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Strong vibration nonlinearity in semiconductor-based nanomechanical systems
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We study the effect of the electron-phonon coupling on vibrational eigenmodes of nano- and micromechanical
systems made of semiconductors with equivalent energy valleys. We show that the coupling can lead to a
strong mode nonlinearity. The mechanism is the lifting of the valley degeneracy by the strain. The redistribution
of the electrons between the valleys is controlled by a large ratio of the electron-phonon coupling constant
to the electron chemical potential or temperature. We find the quartic in the strain terms in the electron free
energy, which determine the amplitude dependence of the mode frequencies. This dependence is calculated for
silicon microsystems. It is significantly different for different modes and the crystal orientation, and can vary
nonmonotonously with the electron density and temperature.
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I. INTRODUCTION

The electron-phonon coupling strongly affects vibrational
modes of nano- and micro-electro-mechanical systems. Much
interest have attracted the effects of this coupling related to the
reduced dimensionality of the electron system, as they make
it possible to reveal interesting consequences of the electron
correlations at the nanoscale, the Coulomb blockade being
a simple example, and their strong effect on the vibrational
dynamics, cf. Refs. [1–10] and references therein.

Much less attention has been paid to the consequences of the
electron-phonon coupling, which are related to the discreteness
of the vibrational spectrum of a nanosystem, but emerge in
the absence of size quantization of the electron motion. One
of such consequences, which we study in this paper, is the
coupling-induced change of the vibration nonlinearity. Strong
nonlinearity is a generic feature of vibrations in small systems
[11,12]. Its easily accessible manifestation is the dependence
of the mode frequencies on the vibration amplitudes. This
dependence corresponds to the “self-action” of the mode, and
its familiar analog in bulk crystals are acoustic solitons [13,14];
however, the nonlinearity required for observing such solitons
usually is sufficiently strong only for high-frequency phonons.
Also, the change of the eigenfrequency with the mode
amplitude is of interest for modes with a discrete frequency
spectrum, such as standing waves in mesoscopic systems, but
not for propagating waves with a quasicontinuous spectrum.

Silicon-based nano- and micromechanical systems have
been recently attracting much attention, see Refs. [15,16]
and references therein. In such systems, an unexpectedly
large change of the amplitude dependence of the vibration
frequency with the varying electron density was observed
[17,18]. When the doping level was increased from 2.8 × 1018

to 5.9 × 1019 cm−3, the nonlinearity parameter increased by
more than an order of magnitude. Moreover, the nonlinearity
change was different for the vibrational modes with different
spatial structure.

In this paper, we develop a theory of the nonlinearity of
vibrational modes in semiconductor nano- and micromechan-
ical systems with high electron density. We show that the
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electron-phonon coupling can lead to a strong self-action of
the vibrational modes, which in turn significantly modifies the
amplitude dependence of the mode frequencies. We find the de-
pendence of the effect on the electron density and temperature.

For bulk semiconductors, the effect of the electron-phonon
coupling on the elastic properties, including the three-phonon
coupling, was first analyzed by Keyes [19]. The analysis
referred to n-Ge and was based on the deformation poten-
tial approximation. The idea was that deformation lifts the
degeneracy of the equivalent electron valleys, which leads to
a redistribution of the electrons over the valleys. In turn, such
redistribution changes the speed of sound depending on the
direction and polarization of the sound waves and also affects
the sound speed in the presence of uniaxial stress. This theory
was extended to silicon and the corresponding measurements
were done by Hall [20]. However, Hall also observed the
change of the speed of transverse sound waves and the effect
of stress on sound propagation in the geometries, where these
effects are due to shear deformation and do not arise in the
deformation potential model. A theory of the change of the
linear shear elastic constant in silicon due to the intervalley
redistribution of the electrons was developed by Cerdeira and
Cardona [21].

As we show, in mesoscopic systems, the strain-induced
redistribution of the electrons over the valleys of the conduc-
tion band leads to the previously unexplored strong fourth-
order nonlinearity of the vibrational modes. This nonlinearity
gives a major contribution to the amplitude dependence of
the vibration frequency. The redistribution also leads to a
temperature dependence of the frequencies. The magnitudes
of the effects sensitively depend on the mode structure. We
describe them for several types of modes, including those
studied in the experiment [17,18] and qualitatively compare
the results with the observations. The theoretical results refer to
both degenerate and nondegenerate electron systems. Specific
calculations are done for silicon resonators.

In Sec. II, we give, for completeness, the expressions for the
mode normalization and the amplitude-dependent frequency
shift of coupled nonlinear modes in a nano- or microsystem.
In Sec. III and Appendix A, we provide expressions for the
electron-phonon coupling induced change of the elasticity
parameters, including the parameters of quartic nonlinearity. In
Sec. IV, we discuss the asymptotic behavior of the parameters
of quartic nonlinearity for low and high electron density and
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give their explicit form for silicon. In Sec. V, we calculate
the nonlinear frequency shift for several frequently used
vibrational modes in single-crystal silicon systems and show
the dependence of this shift on the electron density and
temperature. The explicit analytical expressions are given
in Appendices C and D. Section VI contains concluding
remarks.

II. NONLINEAR FREQUENCY SHIFT
OF LOW-FREQUENCY EIGENMODES

Of primary interest for nano- and micromechanical systems
are comparatively low-frequency modes with wavelength on
the order of the maximal size of the system. Examples are
provided by long-wavelength flexural modes of nanotubes,
nanobeams, and nano/micro-membranes, or acoustic-type
modes in microplates or beams. These modes are easy to excite
and detect. We will enumerate them by index ν. Their dynamics
is described by the elasticity theory [22]. The spatial structure
of the displacement field of a mode u(ν)(r) in the harmonic
approximation is determined by the boundary conditions. We
will choose u(ν)(r) dimensionless, so that in our finite-size
system ∫

dr u(ν)(r) · u(ν ′)(r) = V δνν ′ . (1)

Here, V is the volume of the system. We assumed that the mode
eigenfrequencies ων are nondegenerate; including degenerate
modes is straightforward. For simplicity, we also assumed
that the system is spatially uniform; an extension to spatially
nonuniform systems is straightforward as well.

We emphasize the distinction of the normalization (1)
from the conventional normalization for bulk crystals, where
ν corresponds to the wave vector and the branch number,
and the normalization integral is independent of the volume.
The normalization (1) is convenient for the analysis of low-
frequency modes with the discrete spectrum characteristic of
mesoscopic systems. Such modes are standing waves, and
therefore vectors u(ν) can be chosen real.

The low-frequency part of the displacement can be written
as

u(r,t) =
∑

ν

Qν(t)u(ν)(r). (2)

Functions Qν(t) give the mode amplitudes. In the harmonic ap-
proximation, the dynamics of the standing waves is described
by the Hamiltonian

Hh = 1

2

∑
ν

(
M−1P 2

ν + Mω2
νQ

2
ν

)
, (3)

where Pν is the momentum of mode ν and M is the mass of
the system.

The anharmonicity of the crystal leads to mode-mode
coupling. Within the elasticity theory this coupling is described
by the terms in the Hamiltonian, which are cubic and quartic
in the strain tensor. We will not consider higher-order terms,
which are small for the mode amplitudes of interest. From the
expansion (2), we obtain the nonlinear part of the Hamiltonian

in the form

Hnl = 1

3

∑
βν1ν2ν3Qν1Qν2Qν3

+ 1

4

∑
γν1ν2ν3ν4Qν1Qν2Qν3Qν4 . (4)

Equation (4) is essentially an expansion in the ratios of the
mode amplitudes to their characteristic wavelengths that are
of the order of the appropriate linear dimension of the system.
This is why mesoscopic systems are of particular interest,
as here vibrations of low-frequency eigenmodes become
nonlinear even for small vibration amplitudes.

A familiar consequence of nonlinearity in nano- and
micromechanical systems is the dependence of the vibration
frequency of a mode on its own amplitude and on the
amplitudes of other modes, see Ref. [12] for a review. In
particular, the change δων of the mode frequency due to the
vibrations of the mode itself, Qν(t) = Aν cos ωνt , is [23,24]

δων ≈
[

3γν

8Mων

−
∑
ν ′

β2
ννν ′

(
3ω2

ν ′ − 8ω2
ν

)
4M2ω3

ν

(
ω2

ν ′ − 4ω2
ν

)]
A2

ν, (5)

where γν ≡ γνννν and we kept the terms of the first order in γ

and the second order in β.
The nonlinear mode coupling (4) leads also to the frequency

shift due to thermal vibrations of the modes. The dominating
contribution to this shift for low-frequency modes comes from
their coupling to modes with frequencies ∼kBT /h̄, which have
a much higher density of states. This shift is described by
an expression that is similar to Eq. (5) with A2

ν replaced by
A2

ν ′ ∼ kBT /Mω2
ν ′ and placed under the sum over ν ′, in the

classical limit.

III. THE NONLINEARITY DUE TO THE
ELECTRON-PHONON COUPLING

We will consider the vibration nonlinearity due to the
electron-phonon coupling in multi-valley semiconductors with
cubic symmetry, silicon and germanium being the best known
examples. In such semiconductors, the energy valleys of
the conduction band are located at high-symmetry axes of
the Brillouin zone. Strain lifts the symmetry and thus the
degeneracy of the valleys.

The simplest mechanism of the electron-phonon coupling is
the deformation potential. Here, the energy shift δEα of valley
α is determined by the deformation potential parameters �u

and �d . Parameter �u gives the valley shift due to the strain
along the symmetry axis of the valley. In contrast, parameter
�d gives the shift related to dilatation; such shift is the same
for all valleys. These parameters are well known for various
semiconductors [25]. In terms of the strain tensor εij , we have
δEα = ∑

ij �
(α)
ij εji , where �̂(α) = �dÎ + �ue(α) ⊗ e(α), with

e(α) being the unit vector along the symmetry axis of the valley.
We use the hat symbol to indicate tensors and symbol “⊗” to
indicate tensor products (e(α) ⊗ e(α) singles out the strain along
the axis of valley α). The analysis below is not limited to the
deformation potential approximation. An important extension
will be discussed using silicon as an example.

We assume that the strain varies in time and space
slowly compared to the reciprocal rate of intervalley electron
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scattering and the intervalley scattering length, respectively.
Then the electron system follows the strain adiabatically. The
electron density n(α)(r) in valley α is decreased or increased de-
pending on whether the bottom of the valley goes up or down.
In the single-electron approximation and for the deformation
potential coupling, the electron free energy density for a given
strain is Fe = ∑

α{fe[n(α)(r)] + n(α)(r)
∑

ij �
(α)
ij εji(r)} where

fe[n(r)] is the free energy density for electrons with density
n(r) in a valley in the absence of coupling to phonons.

The electro-neutrality requires that the total electron density
summed over the valleys be constant. The free energy density
Fe has to be minimized over n(α)(r) to meet this constraint.
This gives the change of the electron chemical potential δμ

due to strain ε̂. The resulting increment of the electron free
energy density has the form of a series expansion in the strain
tensor,

δFe = 
̂1 · ε̂ + 1
2 
̂2 · ε̂ ⊗ ε̂ + 1

6 
̂3 · ε̂ ⊗ ε̂ ⊗ ε̂

+ 1
24 
̂4 · ε̂ ⊗ ε̂ ⊗ ε̂ ⊗ ε̂ + . . . . (6)

Here, 
̂1, 
̂2, 
̂3, and 
̂4 are tensors of ranks 2, 4, 6, and
8, respectively. They are contracted with the tensor products
of the strain tensor ε̂. Respectively, 
̂k are the electronic
contributions to the linear (for k = 2) and nonlinear (for k > 2)
elasticity parameters of the crystal. These contributions are
isothermal, but since the change of the mode frequencies from
the electron-phonon coupling is small and the nonlinearity is
also small, the difference with the adiabatic expressions can
be disregarded.

To the third order in ε̂, the expression for δFe in terms of
the shift of the valleys was found by Keyes [19] in the analysis
of sound wave propagation. However, to find the parameters
of the quartic nonlinearity of resonant modes in small systems,
which is of primary interest to us, we also need to keep quartic
terms in Eq. (6).

As seen from the explicit form of the parame-
ters of the expansion (6) given in Appendix A, 
̂k ∝
�u[�u/ max(μ0,kBT )]k−1 (k = 1,2, . . . ), where μ0 is the
electron chemical potential in the absence of strain; it is
determined by the total (summed over the valleys) electron
density n. Of central importance for the analysis is that
parameter �u/ max(μ0,kBT ) ∼ 103 for electron densities n ∼
1019 cm−3 and room temperatures, i.e.,

�u/ max(μ0,kBT ) � 1. (7)

As a consequence, the coefficients at the nonlinear in ε̂ terms
in Eq. (6) quickly increase with the increasing order of the
nonlinearity [the overall series (6) is converging fast because
of the smallness of the strain tensor].

The increase of 
̂k with k allows us to keep in ε̂

only the terms linear in the lattice displacement, i.e., to
set εij = (1/2)(∂ui/∂xj + ∂uj/∂xi), where ui and xi are
the components of the displacement and the coordinates,
respectively. Indeed, in this case, a kth term of the series (6) is
of order k in the displacement. If we included the quadratic in
∂ui/∂xj term into one of the ε̂ tensors in the kth term, this term
would become of order k + 1 in the displacement. However,
for linear ε̂, the (k + 1)th term in the series (6) is also of the
(k + 1)th order in the displacement, but is larger by factor
�u/ max(μ0,kBT ). We note that for the modes that involve

rotation, one should use the relative lattice displacement u(r)
rather than the overall displacement [22].

For linear ε̂, the total strain is a sum of partial contributions
of strain from individual modes. For mode ν, such partial
contribution is expressed in terms of the scaled displace-
ment u(ν)(r) [see Eq. (2)] as ε̂ = Qνε̂

(ν), where ε
(ν)
ij (r) =

1
2 [∂u

(ν)
i (r)/∂xj + ∂u

(ν)
j (r)/∂xi]. We note that, in contrast to

the dimensionless strain tensor ε̂, tensor ε̂(ν) has dimension
[length]−1.

From Eq. (6), we find the electronic contributions to the
nonlinearity parameters β(e)

ν1ν2ν3
,γ (e)

ν1ν2ν3ν4
in Hamiltonian (4),

β(e)
ν1ν2ν3

= 1

2

∫
dr 
̂3 · ε̂(ν1) ⊗ ε̂(ν2) ⊗ ε̂(ν3),

γ (e)
ν1ν2ν3ν4

= 1

6

∫
dr 
̂4 · ε̂(ν1) ⊗ ε̂(ν2) ⊗ ε̂(ν3) ⊗ ε̂(ν4), (8)

where ε̂(ν) ≡ ε̂(ν)(r); tensors 
̂k are independent of r.
Similarly, the electronic contribution to the eigenfrequency

is

�ω(e)
ν = 1

2Mων

∫
dr 
̂2 · ε̂(ν) ⊗ ε̂(ν). (9)

Generally, the term ∝
̂2 leads to mode mixing; however, if the
mode frequencies are nondegenerate, this mixing is weak and
can be disregarded, to the leading order in the electron-phonon
coupling. One can see that the effect of the static stress ∝
̂1

can be disregarded as well.
The frequency change (9) depends on temperature because

of the temperature dependence of 
̂2. The nonlinearity (8) also
leads to a temperature dependence of the mode eigenfrequency.
Together they modify the temperature dependence of the
mode eigenfrequencies compared to that of undoped crystals.
This modification often weakens the temperature dependence
of the eigenfrequencies, which proves very important for
applications of micromechanical systems in devices that work
in a broad temperature range [26].

Equations (6)–(9) are generic and apply beyond the
deformation potential approximation. This is of particular
importance for silicon. Here, the electron band valleys lie on
the 〈100〉 axes close to the X points on the zone boundaries
where two electron energy bands cross. Lattice strain can lead
to a band splitting at X points and a shift of the valleys [27,28].
Importantly, this shift results from a shear strain, which does
not lead to a linear in the strain shift in the deformation
potential approximation. The valley shift is quadratic in ε̂ in
this case, as explained in Appendix A, which corresponds to an
effectively two-phonon coupling. The coupling parameter �sh

is quadratic in the strain-induced band splitting, see Eq. (A2).
It is large, much larger than the constant �u. Therefore the
arguments given below Eq. (7) apply in this case as well. For
purely shear strain in silicon, terms of odd order in ε̂ in δFe,
Eq. (6), vanish.

IV. EXPLICIT FORM OF THE TENSORS
OF NONLINEAR ELASTICITY

Tensors 
̂n can be obtained by minimizing the free energy
density of the electron system for a given strain and expanding
the result in a series in ε̂. A general procedure that allows one to
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TABLE I. The change of the components of the nonlinear elasticity tensors due to the strain-induced electron redistribution between
equivalent energy valleys in doped silicon. The coordinate axes are chosen along the 〈100〉 axes. Parameter �sh characterizes the effectively
two-phonon coupling to shear strain. This parameter as well as function F1/2(x) are defined in Appendix A; x = μ0/kBT and n is the electron
density.

δc144 = −2δc155
1
9 n�u�shC1 C1 = F ′

1/2/F1/2kBT = d ln n/dμ0

δc1111 = −2δc1112 = 2δc1122
2

27 n�4
uC2 C2 = (kBT )−3F ′ 2

1/2[d2(1/F ′
1/2)/dx2]/F1/2

= (dn/dμ0)2[d2(dμ0/dn)/dμ2
0]/n

δc1144 = −2δc1155 = −2δc1244 = δc1266 − 1
27 n�2

u�shC3 C3 = F ′′
1/2/F1/2(kBT )2 = n−1d2n/dμ2

0

δc4444 = −6δc4455 − 1
6 n�2

shC4 C4 = F ′
1/2/F1/2kBT = d ln n/dμ0

find the components 
̂n for n � 4 is described in Appendix A.
Using the symmetry arguments, the elasticity tensors are
conveniently written in the contracted (Voigt) notation where
the symmetric strain tensor is associated with a six-component
vector. Then the nonlinear elasticity tensors 
̂3 and 
̂4 become
tensors of rank three and four in the corresponding vector
space. We use notation δĉ for tensors 
̂ in these notations to
emphasize that we are calculating corrections to the nonlinear
elasticity tensors due to the electron-phonon coupling.

The explicit expressions for the nonlinear elasticity tensors
δĉ are given in Table I. They refer to silicon and include the
contributions that come from both the deformation potential
coupling and from the splitting of the electron bands due to
shear strain. In the deformation potential approximation, the
components of the third-rank tensor δĉ, which determine the
cubic in the strain terms in the free energy, were found earlier
[20]. Therefore we give only the components that contain a
contribution from shear strain.

The fourth-rank tensor δĉ determines the quartic in the
strain terms in the free energy and has not been discussed
before, to the best of our knowledge. We give all independent
components of this tensor. It is expressed in terms of the
derivative of the electron density n over the chemical potential
in the absence of strain μ0, which is a familiar thermodynamic
characteristic. It is intuitively clear that the considered effect
of the change of the electron density in different valleys in
response to strain should be related to the derivative dn/dμ0.
Interestingly, because we consider nonlinear response to strain,
the expressions in Table I contain also higher-order derivatives
of n over μ0. As we will see, this leads to a nontrivial behavior
of the nonlinear frequency shift with varying temperature
and density. The considered mechanism of the strain-induced
intervalley electron redistribution does not contribute to the
components c1123 and c1456, therefore δc1123 = δc1456 = 0.

Nonlinear elasticity in the limiting cases

The expressions for δĉ simplify in the case of low doping
(or high temperature), where the electron gas is strongly non-
degenerate, and in the opposite case of a strongly degenerate
electron gas. For a nondegenerate gas, where the chemical
potential in the absence of strain is μ0 < 0,|μ0| � kBT , we
have in Table I F1/2(x) = 1

4π1/2ex with x = μ0/kBT . The
μ0-dependent factors exp(μ0/kBT ) in F1/2 and its derivatives
cancel each other in the expressions for δĉ and drop out
from these expressions. The dependence of δĉ on density is
then just linear, δĉ ∝ n. Parameters C1,...,4 in Table I depend

only on temperature, C1 ∝ T −1, C2 ∝ T −3, C3 ∝ T −2, and
C4 ∝ T −1.

The decrease of the nonlinear elasticity parameters with
increasing temperature in a nondegenerate electron gas is
easy to understand. The effect we consider is determined by
the competition between the energetically favorable unequal
population of the electron energy valleys in a strained crystal
and the entropically more favorable equal valley population.
With increasing temperature the entropic factor becomes
stronger, leading to a smaller population difference and thus
smaller effect of the electron system on the vibrations.

For strong doping, where μ0/kBT � 1, we have μ0 ∝
n2/3, and then F1/2(x) ≈ 2

3x3/2 with x = μ0/kBT . Therefore
parameters C1,...,4 in Table I become temperature independent,
with nC1 ∝ n1/3,nC2 ∝ n−1,nC3 ∝ n−1/3, and C4 ∝ n1/3.

The results on the asymptotic behavior of the corrections to
nonlinear elasticity are not limited to silicon. Since parameters
C1,2,3,4 are given by the coefficients in the general expansion
of the free energy in strain, (A1), these results can be applied
to the nonlinear elasticity induced by the electron-phonon
coupling in other multivalley semiconductors. To illustrate this
point, in Appendix B, we give δĉ tensor in germanium.

The difference between the asymptotic behavior of the
tensors δĉ in the limits of nondegenerate and strongly
degenerate electron gas can lead to a peculiar density and
temperature dependence of the nonlinear frequency shift of
the vibrational modes. It comes from the coefficients C1,...,4

containing higher-order derivatives of n with respect to μ0. In
the transition region μ0 ∼ kBT , thinking of the competition
between the entropic and energetic factors does not provide
a simple insight into the behavior of δĉ, as both the energy
and the entropy are complicated functions of density and
temperature.

V. DOPING-INDUCED NONLINEARITY OF SIMPLE
VIBRATIONAL MODES

The nonlinear elasticity tensors in Table I give the doping-
induced contributions to the nonlinearity parameters of the
eigenmodes of micro- and nanomechanical systems. These
contributions are described by Eq. (8). As mentioned before,
an important characteristic of the mode nonlinearity is the
dependence of the mode frequency on the vibration amplitude.
To the leading order, it is given by Eq. (5). This dependence
has a contribution from the nonlinearity of an undoped crystal,
which is quadratic in the parameters of the cubic nonlinearity;
for example, if the latter is described by the Grüneisen constant,
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the corresponding contribution is quadratic in this constant.
It is typically small. There is also a contribution from the
quartic nonlinearity; the parameters of such nonlinearity are
not known in undoped crystals and are not expected to be
large. Respectively, the amplitude dependence of the vibration
frequency for low-frequency modes in weakly doped single-
crystal micro-mechanical systems is relatively weak [18].

A feature of the doping-induced nonlinearity described by
Table I is that the quartic in the strain term in the free energy has
a large coefficient compared to the cubic term, cf. Eq. (7) and
the discussion below this equation. Therefore, in Eq. (5) for the
amplitude dependence of vibration frequency, one can keep
only the Duffing nonlinearity constant γν . The contribution
from the cubic nonlinearity terms ∝β2

ννν ′ can be disregarded.
For a mode ν, the doping-induced contribution to γν is equal
to γ (e)

νννν in Eq. (8).
To find the dependence of the mode frequency on the

vibration amplitude, we go through the following steps. First,
we find the normal modes of interest for the given geometry
of the system, with account taken of the boundary conditions,
and normalize the displacements u(ν)(r) as indicated in Eq. (1).
We use u(ν)(r) to find the strain tensor ε̂(ν)(r). The result is
substituted into Eq. (8) and is convoluted with tensor 
̂4,
giving the value of γν , which is then used in Eq. (5) to find the
frequency dependence on the vibration amplitude δων .

Of particular interest is the relative frequency shift δων/ων .
To find this shift to the leading order, one can disregard
nonlinearity when calculating the eigenfrequency ων . Then,
from Eq. (5),

δων

ων

= 3γνA
2
ν

8
∫

dr
̂(f)
2 · ε̂(ν) ⊗ ε̂(ν)

, (10)

where 
̂
(f)
2 is the full tensor of linear elasticity, which includes

the major term of the linear elasticity of the undoped crystal
and the doping-induced correction 
̂2.

An important feature of the relative shift δων/ων is its
scaling with the size of the system. The vibration amplitude
Aν in Eq. (10) can be scaled by the lateral dimension L,
for example the length of a nanobeam or a nanowire for an
extension mode, or the size of the square for a Lamé mode,
or the diameter of a disk for a breathing mode in a disk.
Respectively, we write Aν = ηνL. Then, if one takes into

account the explicit form (8) of the parameter γν = γ (e)
νννν , one

finds from Eq. (10) that the ratio δων/(η2
νων) is independent of

the system size for the aforementioned modes. In this estimate
we used that the tensors 
̂ are material parameters and are
independent of the geometry. We also used that the modes of
interest have typical wavelength ∼L, and therefore ε̂(ν) scales
as L−1.

Most of the experiments in nano- and micromechanics are
done with nanobeams, nanowires, membranes, or thin plates.
In such systems the thickness is much smaller than the length
or, in the case of membranes or plates, the lateral dimensions.
Then, from the boundary condition of the absence of tangential
stress on free surfaces [22], it follows that the strain tensor ε̂

weakly depends on the coordinate normal to the surface. This
simplifies the denominator in Eq. (10), making it proportional
to the thickness. Similarly, from Eq. (8) γν is also proportional
to the thickness, and the thickness drops out of Eq. (10).

The explicit expressions for Mω2
ν and γν that determine

the denominator and the numerator in Eq. (10), respectively,
are given in Appendices C and D for the Lamé and extension
modes. These expressions are cumbersome, and it is conve-
nient to use symbolic programming to obtain them [29].

Temperature and electron density dependence of the scaled
nonlinear frequency shift

The scaled ratio δων/(η2
νων) that characterizes the relative

nonlinear frequency shift is shown in Fig. 1 for several modes
that are often used in single-crystal silicon MEMS. This ratio
depends on the type of the mode and the crystal orientation.
Figure 1 refers to high-symmetry crystal orientations, in which
case the modes have a comparatively simple spatial structure
and the surfaces can be made smooth. We used the values
�u = 8.8 eV [25], �sh = 300 eV, the effective mass for density
of states meff = 0.32me [28], and the temperature-dependent
linear elasticity parameters given in Ref. [30].

Figure 1 shows that the electron-redistribution induced
nonlinearity of vibrational modes is very strong. For the ratio
of the vibration amplitude to the system size η ∼ 10−4 and
the mode eigenfrequency ων/2π ∼ 10 MHz, the frequency
change can be as a large as δων/2π ∼ 0.1 kHz. This explains,
qualitatively, the observations [18]. A quantitative comparison

FIG. 1. Relative change δων/ων of the vibration frequency of a mode with the vibration amplitude ην scaled by the relevant size of the
system, cf. Eq. (10). The results refer to single crystal silicon resonators. Curves 1 and 2 refer to the first Lamé mode in square plates cut in
〈100〉 and 〈110〉 directions, respectively. In this case, the size of the resonator is the length of the side of the square. Curves 3 and 4 refer to the
first extension mode in beams cut in 〈100〉 and 〈110〉 directions, respectively. In this case, the size of the resonator is the length of the beam.
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with the experiment [18] is complicated, as the observations
refer to different samples. Our preliminary results show an
excellent quantitative agreement with the data obtained for the
same sample at different temperatures and for different types
of modes [31].

The nonlinear frequency shift displays several characteristic
features, as seen from Fig. 1. One of them is the strong
dependence of the shift on the type of the mode and the crystal
orientation. For both the Lamé and the extension mode, the
shift is much stronger for crystals cut out in 〈100〉 direction
than in 〈110〉 direction. This is a consequence of the electron
energy valleys lying along the 〈100〉 axes, making the system
more “responsive” to the lattice displacement along these axes.
Interestingly, in the both configurations the shifts for the Lamé
modes are larger than for the extension modes.

A somewhat unexpected feature is the nonmonotonic
dependence of the nonlinear frequency shift on the electron
density and temperature. The nonmonotoncity occurs in the
range where the electron system is close to degeneracy,
μ0/kBT ∼ 1, and it strongly depends on the crystal orien-
tation. It is much stronger for crystals cut in 〈100〉 than 〈110〉
directions. For a crystal cut in 〈110〉 direction, both the density
and temperature dependence of the shift are monotonic in the
case of the Lamé mode, whereas for the extension mode the
nonmonotonicity is weak.

The nonmonotonicity of the frequency shift stems from the
behavior of the parameters nC2,3,4 in the range μ0 ∼ kBT .
As seen from Table I, parameter nC2 exponentially increases
with the increasing μ0/kBT for negative μ0/kBT , but for
large positive μ0/kBT it falls off as (μ0/kBT )−3/2. It has
a pronounced maximum for μ0/kBT ≈ 0.6. Parameter nC3

also displays a maximum, which occurs for μ0/kBT ≈ 1.1. In
contrast, parameters nC1,4 depend on μ0/kBT monotonically.

The results of Appendixes C and D show that, for the Lamé
and extension modes in crystals cut in 〈100〉 direction, the
relative shift δων/ων is determined by coefficient nC2, which
explains the nonmonotonicity of the shift. For crystals cut
in 〈110〉, the shift of the Lamé mode is fully determined by
coefficient nC4 and is monotonic, whereas for the extension
mode the expression for the shift has contributions from
nC2, nC3, and nC4 that partly compensate each other, leading
to a comparatively small shift all together and its weak
nonmonotonicity.

VI. CONCLUSIONS

The results of this paper show that the electron-phonon
coupling strongly affects the nonlinearity of vibrational modes
in semiconductor-based nano- and micromechanical systems.
The mechanism of the effect is the strain-induced redistribution
of the electrons between the valleys of the conduction band.
The redistribution results from lifting the degeneracy of the
electron energy spectrum by the strain from a vibrational mode.
The analysis refers to the range of temperatures where the rate
of intervalley scattering strongly exceeds the frequencies of the
considered modes. In this case the valley populations follow
the strain adiabatically.

The change of the valley populations is a strongly nonlinear
function of the strain tensor. The respective expansion of the
free energy in the strain is an expansion in the strain multiplied

by the ratio of the electron-phonon coupling energy (in
particular, the deformation potential) to the chemical potential
of the electron system or the temperature. This ratio is large,
�103. It is this parameter that makes the nonlinearity of the
vibrational modes in doped semiconductor structures strong.

Of special interest in nano- and micromechanical systems
is the amplitude dependence of the vibration frequency. To
the leading order, it is determined by the quartic terms in
the expansion of the free energy in strain. These terms are
comparatively large in doped crystals.

We have calculated the nonlinear elasticity tensor that
describes the electron contribution to the terms in the free
energy, which are quartic in the strain. The explicit expressions
for the tensor components refer to semiconductors with the
valleys on 〈100〉 axes, in particular, to silicon. We have also
found this tensor for germanium. In silicon, along with the
deformation potential coupling, an important role is played
by the coupling to shear strain. Such strain lifts the band
degeneracy at the zone boundary and is effectively described
by a two-phonon coupling. We show that this coupling also
leads to strong nonlinearity of vibrational modes.

The parameter of the electron coupling to shear strain
in silicon is not easy to access in the experiment [28,32].
Measurements of the nonlinear frequency shift provide a
direct means for determining this parameter. In particular,
the nonlinear frequency shift of the fundamental Lamé mode
in a silicon plate cut along 〈110〉 axes is determined by
this parameter only, except for small corrections from the
nonlinearity of the undoped crystal.

We found that the nonlinear frequency shift strongly
depends on the type of a vibrational mode and the crystal
orientation. We also found that the ratio of the frequency shift
to the squared vibration amplitude can be profoundly non-
monotonic as a function of electron density and temperature.
The results provide an insight into the experimentally observed
strong mode nonlinearity in doped crystals [18]. In terms of
applications, they enable choosing the appropriate range of
doping and the temperature regime to optimize the operation
of nano- and micromechanical resonators.
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APPENDIX A: EXPANSION OF THE FREE ENERGY IN
TERMS OF THE STRAIN-INDUCED SHIFT OF THE

ENERGY VALLEYS

The major effect of a strain on the electron free energy
comes from the shift of the energy valleys. We will assume
that valley α is shifted in energy by δEα and the shift is small,
|δEα| � max(kBT ,μ0), where μ0 is the chemical potential in
the absence of strain. We further assume that the vibrations
are slow compared to the time it takes the electron system
to come, locally, to thermal equilibrium for given values
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of δEα , i.e., the temperature and the chemical potential are
the same in all valleys. Since for high electron densities the
thermal conductivity is high, the change of the temperature
compared to the ambient temperature can be disregarded; also,
as mentioned in the main text, the electron density n summed
over all valleys is constant.

The contribution F (α) of the electrons in valley α to the free
energy density can be written as F (α) = �(α) + μn(α) with

�(α) = −kBT

∫ ∞

0
dE ρ(E) log[1 + e(μ−E−δEα )/kBT ],

where ρ(E) is the electron density of states in a valley, which is
the same for all valleys, μ is the chemical potential, and n(α) =
−∂�(α)/∂μ is the electron density in valley α. Expanding F (α)

to the 4th order in the strain-induced shifts δEα , we find that, in
an N -valley semiconductor, the change δFe of the free energy
density summed over the valleys is

δFe

nkBT
= �ε + 1

2

F ′
1/2

F1/2

[
(�ε)2 − �2

ε

]
+ 1

6

F ′′
1/2

F1/2

[
�3

ε − 3�2
ε �ε + 2(�ε)3

]
+ 1

8

F ′′
1/2

2

F1/2F
′
1/2

[(
�2

ε

)2 − 2�2
ε (�ε)2 + (�ε)4

]
+ 1

24

F ′′′
1/2

F1/2

[
4�3

ε �ε − �4
ε − 6�2

ε (�ε)2 + 3(�ε)4
]
.

(A1)

Here, �m
ε = N−1 ∑

α(δEα/kBT )m. We use the standard nota-
tion F1/2(x) = ∫ ∞

0 dy y1/2/[1 + exp(y − x)]; primes indicate
differentiation over x, for example, F ′

1/2 ≡ dF1/2/dx. Func-
tion F1/2 and its derivatives are calculated for x = μ0/kBT .

Equation (A1) immediately gives the tensors 
̂n of the
expansion of the free energy increment (6) if one expresses
the shift δEα of the valleys in terms of the strain tensor. In
the deformation potential approximation, the relation between
δEα and ε̂ is given in the main text, see also Eq. (A2) below.

In the case of Si crystals, which are often used in
micromechanical resonators, an important contribution to δEα

comes from the shear-strain induced splitting of the electron
energy bands at the zone boundary. Shear strain does not lead
to the valley shift in the deformation potential approximation.
The overall shift of valley α, to the lowest order in the coupling
that causes it (i.e., to the first order in the deformation potential
where its contribution is nonzero and to the second order in
the band splitting for shear strain) is [28]

δEα =
∑
ij

�
(α)
ij εij − �shε

2
α, �sh = 4�2

u′

�E
. (A2)

Here we use that silicon has six valleys located at the 〈100〉
axes, and we chose the coordinate axes x, y, and z along
〈100〉. Respectively, the valley index α takes on three values
that correspond to the x, y, and z axes (the valleys lying on
the same axis, but in the opposite directions, are equivalent).
The strain εα , which enters the second term in the right-hand
side of Eq. (A2), is a component of the strain tensor εij with
i and j such that i,j 
= α and i 
= j . The parameter 2�u′ is

the interband matrix element of the electron-phonon coupling
calculated for the electron conduction bands �1 and �2′ at
the X point on the boundary of the Brillouin zone, where
the bands cross; �E is the energy separation between the
bands �1 and �2′ at the value of the wave vector k that
corresponds to the conduction band minimum. Parameter �sh

is the effective deformation potential of two-phonon coupling
to shear strain. The numerical value of �sh is not well known.
The experimental data give �u′ ≈ 7–8 eV [28,32] and the
numerical data on the band splitting give �E ≈ 0.7 eV [33]
so that �sh is in the range of 280–360 eV; this is essentially an
order of magnitude estimate.

In calculating δFe in Eq. (A1) we kept terms that are quartic
in ε̂. The components of the tensors 
̂k in Eq. (6) are expressed
in terms of δFe as

(
k)i1j1···kjk
= ∂kδFe

∂εi1j1 . . . ∂εikjk

. (A3)

Tensors 
̂ are symmetric with respect to the interchange
of indices ik ↔ jk and the pairs (ikjk) ↔ (ik′jk′). For the
considered long-wavelength strain, tensors 
̂k are independent
of coordinates. The corrections 
̂2 to the linear elasticity
tensors were found previously [20,21] and are not discussed
in this paper.

APPENDIX B: NONLINEAR ELASTIC CONSTANTS
OF GERMANIUM

In this section, we provide the corrections to the nonlinear
elastic constants of germanium, which are due to the redistri-
bution of the electrons over the valleys. Germanium has four
equivalent valleys in the conduction band, which are located
on the boundary of the Brillouin zone along 〈111〉 axes. We use
the Voigt notation and write the components of the corrections
to the nonlinear elasticity tensor δĉ in the frame where the axes
(x,y,z) are along the 〈100〉 directions of the crystal. Using the
results of Appendix A, we obtain

δc456 = n�3
uF

′′
1/2

27F1/2(kBT )2
,

δc4444 = n�4
u

81(kBT )3

(
3(F ′′

1/2)2

F1/2F
′
1/2

− F ′′′
1/2

F1/2

)
,

δc4455 = n�4
u

81(kBT )3

(
(F ′′

1/2)2

F1/2F
′
1/2

− F ′′′
1/2

F1/2

)
. (B1)

The notations are the same as in Appendix A and in Table I.
The electron-phonon coupling does not contribute to the other
third- and fourth-order elastic constants.

Corrections δc44 and δc456 for germanium were found by
Keyes [19]; however, his final expression for δc456 differs from
Eq. (B1) by a factor of 4 (our expressions for δc44 coincide
with Ref. [19]). Parameters δc4444 and δc4455 have not been
found before, to the best of our knowledge. In the limiting
cases, corrections δc4444 and δc4455 have the same dependence
on temperature and electron density as constant nC2 discussed
in Sec. IV A.
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APPENDIX C: DUFFING NONLINEARITY PARAMETER
FOR A LAMÉ MODE IN A SQUARE

SINGLE-CRYSTAL PLATE

We consider a square plate with side L and thickness h made
out of a single crystal with cubic symmetry. If the crystal is
cut out along 〈100〉 or 〈110〉 axes, one of the simplest modes is
the first Lamé mode [34]. The normalized displacement field
is

u(ν)
x =

√
2 cos(πx/L) sin(πy/L),

u(ν)
y = −

√
2 sin(πx/L) cos(πy/L). (C1)

Here, x and y axes are in the lateral plane along the sides of
the square, axis z is perpendicular to the plate, and u(ν)

z = 0.
Calculating the strain tensor for the displacement (C1) and
substituting the expressions into Eqs. (8) and the relation

Mω2
ν =

∫
dr
̂(f)

2 · ε̂(ν) ⊗ ε̂(ν), (C2)

for the plate cut out along 〈100〉 axes we obtain, in Voigt
notation for the elasticity tensors,

Mω2
ν = π2h(c11 − c12),

γν = 3π4h

16L2
(c1111 − 4c1112 + 3c1122). (C3)

If we consider silicon and take into account only the contri-
bution δĉ to the nonlinear elasticity tensor ĉ, with the account
taken of Table I, the expression for γν simplifies to

γν = (27π4h/32L2)δc1111. (C4)

For the Lamé mode cut along the 〈110〉 axis, if the tensors
are calculated in the axes 〈100〉, we have

Mω2
ν = 2π2hc44,

γν = (3π4h/2L2)δc4444. (C5)

Note that only coupling to shear strain contributes to the
nonlinearity parameter γν in this case.

APPENDIX D: DUFFING NONLINEARITY PARAMETER
FOR AN EXTENSION MODE IN A SINGLE-CRYSTAL

NARROW BEAM

We consider the fundamental extension mode in a thin
beam of length L with a rectangular cross-section of area
S � L2. The beam is cut along a symmetry axis, and the
sides are also along symmetry planes of a cubic crystal.
From the free-surface boundary conditions, the normalized
displacement field is [34]

u(ν)
x ≈

√
2 cos(πx/L),

u(ν)
y ≈

√
2πσ2

L
y sin(πx/L),

u(ν)
y ≈

√
2πσ3

L
z sin(πx/L). (D1)

This expression takes into account transverse compression that
accompanies beam extension and uses the smallness of the
beam cross-section; corrections ∼S/L2 are disregarded. The
transverse compression in a cubic crystal cut in a symmetric

direction is described by Poisson’s ratios σ2 and σ3. Generally,
they do not coincide. In Eq. (D1), the transverse coordinates y

and z are counted off from the center of the beam
For the longitudinal direction of the beam 〈100〉 and the

sides parallel to (100) planes, the Poisson parameters are
equal, σ2 = σ3 and σ ≡ σ2 = σ3 = c12/(c11 + c12). In this
case, Eqs. (8) and (C2) give

Mω2
ν = π2S

(
c11(c11 + c12) − 2c2

12

)
L(c11 + c12)

,

γν = (π4S/4L3)[c1111 − 8σc1112

+ 12σ 2(c1122 + c1123) − 8σ 3(c1112 + 3c1123)

+ 2σ 4(c1111 + 4c1112 + 3c1122)]. (D2)

The expression for γν is simplified if in the nonlinear
elasticity tensors we take into account only the contribution
from the electron-phonon coupling as given in Table I and also
allow for the interrelation between different components of the
tensor δĉ. Then for a silicon beam

γν = (π4S/4L3)(1 + σ )4δc1111. (D3)

For extension along 〈110〉 axis, with one side parallel to
(100) plane and the other side parallel to (11̄0) plane, the
Poisson’s ratios σ2 = σ (110,11̄0) and σ3 = σ (110,001) are
given in Ref. [35]. Then Eqs. (8) and (C2) give

Mω2
ν = 4π2S

L

c44
(
c11(c11 + c12) − 2c2

12

)
c11(c11 + c12 + 2c44) − 2c2

12

,

γν = π4S

32L3

[
c1111

(
σ 4

2 − 4σ 3
2 + 6σ 2

2 − 4σ2 + 8σ 4
3 + 1

)
+ 4c1112(σ2 − 1)

(
σ 3

2 + 2σ 2
2 σ3 − 3σ 2

2 − 4σ2σ3

+ 3σ2 + 8σ 3
3 + 2σ3 − 1

)
+ 3c1122(σ2 − 1)2

(
σ 2

2 − 2σ2 + 8σ 2
3 + 1

)
+ 24c1123σ3(σ2 − 1)2(σ2 + σ3 − 1)

+ 48c1144σ
2
3 (σ2 + 1)2 + 96c1244σ3(σ2 − 1)(σ2 + 1)2

+ 24c1155
(
σ 2

2 − 1
)2

+ 24c1266
(
σ 2

2 − 1
)2 + 8c4444(σ2 + 1)4

]
. (D4)

If in the nonlinear elasticity tensor ĉ we take into account only
the contribution δĉ from the electron-phonon coupling, in the
case of a silicon beam the expression for γν simplifies to

γν = π4S

32L3
((σ2 − 2σ3 − 1)4δc1111 + 24(σ2 + 1)2

× (σ2 − 2σ3 − 1)2δc1144 + 16(σ2 + 1)4δc4444). (D5)

Expressions (D2) and (D4) were generated using a computer
code to calculate the sums and integrals in Eq. (8).

085426-8



STRONG VIBRATION NONLINEARITY IN . . . PHYSICAL REVIEW B 95, 085426 (2017)

[1] D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Phys.
Rev. Lett. 92, 166801 (2004).

[2] N. M. Chtchelkatchev, W. Belzig, and C. Bruder, Phys. Rev. B
70, 193305 (2004).

[3] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 95,
056801 (2005).

[4] F. Pistolesi and S. Labarthe, Phys. Rev. B 76, 165317 (2007).
[5] O. Usmani, Y. M. Blanter, and Y. V. Nazarov, Phys. Rev. B 75,

195312 (2007).
[6] R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold,

E. Mariani, M. G. Schultz, F. von Oppen, and K. Ensslin, Nat.
Phys. 5, 327 (2009).

[7] G. A. Steele, A. K. Huttel, B. Witkamp, M. Poot, H. B.
Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant,
Science 325, 1103 (2009).

[8] B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, and
A. Bachtold, Science 325, 1107 (2009).

[9] M. N. Kiselev, K. A. Kikoin, L. Y. Gorelik, and R. I. Shekhter,
Phys. Rev. Lett. 110, 066804 (2013).

[10] G. Micchi, R. Avriller, and F. Pistolesi, Phys. Rev. Lett. 115,
206802 (2015).

[11] A. N. Cleland, Foundations of Nanomechanics: from Solid-State
Theory to Device Applications (Springer, Berlin, 2003).

[12] R. Lifshitz and M. C. Cross, in Review of Nonlinear Dynamics
and Complexity, edited by H. G. Schuster (Wiley, Weinheim,
2008), pp. 1–52.

[13] H.-Y. Hao and H. J. Maris, Phys. Rev. B 64, 064302 (2001).
[14] A. V. Akimov, A. V. Scherbakov, P. J. S. van Capel, J. I. Dijkhuis,

T. Berstermann, D. R. Yakovlev, and M. Bayer, J. Phys. Conf.
Ser. 92, 012002 (2007).

[15] S. Ghaffari, S. A. Chandorkar, S. S. Wang, E. J. Ng, C. H. Ahn,
V. Hong, Y. S. Yang, and T. W. Kenny, Sci. Rep. 3, 3244 (2013).

[16] M. Sansa, E. Sage, E. C. Bullard, M. Gely, T. Alava, E. Colinet,
A. K. Naik, G. L. Villanueva, L. Duraffourg, M. L. Roukes, G.
Jourdan, and S. Hentz, Nat. Nanotech. 11, 552 (2016).

[17] M. Shahmohammadi, H. Fatemi, and R. Abdolvand, in IEEE
26th International Conference on Micro Electro Mechanical
Systems (IEEE, 2013), pp. 793–796.

[18] Y. Yang, E. J. Ng, P. M. Polunin, Y. Chen, I. B. Flader,
S. W. Shaw, M. I. Dykman, and T. W. Kenny, IEEE J.
Microelectromech. Syst. 25, 859 (2016).

[19] R. Keyes, IBM J. Res. Dev. 5, 266 (1961).
[20] J. J. Hall, Phys. Rev. 161, 756 (1967).
[21] F. Cerdeira and M. Cardona, Phys. Rev. B 5, 1440 (1972).
[22] L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed.

(Butterworth-Heinemann, Oxford, 1986).
[23] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Elsevier,

Amsterdam, 2004).
[24] M. I. Dykman and M. A. Krivoglaz, Zh. Eksp. Teor. Fiz. 64, 993

(1973) [JETP 37, 506 (1973)].
[25] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors

(Springer, Berlin, 2001).
[26] E. J. Ng, V. Hong, Y. Yang, C. H. Ahn, C. L. M. Evenhart, and

T. W. Kenny, JMEMS 24, 730 (2015).
[27] G. L. Bir and G. E. Pikus, Symmetry and Strain-induced Effects

in Semiconductors (Wiley, New York, 1974).
[28] J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138,

A225 (1965).
[29] The program that performs the analytical calculations and

evaluates the numerical values of the parameters is available
at http://www.pa.msu.edu/people/dykman/nonlinear_elasticity.

[30] Y. P. Varshni, Phys. Rev. B 2, 3952 (1970).
[31] D. Heinz, K. Moskovtsev, and T. W. Kenny (unpublished).
[32] L. D. Laude, F. H. Pollak, and M. Cardona, Phys. Rev. B 3, 2623

(1971).
[33] B. D. Malone and M. L. Cohen, J. Phys. C 25, 105503 (2013).
[34] K. F. Graff, Wave Motion in Elastic Solids (Dover, New York,

1991).
[35] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S.

Stafstrom, Nature (London) 392, 362 (1998).

085426-9

https://doi.org/10.1103/PhysRevLett.92.166801
https://doi.org/10.1103/PhysRevLett.92.166801
https://doi.org/10.1103/PhysRevLett.92.166801
https://doi.org/10.1103/PhysRevLett.92.166801
https://doi.org/10.1103/PhysRevB.70.193305
https://doi.org/10.1103/PhysRevB.70.193305
https://doi.org/10.1103/PhysRevB.70.193305
https://doi.org/10.1103/PhysRevB.70.193305
https://doi.org/10.1103/PhysRevLett.95.056801
https://doi.org/10.1103/PhysRevLett.95.056801
https://doi.org/10.1103/PhysRevLett.95.056801
https://doi.org/10.1103/PhysRevLett.95.056801
https://doi.org/10.1103/PhysRevB.76.165317
https://doi.org/10.1103/PhysRevB.76.165317
https://doi.org/10.1103/PhysRevB.76.165317
https://doi.org/10.1103/PhysRevB.76.165317
https://doi.org/10.1103/PhysRevB.75.195312
https://doi.org/10.1103/PhysRevB.75.195312
https://doi.org/10.1103/PhysRevB.75.195312
https://doi.org/10.1103/PhysRevB.75.195312
https://doi.org/10.1038/nphys1234
https://doi.org/10.1038/nphys1234
https://doi.org/10.1038/nphys1234
https://doi.org/10.1038/nphys1234
https://doi.org/10.1126/science.1176076
https://doi.org/10.1126/science.1176076
https://doi.org/10.1126/science.1176076
https://doi.org/10.1126/science.1176076
https://doi.org/10.1126/science.1174290
https://doi.org/10.1126/science.1174290
https://doi.org/10.1126/science.1174290
https://doi.org/10.1126/science.1174290
https://doi.org/10.1103/PhysRevLett.110.066804
https://doi.org/10.1103/PhysRevLett.110.066804
https://doi.org/10.1103/PhysRevLett.110.066804
https://doi.org/10.1103/PhysRevLett.110.066804
https://doi.org/10.1103/PhysRevLett.115.206802
https://doi.org/10.1103/PhysRevLett.115.206802
https://doi.org/10.1103/PhysRevLett.115.206802
https://doi.org/10.1103/PhysRevLett.115.206802
https://doi.org/10.1103/PhysRevB.64.064302
https://doi.org/10.1103/PhysRevB.64.064302
https://doi.org/10.1103/PhysRevB.64.064302
https://doi.org/10.1103/PhysRevB.64.064302
https://doi.org/10.1088/1742-6596/92/1/012002
https://doi.org/10.1088/1742-6596/92/1/012002
https://doi.org/10.1088/1742-6596/92/1/012002
https://doi.org/10.1088/1742-6596/92/1/012002
https://doi.org/10.1038/srep03244
https://doi.org/10.1038/srep03244
https://doi.org/10.1038/srep03244
https://doi.org/10.1038/srep03244
https://doi.org/10.1038/nnano.2016.19
https://doi.org/10.1038/nnano.2016.19
https://doi.org/10.1038/nnano.2016.19
https://doi.org/10.1038/nnano.2016.19
https://doi.org/10.1109/JMEMS.2016.2586099
https://doi.org/10.1109/JMEMS.2016.2586099
https://doi.org/10.1109/JMEMS.2016.2586099
https://doi.org/10.1109/JMEMS.2016.2586099
https://doi.org/10.1147/rd.54.0266
https://doi.org/10.1147/rd.54.0266
https://doi.org/10.1147/rd.54.0266
https://doi.org/10.1147/rd.54.0266
https://doi.org/10.1103/PhysRev.161.756
https://doi.org/10.1103/PhysRev.161.756
https://doi.org/10.1103/PhysRev.161.756
https://doi.org/10.1103/PhysRev.161.756
https://doi.org/10.1103/PhysRevB.5.1440
https://doi.org/10.1103/PhysRevB.5.1440
https://doi.org/10.1103/PhysRevB.5.1440
https://doi.org/10.1103/PhysRevB.5.1440
https://doi.org/10.1103/PhysRev.138.A225
https://doi.org/10.1103/PhysRev.138.A225
https://doi.org/10.1103/PhysRev.138.A225
https://doi.org/10.1103/PhysRev.138.A225
http://www.pa.msu.edu/people/dykman/nonlinear_elasticity
https://doi.org/10.1103/PhysRevB.2.3952
https://doi.org/10.1103/PhysRevB.2.3952
https://doi.org/10.1103/PhysRevB.2.3952
https://doi.org/10.1103/PhysRevB.2.3952
https://doi.org/10.1103/PhysRevB.3.2623
https://doi.org/10.1103/PhysRevB.3.2623
https://doi.org/10.1103/PhysRevB.3.2623
https://doi.org/10.1103/PhysRevB.3.2623
https://doi.org/10.1038/32842
https://doi.org/10.1038/32842
https://doi.org/10.1038/32842
https://doi.org/10.1038/32842



