes
at least from the detector back-action. The simplest way to
provide such regularization is to include dephasing produced
by interaction with the same operator Ô. The resulting equation
reads as

∂ρ̂

∂t
= −χ2(t)

2
SV V ρ̂ + iaV Qχ (t)

2
[ρ̂,Ô]+ − γD[Ô]ρ̂. (22)

It looks we have disregarded the Hamiltonian dynamics
in Eq. (22). This does not seem consistent since usually
Hq � h̄γ ; this provides a common separation between the fast
time scales of Hamiltonian dynamics and longer time scales
of the decoherence and relaxation. We note that we do not
have to disregard it in an important case of nondemolition
measurement when Ĥq and Ô commute. In this case, the
only effect of the Hamiltonian dynamics is to provide time-
dependent phase factors for nondiagonal elements of the
density matrix. These trivial phase factors can be compensated
by a proper rotation of the final state and the Hamiltonian
dynamics can be gauged away from Eq. (22). We address the
relevant Hamiltonian dynamics in the next section.

By virtue of the Cauchy-Schwartz inequality (4), γ �
a2

QV /4SV V . Therefore, it is convenient to characterize the
dephasing rate γ with dimensionless K ≡ 4γ SV V /a2

QV = γ ta ,
K � 1, that characterizes the quality of the detector.

The equation is easily solved in the basis of eigenvalues of
Ô. In comparison with Eq. (18), each nondiagonal element ρij

of the quasi-density matrix acquires an extra time-dependent

suppression factor exp (−γ t
(Oi−Oj )2

2 ). With this, the probabil-
ity distribution is given by Eq. (20) with modified coefficients
Wij → W̃ij :

W̃ij ≡ 	j	
∗
i ρij e

−γT (Oi−Oj )2

2

W̃
;

W̃ ≡
∑
i,j

	j	
∗
i ρij e

−γT (Oi−Oj )2

2 . (23)

At any nonzero overlap, P (O) → g(O) in the limit of
T → 0. Let us concentrate on a special case of zero over-
lap 〈	|ρ̂(0)|	〉 = 0, and let us note that this also implies
ρ̂(0)|	〉= 0 by virtue of positivity of the density matrix. In the
limit of T → 0 the chance to find the system in the final state
vanishes, W̃ ≈ γT 〈	|Ôρ̂(0)Ô|	〉. This divergency should be
compensated by the terms ∝T that come from expansion of
g[O − (Oi + Oj )/2] up to the second order in Oi as well as
W̃ij . The resulting distribution of the measurement outcomes

for these rare events differs essentially from the normal one:

P (O) =
(

1 + (O/σ )2 − 1

K

)
g(O) �= g(O). (24)

For an ideal detector K = 1, the probability even vanishes at
O = 0. For bigger decoherence exceeding the minimal one
K � 1, the interference term vanishes and P (O) ≈ g(O).

We illustrate the content of this section with some simple
plots (Fig. 1). We consider a qubit that is initially prepared
in Z+ state, σ̂z|Z+〉 = |Z+〉. The measurement accesses the x

component of the qubit spin O = σ̂x . After the measurement,
the qubit is postselected in either Z+ or Z− state. As it follows
from the preceding discussion, we expect the probability
distribution of the outputs to be composed of the Gaussians
centered at ±1, and also at the half-sum of the eigenvalues,
that is, at 0.

For the first four plots, we choose a relatively big
T = 0.5γ −1. Although this choice is contrary to our
assumptions, it permits an easy visual resolution of the
Gaussian peaks. We assume ideal detector K = 1 and use
Eq. (22) to evaluate the distributions. The distribution of
the outcomes with no postselection [Fig. 1(a)] is composed
from two Gaussian peaks centered at ±1 that are hardly
separated. The postselected distributions differ much from
each other and the original one [Fig. 1(b)]. The distribution
for Z− gives well-separated peaks while a single peak is
seen in the distribution for Z+. This is due to the negative
or positive half-sum contribution as illustrated in Figs. 1(c)
and 1(d). Figure 1(e) demonstrates the essential change of
the conditioned distribution function for zero overlap. The
distribution for ideal detector reaches zero, and approaches
normal distribution upon increasing K .

To investigate in more detail the manifestations of the
interference effects at longer time intervals �ta,γ

−1 and in
experimental conditions, in Sec. V we numerically solve the
evolution equations and compute the conditioned probability
distributions. For this work, we concentrate on a single qubit.

IV. SUDDEN JUMP: A SIMPLE CONSIDERATION

Let us now change the situation and consider the measure-
ment of a variable that does not commute with the Hamiltonian.
To simplify, we consider very small T such that the change of
density matrix due to Hamiltonian dynamics is small. This is
a more severe limitation than that used in the previous section
where T was only supposed to be smaller than the decoherence
rate. Generally, this time interval is too small to measure
anything and we expect the distribution to be close to g(O),
thus, to have a large spread. There is, however, an exceptional
situation of zero overlap where after the measurement the state
is projected on |	〉 that is precisely orthogonal to the initial
state |i〉, 〈	|i〉 = 0. Let us concentrate on this situation and
demonstrate a peculiarity of the output distribution which is
best described as a sudden jump of the integrated output.

To give a clear picture, we first treat the situation completely
disregarding the decoherence/relaxation terms, and take into
account the Hamiltonian dynamics only. This seems relevant
at such small T . The general result is given by Eq. (26) while
a constructive case is given by (27). This gives a sudden
jump of cumulants while the attempt to derive the distribution
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FIG. 1. Probability distributions of CWLM outcomes of σ̂x for relatively small duration T = 0.5γ −1. The qubit is initialized in the Z+

state. (a) The distribution without postselection consists of the two marginally separated Gaussian peaks shown by dotted lines. (b) Conditioned
distributions for Z+ and Z− and the distribution without postselection. (c), (d) Decomposition of the conditioned distributions into Gaussians
(dotted curves). The Gaussians centered at 0 manifest the half-quantization. (e) The conditioned distribution for zero overlap [Eq. (24)] in the
limit of small T for different K . K = 1 corresponds to ideal detector.

results in a negative probability in an interval of outputs that
increases with decreasing T . To improve on this, we will
sophisticate the treatment by including the decoherence. We
reveal that the decoherence becomes important at very small
time intervals T � (�2ta)−1, that can be interpreted as a
finite but small duration of the sudden jump. The resulting
probability distribution is given by Eq. (34) and is positive at
any T .

To start with, we disregard relaxation/decoherence terms
in the evolution equation which seems relevant for such small
T and owing to orthogonality, the projected ρ(χ ) vanishes at
T → 0 and is determined by the first-order corrections to bra
and ket wave functions:

Tr[P̂	ρ̂(χ )] = h̄−2T 2〈	|Ĥ+
q |i〉〈i|Ĥ−

q |	〉e−χ2T SV V /2. (25)

Here, H± = Hq ± h̄χaV QÔ.
The small factor T 2 cancels upon normalization in Eq. (12)

so that the generating function of the conditioned output
reads as

C̃(χ ; T ) = 〈	|Ĥ+
q |i〉〈i|Ĥ−

q |	〉
|〈	|Ĥq |i〉|2

e−χ2T SV V /2. (26)

We note that C̃(χ ; T → 0) �= 1 since the derivatives of ln C̃ at
χ → 0 are related to the cumulants κn of the distribution of the
integrated output

∫ T
0 dt V̂ (t). This implies that the cumulants

of the distribution of the integrated output do not vanish in
the limit of short time interval: rather, there is a sudden jump
of the integrated output not depending on the duration of the
measurement. The jump occurs for the averaged output as well
as for all cumulants. This is very counterintuitive for a CWLM
situation. In this case, one may expect that the integrated
output in this limit is dominated by the detector noise, so that∫ T

0 dt V̂ (t) � T 1/2, κn � T n/2, and thus vanishes at T → 0.
To see this in more detail, let us turn to a concrete example.

We consider a situation corresponding to [13]: a qubit with the
Hamiltonian Ĥq = h̄

2�σ̂x . The initial and projected states are
Z+ and Z−, respectively, and we measure the projection of the
qubit on the y axis Ô = σ̂y . In this case,

C̃(χ ; T ) =
(

1 − iχaV Q

�

)2

e−χ2T SV V /2. (27)

In the limit T → 0, we obtain for the cumulants

κn = ∂n

∂(iχ )n
ln

(
1 − iχaV Q

�

)2

= 2(−1)n
(

aV Q

�

)n

(n − 1)!

(28)
We see a sudden jump in the cumulants of the time-integrated
output.

The average value of the output (κ1) is given by

a−1
V Q

∫ T

0
dt〈V̂ (t)〉 = − 2

�
; Ō = − 2

�T . (29)
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This corresponds to the time-averaged output ∝T −1 that can
exceed by far the expected values of a projective measurement
±1. Such anomalously big outputs are naturally associated
with the weak values [17]. Indeed, one can relate the above
result with weak value to conform to the definition [17] if
one takes into account the evolution of the quantum state
during the measurement [33]. However, we need to stress
that the full distribution of the outputs cannot be obtained
with the traditional weak value formalism and so far has
not been obtained with its extensions [22–24] for continuous
measurement. The method outlined here does not explicitly
evoke the notion of weak values and provides a more
elaborated description of a realistic measurement process.

An attempt to derive from (27) the overall distribution of
the time-averaged outputs yields

P (O) =
(

1 + ∂O
�T

)2

g(O)

=
[(

1 − 4O
�ta

)2

− 4

�2T ta

]
g(O). (30)

There is a problem with this expression: it is negative in an
interval of O, and at sufficiently small T � (�2ta)−1 this
interval encompasses the body of the “distribution.” This
signals that the current approach must be corrected. As we
have seen in the previous section, such correction most likely
requires a proper account of the detector back-action that
causes the decoherence of the qubit.

It is unusual to expect a decisive role of decoherence at
such small time scales. However, if we take into account the
decoherence [second term in the right-hand side of Eq. (8)],
we obtain

Tr[P̂	ρ̂(χ )] =
(

γT + T 2

4
(� − iaQV χ )2

)
e−χ2T SV V /2. (31)

Here, γ ≡ SQQ/h̄2 is the corresponding decoherence rate.
We see that the decoherence term may indeed compete with
the term coming from Hamiltonian dynamics at short time
intervals. The physical reason for this is that a decoherence
term of this sort induces the relaxation in Z basis. The
relaxation brings the qubit to Z− faster than the Hamiltonian:
the probability to find the system in Z− is thus proportional
to T in contrast to the probability ∝T 2 induced by the
Hamiltonian dynamics.

The resulting characteristic function reads as

C̃(χ ) = 4γ + T (� − iaQV χ )2

4γ + T �2
e−χ2T SV V /2 (32)

and gives the average output

Ō = − 2�

4γ + T �2
. (33)

The value of the average output thus saturates at −�/2γ �
−1 in the limit of small T � γ /�2. So, if the decoherence
is taken into account, the change of the output averages is not
really sudden. One can regard the small time scale γ /�2 of
the saturation as a typical duration of the sudden jump of the
time-integrated output.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FIG. 2. Probability distributions of outputs [Eq. (34)] in the
sudden jump regime in case of an ideal detector. The alternat-
ing solid-dotted curves correspond to different T = (0.25,0.5,1.0,

2.0,4.0)(�2ta)−1. Each curve consists of two peaks separated by a
gap at O = �ta/4. The curves with bigger T are sharper,and the
peaks become increasingly symmetric upon lowering T .

The probability distribution valid at all time scales � �−1

is given by

P (O) = K − 1 + (T /4ta)(�ta − 4O)2

K + T ta�2/4
g(O), (34)

where we again introduce the dimensionless K = γ ta � 1 that
characterizes the quality of the detector. The distribution is
illustrated in Fig. 2 for an ideal detector K = 1 and various T .
In this case, the probability density is zero at O = �ta/4.

If we compare the distributions (24) and (34), we see that
the results of the previous section are reproduced in the limit
� → 0, as well as in the limit of T � (�2ta)−1 if we take
σ 2 = ta/4T . The distribution (34) thus generalizes (24) to the
case where the Hamiltonian dynamics is relevant.

To extend the results on larger time intervals �� and on
realistic conditions, we numerically solve the evolution equa-
tions in Sec. VI and compute the corresponding conditioned
probability distributions.

V. NUMERICAL RESULTS: LONG TIME SCALES

In Sec. III, we have presented an analytical solution in the
limit of small T and shown that it remains qualitatively valid
for bigger T , at least in the case of ideal detectors. We will
extend these results evaluating the conditioned distributions
numerically. We concentrate on longer measurement times
where the qubit dynamics becomes important. We will take
into account the effects of decoherence and relaxation, as
well as the effects of strong qubit drive or detuning, all being
important in experimental situations.
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In this section, we address the distributions of the CWLM
outcomes of a single variable at the time scales of the order of
coherence/relaxation times and ta . Generally, one can associate
it with the qubit variable Ô = σ̂x . To start with, we assume zero
detuning, that is, a qubit Hamiltonian of the form Ĥq = h̄

2�σ̂x .
In principle, we are now in the situation of a nondemolition
measurement.

To start with, let us assume an idealized situation where
all the decoherence is brought by the detector back action
and its rate ∝SQQ assumes the minimum value permitted by
the inequality (4). Since Ĥq = h̄

2�σ̂x , the back-action does
not interfere with free qubit dynamics causing transitions
between the levels. In the σx representation, the diagonal
elements of the density matrix remain unchanged, keeping
the initial probability to be in X± states while the nondiagonal
ones oscillate with frequency � and decay with much slower
rate γ � �.

If we keep the final state fixed to Z±, the interference
contribution to the conditioned distributions will exhibit fast
oscillations as a function of T with a period 2π/�. It is profi-
cient from both theoretical and experimental considerations
to quench these rather trivial oscillations. We achieve this
by projecting the qubit after the measurement on the states
|Z̄±〉 = e−iĤqT |Z±〉, thereby correcting for the trivial qubit
dynamics. In practice, such correction can be achieved by
applying a short pulse rotating the qubit about the x axis
right before the postselection measurement. With this, the
conditioned distribution of outcomes changes only at the time
scale ta � γ −1, that is much longer than �−1, and the dynamics
is described by Eq. (22) with Ô = σ̂x .

In Fig. 3, we give the plots of the probability distributions
conditioned on Z̄± for a series of measurement time intervals
T . We see that different curves are shown for two cases in
which the visibility of the interference feature is stronger: the
case of equal preparation and postselection [Fig. 3(a)], and

the case of orthogonal preparation and postselection states
[Fig. 3(b)].

In this ideal situation, even for very small time intervals,
the additional knowledge of the postselection can lead to
perfect resolution of the two eigenstates of the qubit variable
[Fig. 3(b)]. While for small time intervals the middle peak
results in less resolution for the opposite choice of postselected
qubit state [Fig. 3(a)], at large time intervals, the detector
back-action has resulted in a complete decoherence of the
qubit state and the interference signature disappears, making
both distributions converge to two narrow peaks corresponding
to either +X or −X. This exemplifies how the knowledge of
the qubit preparation is lost in time due to decoherence.

The fact that we see no difference between the distributions
in this limit is a result of a symmetric choice we made with
respect to the projections. Indeed, if we project on ±X instead,
the distributions would consist of a single peak positioned at
the value of O = ±1. Generally, for projections on arbitrary
pair of orthogonal superpositions of X and Z, we expect in
this limit different peak weights for two different projections.
This difference, however, is of trivial origin and has nothing to
do with the interference effects of interest. So, we have made
a symmetric choice to cancel it.

With this, the difference between the two distributions is
due to interference only, that is, due to the half-quantized
peak described in the previous section. At smaller T , the
distributions take a very distinct shape: single peak for that
conditioned on +Z, and double peak for that conditioned
on −Z. The half-quantization is dumped on the scale of the
decoherence time, so the difference is seen only for T < ta .

The separation of the distribution onto two peaks in the limit
of T � ta is a signature of the ideal situation of a quantum
nondemolition measurement where neither measurement nor
any other agent induces the relaxation rates causing the
transitions between the qubit states. In this situation, the

FIG. 3. Probability distributions of a σ̂x CWLM outcomes for the ideal measurement case for different ratios T /ta . The qubit is initially
prepared in the +Z state and, after T , is postselected either in the +Z state (a) or −Z state (b).
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FIG. 4. Probability distributions of the output σ̂x CWLM for the experimental setup of [13] at various T . Since the detection is far from ideal,
the distributions conditioned on ±Z are not visually distinguishable, so we plot only one (a). However, the difference of the two distributions
that is due to interference (b) is sufficiently large to detect: the difference is about 10% for small time intervals [top curve at O = 0 in (b)]. In
(c) we give the difference normalized to the sum of the probabilities. This quantity saturates at large O.

density matrix efficiently relaxes to its equilibrium value ρeq

at time interval T , and the distribution of the detector output
tends to concentrate on the average value 〈O〉 = Tr[Ôρ̂eq] with
decreasing width �√

ta/T .
Let us now turn to the analysis of the experimental

situation. We use the general evolution equation (10) to
compute the distributions and substitute the parameters γ↓ =
(22.5 μs)−1, γ↑ = (56 μs)−1, γd = (15.6 μs)−1 given in [13].
The acquisition time comes from the measurement rate
2/ta ≈ (92 μs)−1. This rate in fluorescence experiments can
be characterized by two different methods, both based on the
estimation of the probability distribution for the integrated
homodyne signal conditioned on the state of the qubit (see
Appendix F in the Supplemental Material of [9]). The quality
of the measurement setup is thus rather far from ideal,
K = taγd ≈ 12. Nevertheless, we predict some measurable
interference effects in the outcome distributions.

We plot in Fig. 4 the results for zero detuning. There is no
visible difference between the distributions, so in distinction
from Fig. 3, we give only a single set of curves in Fig. 4. The
curves for all T look dully Gaussian; no peak separation is
visible. This is because of the low quality of the detector: the
relaxation to the stationary density matrix 1̂/2 mainly takes
place at a time interval shorter than the acquisition time, so
most of the time the detector measures this featureless state. As
to short T , the distribution is too wide to manifest the features
of the density matrix.

However, there are still observable signatures of interfer-
ence. To reveal those, we plot in Fig. 4 the difference of
the probability densities for two projections. We see that at
smallest T = 0.2ta the difference achieves 0.01 at O ≈ 0 and
can be thus revealed from the statistics of several hundred
individual measurements. The shape of the difference suggests
that the P− is pushed on both positive and negative values of

O in comparison with P+, in agreement with the previous
findings. The decoherence and relaxation quickly diminish the
difference upon increasing T .

At big values of O, the difference quickly decreases
together with the distributions. In this respect, it is instructive to
inspect the difference normalized on the sum of the probability
densities C(O) ≡ [P+(O) − P−(O)]/[P+(O) + P−(O)]. This
quantity gives the certainty with which one can distinguish
two distributions from each other given a reading O. The
values C = ±1 would imply that the measurement is certainly
postselected with ±Z. As we see from Fig. 4, the certainty
saturates with increasing O, reaches relatively large values at
short T , and fades away upon increasing T .

Let us inspect the distributions at nonzero detuning. In this
case, there is no reason to expect the O → −O symmetry in
the distribution. We illustrate the situation in Fig. 5 assuming
relatively large detuning � = 1.7�. This value is chosen to
maximize 〈O〉 for the equilibrium density matrix. In the plots
of Fig. 5(a), we see a shift of the distribution maximum that
tends to 〈O〉 ≈ −0.1 at T � ta . The value of the shift does
depend on T as well as on the postselection state.

If we concentrate on the difference of the probability
distributions [Fig. 5(b)], we see the same order of magnitude
as at zero detuning. However, the difference does not vanish in
the limit of big T . Rather, it is concentrated in an increasingly
narrow interval of O conforming to the decreasing width of
the distribution. As to the certainty [Fig. 5(c)], it rather quickly
converges upon increasing T to finite and rather big values in
a wide interval of O. This does not imply that the distributions
P ± are different in this limit since they become concentrated
with divergent probability density, and the values of O with
high certainty occur with exponentially low probability, yet
the finite limit of P+ − P− is worth noting and deserves an
explanation.
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FIG. 5. Probability distributions of a σ̂x weak measurement for experimental rates. Here, a relatively large detuning � ≈ 1.7� is introduced
in the qubit Hamiltonian. The qubit is prepared in the +Z state and postselected, after a specific time interval given by each curve, in the +Z state
(a) or −Z state (not in the figure). The difference of these two probabilities appears to remain at rather big time scales while being remarkably
large for small time intervals [wider curves in (b)] compared to the single distribution (a). Again, a good measure of this phenomenon is the
relative difference, here plotted in (c). Time in units of acquisition time ta .

We can qualitatively explain these features assuming that
in this limit, the probability distributions are the Gaussians
with a shift that depends on the postselection state and the
variance σ 2 = ta/4T , P± = g[O ± s±(T )]. In the limit of big
T , we expect the difference of the shifts to be proportional
to (T )−1, s± = 〈O〉 ± S(ta/T ), S � 1. This is because the
effect of the postselection is only felt during a time interval
�γ −1 before the end of measurement, so that at a fraction of
the whole interval that is proportional to (T )−1. With this, at
O � σ the difference of the probabilities approaches a limit
not depending on T :

P+ − P− = S

2

(O − 〈O〉)
σ
√

2π
exp

(
− (O − 〈O〉)2

2σ 2

)
. (35)

The maximum difference of probabilities |P+−P−|max ≈ 1.9S

is thus achieved at O = 〈O〉 ± σ .
As to the certainty, it approaches an alternative limit at

O � 1 � σ that also does not depend on T at T → ∞:

C(O) = P+(O) − P−(O)

P+(O) + P−(O)
= tanh[4S(O − 〈O〉)]. (36)

As we see, the certainty reaches ±1 in the limit of large
(exponentially improbable) |O| � 1.

The numerical results presented are satisfactorily fitted by
the above expressions with S ≈ 0.04. However, the fits are
not mathematically exact since, for the sake of simplicity,
the shifts s± have been assumed not to depend on O, while
in general they do. Our results show that the difference of
the conditioned distributions can be detected under realistic
experimental circumstances.

Although the interference signature seems to disappear for
rather short T in a realistic experimental regime, the actual
measurements are done [13] for time intervals yet smaller

than the time scale of qubit relaxation/decoherence. This
corresponds to the first several choices of short time intervals
in Figs. 3–5 where the interference is still visible.

VI. NUMERICAL RESULTS: SHORT TIME SCALES

In the previous section, we have considered the statistics at time
scalesT � γ −1,ta extending the analytical results of Sec. V. In
this section, we will extend the analytical results of Sec. IV. We
present numerical solutions for the probability distributions at
a time scale T � � 1 of the Hamiltonian dynamics where the
decoherence and relaxation do not play an important role. We
also consider smaller T where the sudden jump behavior is
manifested, and yet smaller T where the decoherence becomes
important again and the time-averaged output saturates to the
value ��/γ � 1. We restrict ourselves to the experimental
circumstances and use for the computation Eq. (10) with the
parameters specified in Sec. V.

We will concentrate on the conditioned measurement
statistics of the variable σ̂y , that anticommutes with the
qubit Hamiltonian Ĥq = h̄

2�σ̂x + h̄
2�σ̂z. The qubit is initially

prepared in the Z+ state and postselected in either Z+ or Z−. In
Fig. 6, the probability distributions of the integrated output O
are presented. The upper row plots [Figs. 6(a) and 6(b)] are for
zero detuning (� = 0), while the lower row plots [Figs. 6(c)
and 6(d)] show the corresponding distributions when at the
detuning � ≈ 1.7� that maximizes 〈σx〉. Left and right figures
correspond to postselection in Z+ and Z−, respectively.

For unconditioned distributions, the average output is given
by Y (T ) = 1

T
∫ T

0 dt〈	(t)|σy |	(t)〉, where |	(t)〉 is obtained
from Z+ by Hamiltonian evolution. The function Y (T ) is
plotted in the insets of the right plots with a solid curve. We
would expect the distributions to be shifted with respect to the
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FIG. 6. The output distributions for the σ̂y measurements for a series of T values at the scale of �−1 shown in the label of (a). The qubit is
initially prepared in the state Z+. Left column: the distributions conditioned on Z+. Right column: the distributions conditioned on Z−. Upper
row: � = 0. Lower row: � = 1.7�. The insets in the right column plots present the unconditioned average (solid curves) and the average
of the distribution conditioned on Z−. The distributions conditioned on Z+ are symmetric with zero average. The values of the parameters
correspond to [13].

origin by a valueO � 1. This shift would be clearly seen in the
plots since the width of the distribution �√

ta � T � √
ta�

is not very big at experimental values of �ta ≈ 200. However,
the plots on the left are perfectly centered at the origin at any T .
Indeed, the zero average of the distributions conditioned at Z+
can be proven analytically in the limit of Hamiltonian dynam-
ics. The averages of the distributions conditioned at Z− (given
by dashed curves in the insets of the plots) increase at small T
as T −1, in agreement with Eq. (29). The ratio of this average
to conditioned average is just the inverse probability to be
found in Z−, p−(T ) = sin2(

√
�2 + �2)T /2)/[1 + (�/�)2],

p− ∝ T 2 at small T . These averages are visually manifested as
the shifts of the distributions that are largely Gaussian. We do
not see anything resembling a gap in the distribution predicted
for an ideal detector (Fig. 2). This is explained by relativelty
low-detection efficiency [cf. K in Eq. (34)].

In a separate Fig. 7 we present the distributions conditioned
on Z− at yet smaller time scales of the order of the sudden jump
duration [see Eq. (33)]. In this regime, we see the saturation
of the average Ō at a value close to −11 in the limit T → 0.

This gives the upper limit of anomalously big averages under
experimental conditions of [13]. The distributions can be well
approximated by shifted Gaussians, smaller T corresponding
to wider distributions.

VII. CONCLUSION

Recent experimental progress has enabled the measure-
ments in the course of the conditioned quantum evolu-
tion. The average signals have been experimentally studied
in [13,14,16]. The technical level of these experiments permits
the characterization of the complete statistics of the measure-
ment outputs.

In this work, we have developed a proper theoretical
formalism based on full counting statistics approach [6,26]
to describe and evaluate these statistics. We illustrate it with
several examples and prove that the interesting features in
statistics can be seen in experimentally relevant regimes
(Figs. 4 and 7), for both short and relatively long measurement
time intervals.
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FIG. 7. The probability distributions of outcomes of σ̂y measure-
ment for different T � �−1. The values of the parameters correspond
to [13]. The qubit is prepared in Z+ and postselected in an orthogonal
state Z−. The average output signal Ō is shown in the inset. It exhibits
anomalously large values and saturation in the limit T → 0.

We reveal and investigate analytically two signatures of the
conditioned statistics that are related to quantum interference
effects. First is the half-quantized measurement values. We
demonstrate that the conditioned distribution function may
display peculiarities, that are either peaks or dips, at half-
sums of the quantized values. The second signature pertains
the case of zero overlap between initial and final states and
time intervals that are so short as the wave function of the

system does not significantly change by either Hamiltonian or
dissipative dynamics.

We reveal unexpectedly large values of the time-integrated
output cumulants for such short intervals, that we term sudden
jump. We show that the account for decoherence leads to a
finite duration of the jump at ultrashort time scale γ /(�2)
and saturation of the anomalous eigenvalues at �/γ , � and γ

being the frequency scales of the Hamiltonian and dissipative
dynamics, respectively.

Actually, we have shown with our results that one can have
very detailed theoretical predictions of CWLM distributions
that can account for every detail of the experiment. This
enables investigation and characterization of quantum effects
even if the choice of parameters is far from the optimal one
and these effects are small. We emphasize once again that the
interference signature in the distributions that we predict in this
paper can be seen in realistic experimental regimes and hope
the effects can be experimentally observed soon. The efficient
recording of time traces for a weak continuous monitoring
of one, or several, qubit variables is a key ingredient for
accessing these statistics. It has been achieved in several papers
and applied for observation of single quantum “trajectories”
or real-time feedback [34]. High-fidelity preparation and
postselection of the qubit are also required for experiments
with conditioned evolution, yet this is a general requirement
in most qubit experiments. We thus believe that it is pos-
sible to extract the interesting statistics from the existing
records.
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