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Vibrational effects in charge transport through a molecular double quantum dot
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Recent progress in the field of molecular electronics has revealed the fundamental importance of the coupling

between the electronic degrees of freedom and specific vibrational modes. Considering the examples of a
molecular dimer and a carbon nanotube double quantum dot, we here theoretically investigate transport through a
two-site system that is strongly coupled to a single vibrational mode. Using a quantum master equation approach,
we demonstrate that, depending on the relative positions of the two dots, electron-phonon interactions can lead

to negative differential conductance and suppression of the current through the system. We also discuss the
experimental relevance of the presented results and possible implementations of the studied system.
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I. INTRODUCTION

Molecular electronics has long promised reduced energy
consumption, increased capability, as well as cheaper man-
ufacturability of electronic circuits. However, the field is
only now entering a new phase of research based on single-
molecule devices [1,2]. There now exist several methods
which enable efficient fabrication of single-molecule junc-
tions. Break junctions [3,4] and graphene nanogaps [5,6] allow
single molecules to bridge the gap between a source and a
drain electrode, while alternative approaches rely on various
scanning probe techniques [7,8]. This is not only paving the
way towards practical molecular electronics, but also allows
for experimental investigation of charge transport through
complex molecular structures.

The effects of the electron-phonon coupling on the charge
transport properties of single-molecule devices have been
observed experimentally in a variety of molecular systems
[9-14] and carbon nanotube (CNT) quantum dots [15-19].
These differ significantly from typical solid-state quantum dots
in several respects. The electronic degrees of freedom are often
strongly coupled to specific vibrational modes (rather than en-
tire phonon baths). They thus bear some resemblance to quan-
tum shuttles [20-23] and other mesoscopic systems [24,25].
The specific impact of the electron-phonon coupling on charge
transport can vary greatly from one nanoscopic system to
another, depending on the number of vibrational modes and
electronic states involved in the transport as well as the strength
of interactions between them. Coupling to a single vibrational
mode typically results in equally spaced conductance peaks
as consecutive vibrational levels enter the bias window [26].
Additional less trivial effects have also been demonstrated.
These include: negative differential conductance (NDC),
rectification, local cooling, as well as large asymmetries in the
conductance maps [13,27-35]. Strong electron-phonon cou-
pling has also been experimentally shown to suppress current
through single-molecule junctions [36,37] and CNT quantum
dots [15] (so-called Franck-Condon (FC) blockade [38]).
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Long recognized as important [39], the role of electron-
phonon coupling in these systems has been investigated the-
oretically in the past using different methodologies. They are
primarily based on rate equation [33,40-42], quantum master
equation [29,43-47], or nonequilibrium Green’s functions
[27,48-52] methods, although other approaches have also
been suggested [53,54]. Even though quantum master equation
methods are typically limited to a perturbative treatment
of the lead-molecule (lead-quantum dot) interactions, they
provide a powerful and yet intuitive technique for investigating
vibrationally coupled quantum transport. They can be used
to account for the interactions between electronic degrees of
freedom and single vibrational modes, or whole phonon baths
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FIG. 1. Schematic illustrations of molecular double quantum dot
systems discussed. Both sites are coupled to the same vibrational
mode as well as to respective electrodes. Exemplary phonon modes
are schematically depicted above. (a) A carbon nanotube with a pair
of quantum dots (in purple) formed by applying a gate potential (as
labeled). (b) A single-molecule junction based on a zinc-porphyrin
dimer bridging a pair of graphene electrodes. Each of the porphyrin
sites acts as a quantum dot.
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[55,56] (also with nontrivial spectral structure), or both of
those simultaneously [57].

Here we study transport properties of a double quantum
dot (DQD) coupled to a single vibrational (phonon) mode,
depicted schematically in Fig. 1. Possible experimental im-
plementations of such a system include carbon nanotube
DQDs which can be nowadays almost routinely fabricated
[58-60] [Fig. 1(a)], and certain single-molecule junctions
[Fig. 1(b)]. Carbon nanotubes can be either metallic or semi-
conducting, depending on their chirality. In semiconducting
carbon nanotubes it has been experimentally demonstrated
that potential along the nanotube channel can be manipulated
using electrostatic gates to define single or double quantum
dot systems [61-63]. The vibrational frequencies as well as
the strengths of the electron-phonon coupling usually depend
on the microscopic details of the carbon nanotube, such as its
chirality and radius [64,65].

DQDs in single-molecule junctions can be realized by using
atwo-site molecular system provided the location of the charge
carrier can always be well approximated as being on one of
the sites (or not on the DQD at all). Several examples of
such molecules have recently been investigated [66,67]. While
the role of electron-phonon coupling in such systems remains
largely unexplored experimentally, it has attracted some atten-
tion from a theoretical perspective [68—72]. A similar model
to the one considered here has previously been studied by
Santamore et al. in Ref. [73]. The authors assumed completely
filled (empty) density of states on the source (drain) electrode,
thermalized vibrational mode, as well as ignored the vibra-
tional effects in lead-dot couplings. Under these assumptions,
it was demonstrated that the transport through this system can
be greatly enhanced if the energy difference between the sites
is on resonance with the frequency of the vibrational mode.

In this work we derive a quantum master equation where
we treat the quantum dot-leads coupling perturbatively, but
describe the electron-phonon interactions exactly. In contrast
to the work of Santamore et al., our theoretical treatment
allows us to study the system under a finite bias as well as
correctly account for the (nonequilibrium) behavior of the
vibrational mode. Using this approach, we demonstrate that,
depending on the relative phase difference in electron-phonon
coupling constants between the two sites, coupling to a
single bosonic mode can lead to current suppression and
negative differential conductance. Finally, we discuss possible
experimental implications of the presented results. Taken to the
appropriate parameter regimes, we believe our model applies
to both two-site molecular systems as well as CNT double
quantum dots, and will provide the theoretical groundwork for
experimental studies of these systems.

II. MODEL

In this work we consider a double quantum dot or, equiva-
lently, a molecular dimer system in which the two sites couple
to a single harmonic oscillator (which we interchangeably
also refer to as a vibrational or a phonon mode). Each of
the sites, hereafter denoted as left (L) and right (R), is also
coupled to a respective lead constituting a fermionic reservoir,
as schematically depicted in Fig. 2. Henceforth, it will be
assumed that/i = 1 and the electron charge e = 1.
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FIG. 2. Schematic illustration of a double quantum dot studied in
this work. The two sites are coupled to each other with the strength J.
The rates of electron hopping between the electrodes and respective
sites are given by y,, yg—see text. Note that our model may apply
to either a transverse or a longitudinal vibrational mode (as sketched
in Fig. 1), provided the coupling strength of charge state to a single
mode dominates.

A. Hamiltonian

The total Hamiltonian for this system is given by
H = Hy + Heph + Heouwp + Hiuns (D
where
Hy = Hiol + Hose + Hicads- (2)

Hj describes the energy levels ¢, and e of the double quantum
dot (Hpo1), the harmonic oscillator of frequency w (Hys), and
the source and drain electrodes (Hjeuqs) as follows:

Hiol = SLHZGL + SRH;[QCIR, 3)
Hyse = a)bTbv (4)
Hieads = Z €k; C/];. Ck; » 5)

iki

with i = {L,R}. Here aj (ax,) and ler (ck;) are the creation
(annihilation) operators for an electron in state |i) on the
double quantum dot and in state |k;) on the left or right lead,
respectively, while b! (b) is the raising (lowering) operator
of the vibrational mode. The vibrational basis consists of
states |v;) which are eigenstates of the H,s. Hamiltonian with
eigenvalues w v;. Here v; is the vibrational quantum number
which can take non-negative integer values.

The two dots are coupled to each other with strength J
as described by Hcoup, and to the harmonic oscillator with
strengths g; and gg expressed by He pp:

Hooup = J(a} ag + akay), (6)

Hepn = ajar(gr b + gib) + abar(gr b + gib).  (7)

The electron-phonon coupling constants feature a position-
dependent phase [74-77]. The origin of these phases will be
discussed in the next section. Taking the position in the middle
of the dots as the origin of the coordinate system, these are
given by g; = |gr|le 92 and gr = |grle1Y?, where q is
the wave vector of the phonon mode and d is the separation
between the two dots. Henceforth, the difference in phases of
electron-phonon coupling will be denoted as ¢ = q - d. Finally,
the operator Hy,, accounts for the tunnel coupling between the
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sites and respective leads,

Hun =Y (Vieha; + Vieya)). ®)
iki
The assumption that the leads couple to distinct sites rather
than to entire (delocalized) orbitals is well justified for tunnel
coupling due to an exponential distance dependence of the
tunneling efficiency.
The electron-phonon coupling term can be eliminated from
the above Hamiltonian by performing the polaron (Lang-
Firsov) transformation [78,79]:

H=¢He 35, ©)

where S = a;aL w_l(gL bt — g;ib)+ aLaR a)_l(gR bt —
grb). The transformed Hamiltonian then becomes

H = Hmol + Hosc + Hleads + I:Icoup + I:Ituna (10)

Hinol = éLazaL + 5Ra;am 11
Heoup = J(X| Xgalag + X, Xahay), (12)
Hlun = Z (Vk,.XicLa,- + V]::X;LC](I.(J;L). (13)

i ki

The energy levels of the two sites are now renormalized
(polaron shifted) such that & = &; — |g;|>/w and the factors

X j (X;) are the displacement operators:

X! = exp <& pt— 8L b), (14)
w w

which can be evaluated explicitly in the vibrational basis [80]
(see also discussion in Appendix C).

B. Phase difference in electron-phonon couplings

As introduced above, we consider coupling elements for
the two dots differing by a phase factor £ = q - d. Since most
of the interesting effects we present in this work arise from
these phases, we here briefly sketch an intuitive derivation of
their origin and remark on their experimental relevance for the
two model systems considered in this work.

Generically, the Hamiltonian accounting for coupling be-
tween vibrational modes and charge carriers can be written
as [79]

Hepn = ) Mq 0(q) (bg + bLy), (15)
q

where M is a coupling element characterizing the nature
of the interaction. In a typical solid state setting, it can
be obtained from first principles (see Ref. [79] for bulk
piezoelectric and deformation potential coupling, or Ref. [59]
for the case of carbon nanotubes). The dependence of the
electron-phonon coupling on the microscopic details of the
carbon nanotubes can be absorbed into the effective coupling
constants in the Hamiltonian (15) [65], as verified by a number
of experimental studies [15,59,81]. We therefore proceed
under the assumption that all microscopic details of the CNT
systems we consider here (that are relevant in the Coulomb
regime) can be adequately mapped onto the Hamiltonian (1).
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By contrast, in a molecular setting ab initio methods such as
DFT might provide an informed choice [82], or one may resort
to an effective coupling strength extracted from experimental
data.

Since we only need to consider additional transport elec-
trons (charge carriers), the charge density operator in Eq. (15),
0(q), is given by

ot = Y alar [ drerym v, a6

where aj (a;) is the creation (annihilation) operator for a charge
carrier on I site. Here we have assumed that the wave functions
are orthogonal, (V;(r)|W;(r)) = §;;.

In the case of a double quantum dot the electron-phonon
interaction Hamiltonian can then be written as

Hepn = Y (81.qajar + grqagar)bg+bly).  (17)
q

where the coupling elements are given by M; o multiplied by
the Fourier transform of the electron density on the site i:

8i.q = Miq P[¥;i(0)]. (18)

If the wave functions Wg and W, are identical but centered at
+d/2, respectively, the coupling elements become by the shift
property of the Fourier transform [83]:

gr.q = e TYV2M; P[W(r)], (19)

grq = €TV M,  PIU(D)], (20)

and in the case of symmetric electron-phonon coupling
182.ql = |8R.ql = &q @S

—iq-d/2

gLq=¢ 8qs 2

=12 . (22)

Finally, since the summation in Eq. (17) runs across the
entire Brillouin zone, the coupling Hamiltonian can be more
compactly written as

Hepn = Y ala; (g} by + gi.qb})- (23)
iq

8R.q

Under the assumption that the electronic degrees of freedom
predominantly couple to a single phonon mode, the Hamilto-
nian (23) reduces to the one in Eq. (7).

Since the choice of origin is arbitrary, the important
quantity in the transport through the DQD is not the phase of
electron-phonon coupling itself but rather the phase difference
between the two sites. Consider for example a longitudinal
mode propagating through a carbon nanotube, as schematically
shown in Fig. 1(a). Difference in phases is givenby § = q -d
which in this case reduces to

2nd
=|q| x [d| = —, 24
£ =Iq| x [d| A (24)
where A is the wavelength of the relevant phonon. Thus, what
determines the value of &€ is the separation between the two
sites in relation to A. In the case of CNT double quantum
dots it may be possible to change the value of £ by shifting the
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relative positions of the two dots by using different electrostatic
gate electrodes. Changing the distance between the two sites
(with respect to the phonon mode) is not possible in single-
molecule junctions. There, £ is an immutable property of a
given vibrational mode.

C. Quantum master equation

We proceed to trace out the degrees of freedom associated
with the source and drain electrodes within the Born-Markov
approximation [84]. In other words, the dot-lead coupling
is treated as a second-order perturbation. This approach is
justified here since the electron-phonon coupling is larger than
or comparable to the Vj, matrix elements [85,86]. Let us also
remark here that no approximation has been made with regards
to the interdot coupling. As shown in Appendix A, this leads
to the following master equation description of the dynamics
of the double quantum dot and phonon system:

dp R Vi, tort =
L = —ilAs.p(0)] + Z 5@ Wl pwaiX;

+a X! pt)a; W, — a; Xia) W p(t) — p(t)a; Wia) X1

Vi oy oyt ot
—(a;Y;p(t)a; X; Xip(t)a, Y.
+§,~ @ Yip(al X! + a;Xip(t)alY,
—a/ Xla;Y;p(t) — p(t)a] Y] a; X)), (25)

where Hs = Hpol + Hosc + Heoup- The first term in Eq. (25)
describes the coherent evolution within the double quantum
dot, while subsequent terms account for incoherent hopping
on and off the DQD at rates y; = 27|V;|*>. The matrix
elements of the W; and Y; operators in the vibrational basis
are given by (v,|W;lv,) = fil€& + o(u — vp){vnl Xilv,)
and (v, Y vp) = {1 = fil& + @(vn — v,)]} (v X;|v,). Here
fi(e) denotes the Fermi distribution function for the i lead,
file)=1 /(e(g_"")/ kT 4 1) and the chemical potential of the
leads is determined by the applied bias voltage Vj: pup =
+V,/2 and ug = —V,/2, respectively. We assume that only
one additional electron can be found on the DQD at any given
time due to strong electron-electron repulsion. This is the
so-called sequential tunneling regime. Instead of including
an explicit electron-electron interaction term, this is ensured
by excluding the multiply charged states from the Hilbert
space for the electronic degrees of freedom. It then spans only
three (orthogonal) states |L), |R), and |E) corresponding to
an electron occupying left or right dot, and the DQD being
empty, respectively. The overall ME is also trace-preserving
Tr[p(#)] = 1, so that the the maximum electron population of
the DQD is indeed equal to 1.

D. Electric current

To determine the value of the stationary electric current
flowing through the system, one has to first solve quantum
master equation (25) in the steady-state limit:

dléstat
dt

=0 (26)
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and then compute the expectation value of the current operator
in the stationary state:

I = (I})stac = Tr(I; Pstar)- 27

Here I; is the operator for the current flowing through the
i electrode. Due to current conservation, the current flowing
through the left and right electrode is identical so that [ =
(I1)stat = (IR)stat- An explicit form of the current operators is
given in Appendix B.

III. RESULTS AND DISCUSSION

The time evolution of the studied system has to be described
in a truncated Hilbert space. We have included n = 100 vibra-
tional states, which yields numerical convergence. Equation
(26), given in a Hilbert space of dimension 3n x 3n, is solved
using Krylov-subspace techniques in a way analogous to the
one described by Flindt et al. [20]. The method amounts
to solving Eq. (26) in a subspace with reduced dimension
9n% x j (j is typically around 40) by means of Arnoldi
iteration, avoiding an explicit evaluation of the Liouvillian
[87-89]. Generally, preconditioning is required to produce
correct results. The outcomes of these calculations were tested
against increasing the dimension of the Krylov subspace ()
and by comparing them to the results obtained using a direct
method in smaller vibrational Hilbert spaces.

We distinguish two different parameter regimes depending
on the relative magnitudes of dot-lead (y.,yr) and interdot
couplings (J). First, a strong interdot coupling regime where
the coupling between the sites is much stronger than between
the dots and the leads (J >> yy,y&) and second, a weak interdot
coupling regime where the opposite is true (y.,yr > J). We
will describe the transport properties in both these regimes in
the following subsections.

A. Strong interdot coupling regime

In this section we study a double quantum dot system
that is weakly coupled to the source and drain electrodes (as
compared to interdot coupling J). Figure 3(a) shows the 7-V
characteristics for such a system. For simplicity we consider
a completely symmetric case such that £, = &g, |gL| = |gk|,
and y;, = yg. As expected, the system with strong interdot
coupling behaves similarly to a single quantum dot (single-site
molecular junction) coupled to a vibrational mode. The onset
in the /-V trace occurs when the chemical potential of the
source electrode is equal to the polaron-shifted energy of the
left dot &;,. The current through the system then increases in a
stepwise manner as consecutive vibrational levels fall within
the bias window. The peaks in the differential conductance
are separated by 2w and the relative heights of these steps
can be explained qualitatively by considering the values of
the [(v,,| X |0}|? elements (accounting for the Franck-Condon
overlap between the vibrational ground state and the mth
vibrational excited state) [29,31,38].

Unlike in the case for a single-site molecule, however,
the phase difference in the electron-phonon coupling constant
between the sites can result in an overall current suppression,
especially for low vibrational levels, as shown in Fig. 3(a).
It is important to stress that the incoherent hopping (on and
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FIG. 3. Current-voltage characteristics and voltage-dependent
populations of the sites in a strongly coupled two-site molecular
system. The calculation was performed for a symmetric system:
g, = &g = 0.05 eV. The energy of the vibrational mode was taken
to be w = 0.02 eV, the electron-phonon coupling constants |g,| =
lgr| = 0.018 eV, the coupling between the sites J = 0.3 eV [90],
and between the sites and the leads as y, = ygx = 0.001 eV. The
temperature was assumed to be 10 K leading to appreciable thermal
broadening.

off the leads) is independent of the phase of electron-phonon
coupling. The reason the transport is retarded in the presence
of phase difference in electron-phonon coupling between the
sites can be explained as follows: when the two sites couple to
the vibrational mode with the same phase (so that & = 2w or
a multiple thereof) the factor X TLX g in the interdot coupling
Hamiltonian I-_IC(,ulD [see Eq. (12)] becomes an identity operator

on the vibrational space X IX & = 1. This means that coherent
transitions between the sites take place without any vibrational
excitations. However, if the sites couple to the vibrational
mode with different phases this is no longer the case and the
coherent evolution within the DQD will be accompanied by
phonon emission. Higher vibrational states produced in such
a way will then be less efficient in tunneling out to the leads
due to poorer Franck-Condon overlap leading to an overall
suppression of the current. Interestingly, at large bias voltage,
the trend can reverse such that coupling in antiphase results in a
marginally higher current. There, the higher vibrational states
are formed during incoherent hopping of an electron from the
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FIG. 4. Current at bias voltage V, = 2&; + w (first step in the
current-voltage characteristics). The calculation was performed for a
symmetric system: &, = &g = 0.05 eV. The energy of the vibrational
mode was taken to be w = 0.02 eV, the electron-phonon coupling
constants |g, | = |gr| = 0.018 eV, the coupling between the sites and
the leads is y, = yg = 0.001 eV, and the temperature was assumed
to be 10 K.

leads onto the DQD and the coherent transition between the
sites can increase the populations of lower-lying vibrational
states. However, this subtle effect may be difficult to observe
in practical situations.

As shown in Fig. 3(b), the populations on the two sites
are equal independently of the applied bias and of phase
difference in the electron-phonon coupling. This should come
as no surprise given that the two sites are strongly coupled and
the system is entirely symmetric.

Let us now consider the dependence of the current through
the molecule (at the bias voltage V, = 28, + w) on the strength
of intersite coupling J in the limit J >> y;,yg. In the case of
& = (O the transport is virtually independent of J as it is limited
by incoherent hopping rates y;, as demonstrated in Fig. 4.
However, as discussed above, when & is nonzero the internal
dynamics of the system becomes relevant. For £ = /2 and
& = 7, increasing the strength of the intersite coupling J
leads to a reduction of current. This surprising result can
be understood by recalling that for nonzero £ the coherent
transition between the sites “produces” higher vibrational
states which then lead to the observed current suppression. The
stronger the coupling J, the greater the degree of vibrational
excitation which accumulates before the electron tunnels out
into the leads.

Finally, let us stress that one should expect this parameter
regime (where the interdot coupling J is stronger than the
coupling to the leads) to be appropriate in the case of
most single-molecule junctions [67,90]. The strength of the
electron-phonon coupling in these systems is often estimated
experimentally by considering the relative heights of the
Franck-Condon steps [15,37]. As shown above, one has to
be careful in using the same approach for two- or multiple-
site systems, where the phase difference in electron-phonon
coupling becomes relevant. Another surprising conclusion
from the presented results is that the intramolecular dynamics
can quite significantly affect the transport properties of the
studied system in this parameter regime, despite the fact that
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FIG. 5. Current-voltage characteristics and voltage-dependent
populations of the sites in a strongly coupled two-site molecular
system. The model is identical to the one used in Fig. 3 except for the
coupling between the sites J = 0.01 eV, and between the sites and
the leads y;, = yg = 0.05 eV.

the transport efficiency is limited by hopping between the leads
and the molecular system.

B. Weak interdot coupling regime

Let us now consider the reverse situation, that is, when
the two dots are weakly coupled to each other but interact
with the electrodes more strongly (this parameter regime can
be realized in CNT double quantum dots, see for example
Ref. [91]). As we will now discuss, this case delivers very
different and much richer physical phenomena. Once again, we
shall first focus on a symmetric system. As before, when there
is no phase difference in the vibrational coupling between the
sites, one observes a stepwise increase in the current through
the system, see Fig. 5(a). This can again be explained by
vibrational effects in the tunnel coupling between the sites and
the leads.

Even though the bottleneck in the transport is the coherent
hopping between the sites, vibrational effects in connection
with incoherent hopping on (and off) the molecule will play
an important role as long as the hopping rates y; and intersite
coupling J are comparable.

Moving on to the case of nonzero £, we can see that
a difference in phase between the electron-phonon coupling
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elements still induces a current suppression. In addition, the
phase difference leads to negative differential conductance—a
decrease in current with increasing bias voltage. In this param-
eter regime, it is the intersite transition that limits the overall
transport rate. Hence, what is crucial now is how the phase
difference in electron-phonon couplings affects the |L) <> |R)
transition. It turns out that this transition is suppressed for
nonzero &, resulting in the observed current suppression, and
is even less efficient for higher vibrational states (as discussed
below), giving rise to the negative differential conductance
shown in Fig. 5(a).

Since it is the coherent hopping between the sites that
is the rate-limiting step in the overall charge transport, the
populations of the two sites are no longer equal [Fig. 5(b)].
In the case of £ = 0, populations of the two sites increase
with the applied bias voltage. However, if the sites couple
to the vibrational mode with different phases, an increase in
V), is accompanied by a decrease in the population of the
right site (correlating with the current through the DQD). This
demonstrates a rather different physical origin of observed
effects as compared with the ones reported in Sec. IIT A [cf.
Fig. 3(b)].

To understand the origin of the NDC in more detail,
let us now consider transport through the two-site system
for different values of the electron-phonon coupling con-
stant. Current-voltage characteristics for different values of
A = |g|/w are shown in Fig. 6(a). The position of the maximum
value of the current shifts depending on the value of A. This
can be qualitatively related to the magnitudes of the diagonal
elements of the X TLX g operator (Fig. 8 in Appendix C). As
can be seen in Eq. (12) the displacement operators affect
the overall efficiency of the coherent hopping between the
sites. One can notice that the maximum current occurs at bias
voltage for which the vibrational level v, corresponding to the
largest |(v| X LX £ |v)|? matrix element, enters the bias window
[compare Figs. 6(a) and 8]. The relative magnitudes of the
steps in the current-voltage characteristics cannot be, however,
as easily correlated with values of (v|X LX r|v). The observed
value of current is a result of a complex interplay between
vibrational effects during hopping on and off the DQD and the
dynamics within the system.

It is interesting to consider the value of current at the first
step of the [-V trace (at V;, = 2&; + w) as a function of A and
&, see Fig. 6(b). Two overlapping effects become apparent:
First, a decrease in transport efficiency as the electron-phonon
coupling (A) increases—this is fundamentally an example of
the Franck-Condon blockade [38,41]. Second, the current
decreases as the difference in phases of electron-phonon
coupling & deviates from O (or 27 )—the effect described and
explained above.

Finally, let us consider a case in which the energy levels of
the two sites are detuned (for example due to an asymmetric
structure of the molecule or an applied gate voltage). The
current-voltage characteristics for this situation are shown in
Fig. 7. Introducing an energy gap between the sites decreases
the current through the DQD as it decreases the efficiency of
|L) < |R) transition. Moreover, for a considerable detuning
between the sites the NDC, observed in &;, = &g case, is lifted.
Now, higher vibrational states (on the left site) are in fact more
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FIG. 6. Current-voltage characteristics (a) and current at bias
voltage V), = 28, + w (b) for a symmetric DQD: &, = &z = 0.05.
The energy of the vibrational mode was taken to be w = 0.02 eV, the
electron-phonon coupling constants |g,| = |gr| = Aw, the intersite
coupling J = 0.01 eV, and between the sites and the leads y, = yg =
0.05eV, T =10K.
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FIG. 7. Current-voltage characteristics for a detuned DQD: &, =
0.05eV, &g = 0.15 eV. The energy of the vibrational mode was taken
to be w = 0.02 eV, the electron-phonon coupling constants |g,| =
lgr| = 0.018 eV, the intersite coupling J = 0.01 eV, and between
the sites and the leads y, = yx = 0.05eV, T = 10 K.
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efficient in tunneling from the left to right site, especially into
lower vibrational states (on the right site). Thus, increasing the
bias voltage (coinciding with increasing populations of higher
vibrational levels) leads to an overall increase in the current
through the DQD.

IV. CONCLUSIONS

In this paper we have derived a quantum master equation
that can account for a transport through a two-site molecular
system (or a carbon nanotube double quantum dot) that is
coupled to a single vibrational mode. The method used here
is perturbative and relies on a Born-Markov approximation
with respect to lead-dot coupling but, unlike most previous
studies of similar model systems (with the notable exception
of Ref. [72]), treats electron-phonon interactions exactly.
Using it we have demonstrated that, depending on the phase
difference in electron-phonon couplings &, one can observe
current suppression and/or negative differential conductance
in transport through the studied system. The role of £ in
vibrationally coupled charge transport remained, thus far,
largely unexplored. We have also explained the physical origin
of the observed effects by analyzing the derived quantum
master equation as well as considering the bias voltage
dependence of the on-site populations. For simplicity, we
have mostly limited our discussion to symmetric systems with
yL = yg and |g.| = |gg|. Considering asymmetry may well
be necessary to account for future experimental observations,
however, it is a trivial modification to our model presented
in this work. We would also expect to observe similar effects
to the ones described here (current suppression and NDC in
relevant parameter regimes) in systems where |g; | # |gr| even
in the absence of phase difference in electron-phonon coupling
constants. Once again, these would be caused by vibrational
excitations or suppression of the |L) <> |R) transition.

The phenomena described here are nonequilibrium effects
and can naturally be lifted by very fast damping of the vibra-
tional mode. Fast relaxation of the harmonic oscillator will
bring the vibrational states of the system back to their ground
state (at least at sufficiently low temperature) diminishing
the current suppression and NDC effects described in this
work. Vibrational relaxation times in CNT quantum dots and
molecular junctions can be, however, quite long, as it has
been observed experimentally [18,36]. One also has to bear in
mind that in real systems the electronic degrees of freedom
are typically coupled to more than one vibrational mode.
We expect our analysis, however, to provide a reasonable
description of the transport characteristics when coupling to
one of the vibrational modes is dominant, as it is often the case
[15,27,36,59].

Finally, we have also discussed experimental relevance of
the reported findings. We believe that our model is capable
of describing the behavior of both two-site single-molecule
junctions (for which strong intersite coupling regime is most
likely going to be applicable) and carbon nanotube double
quantum dots (in which case the weak intersite coupling
regime may be more appropriate). While testing the theoretical
predictions described here in an experiment may not be
trivial, we believe that observing the effects we discuss should
certainly be possible and would offer an exciting glimpse
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onto the rich tapestry of nonequilibrium effects in quantum
transport.
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APPENDIX A: DERIVATION OF QUANTUM
MASTER EQUATION

The time evolution of the density matrix for the entire
system () can be described in the polaron-transferred
frame by

dx
dt

In the interaction picture of Hy = Hyol + Hosc + Hicads,
Eq. (A1) becomes

d);:t) — —i[ﬁcoup([) + I:Itun([),i(l)],

= —i[H, x]. (A1)

(A2)

where
2 iHot 13 —iHyt
Hun(t) = €7 Hype ™

=" (Vief e X;(1) + He)  (A3)
ik;

and similarly I:Icoup(t) = ¢ifhot ﬁcoupe_iﬁo' and X;(r) =
eiﬁUtXie_iﬁot.

Integrating Eq. (A2) and substituting the solution into the
second commutator, one obtains

J+ 3 -
);Et) = —i[Heoup(®), X ()] — i[Hun(t), X (0)]

- f ds [ﬁlun(t)v[ﬁlun(s) + I:Icoup(s)’)z(s)]]‘
0
(A4)

We shall now make a series of assumptions commonly
known together as Born-Markov approximation. First, we will
assume that the fermionic reservoirs interact weakly with the
double quantum dot and that they always remain in thermal
equilibrium. Then, the total density matrix can be written as
X() = p(r) ® Ry, where p(¢) is a density matrix describing
the double quantum dot and phonon system while R, accounts
for the thermal state of the source and drain electrodes. Given
that the second commutator vanishes, after tracing out the
fermionic reservoirs Eq. (A4) becomes

P i s
E = —I[Hcoup([)uo(t)]

- / s Trieaas Buan(0), [ Fun(s),5(5) ® Roll,  (AS)
0

where in the terms linear in Hy, vanish when traced out within
Born approximation [78].
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Expanding the commutators, the above can be written as

DD L A1), 5]
dr = [ Hcoupll), P

-y fo ds by, (t =)@ (0 (5)5(5) — 1} ()5 (1)
ik

-y /0 ds hy, (s — (@} (1) () p(s)— i ()p(s)al (1))
ik

-> fo ds hy, (s —)(()a; (5)al (1) —a) (1) (s)a(s)
iki

= Y [ ds -6l 000513 6
ik V0

(A6)

where  hy, (1) = Vi, |* filer,) €47, he(t) = [V [*[1 —
fi(ex)] '™ with the Fermi distribution given by f;(ey,) =
Trees(Roc) cr,) = 1/(e /KT 1 1), Here a(7) [a](1)] de-
notes a polaron-transformed annihilation (creation) operator
in the interaction picture so that d;(t) = aie ET X (7).

We can now employ the Markov approximation which
replaces p(s) with p(¢) so that the evolution of the state at
time ¢ depends only on the present state. Furthermore, we will
replace s with # — s’ and extend the upper limit of the integral
to infinity, obtaining a Markovian equation that is local in time:

15 . Y ~ o0 /
E = _1[Hcoup(t)sp(t)] + ;/O ds

[, ()@ (DG (¢ — s)B() — @ (¢ — s")B(0)a; (1)
— b (=)@ (@it — () — a;(t — s)p(D)al (1))
— i (=Bt — $")al (1) — & ()p(0)a:(t — 57)
— I (B (¢ — s)ai (1) — a(0)pn)alc — s1.
(A7)
The sum over the energy levels in (A7) can be replaced with

an integral. The integral over s’ can be performed by using the
relation

/ dte™ = 78(Q) +i— (A8)
0 Q

(where P denotes Cauchy’s principle value) and ignoring the
imaginary terms (which only lead to a minute renormalization
of the Hamiltonian) [84]. Performing integration over €, and

then moving back to the Schrodinger picture leads to Eq. (25)
given in Sec. II of the paper.

APPENDIX B: CURRENT OPERATORS

The current operator for the current flowing through L/R
electrode is given by
dli) (il
I = . B1
T B1)
Equivalently, due to trace-preserving property of Eq. (25),
current can also be expressed as the rate of change of the
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empty population at the i electrode:

d|E){E
;= AENEL (B2)
dt |;
which, using Eq. (29), is given by the superoperator
15 = L@ W p0aiXi +alX] p0)a W,
—aY;p(t)al X! — aiXip(alY). (B3

APPENDIX C: DISPLACEMENT OPERATORS

Properties of the displacement operators are discussed in
detail, for example, in Refs. [68,80]. Here we focus on the
effect the phase difference in electron-phonon couplings & has
on the X TLX rand X EX 1 operators. They can be written as

X} Xp = exp [(%)b* - (%)b] (C1)

(disregarding the exp[i Im(g, g%/ ?)] factor) and its Hermitian
conjugate, accordingly. For the symmetric case studied in the
paper g; = ge /2 and gz = ge'*/? so that

X X = exp(a b — a*b), (C2)

where a = 2i§ sin(§/2). The diagonal elements in the vibra-
tional basis of this operator are given by

(XX L) = exp(—[al?/2) Ly(laf), (C3)

where v is a vibrational quantum number and L, is a Laguerre
polynomial of order v. From this it can be seen that although
the magnitude of (v|X };X L|v) depends nontrivially on v, due
to the exponential term it should be maximum at £ = 0 and
decrease towards £ = . Similarly, for a given &, its magnitude
should also decrease with increasing A = %. One can see that
these trends correlate well with the conductance of the DQD
[see Fig. 6(b)].
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FIG. 8. Square moduli of diagonal matrix elements of X TLX R
operators for different values of A as used in Fig. 6(a).

Let us also consider the square moduli of diagonal matrix
elements of X TLX r operators for different values of A [as used
in calculation in Fig. 6(a)] shown in Fig. 8. As discussed
in Sec. III A, a twofold connection can be made between
these values and the -V characteristics shown in Fig. 6(a).
First, the magnitudes can be roughly correlated with the
overall magnitude of the calculated current, and second, the
maximum conductance coincides with the bias voltage for
which vibrational level |L,v) corresponding to the maximum
absolute value of (v|X L X |v) falls into the bias window. This
further supports the interpretation presented in the paper.
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