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Two-electron bound states near a Coulomb impurity in gapped graphene
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We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in
two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence
of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Ze > 0, where the most
interesting case corresponds to Z = 1. We introduce a variational Chandrasekhar-Dirac spinor wave function and
show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling
microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in
graphene.
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I. INTRODUCTION

Ever since the Nobel prize winning experiments by
the Manchester group in 2004 [1,2], two-dimensional (2D)
graphene monolayers continue to attract a lot of attention.
Besides graphene’s application potential, much of the interest
comes from the fact that low-energy fermionic quasiparticles
in graphene are governed by the 2D Dirac Hamiltonian [3–8].
As a consequence, typical effects predicted by relativistic
quantum mechanics and/or quantum electrodynamics can
be studied in tabletop experiments. Recent progress has
demonstrated that one can reach the ballistic (disorder-free)
regime [9], e.g., by encapsulating the graphene layer in boron
nitride crystals [10]. We will therefore not consider disorder
effects in this paper.

Here we address the perhaps simplest interacting problem
for relativistic fermions by considering a gapped graphene
monolayer subject to relatively weak (screened) Coulomb
interactions and in the presence of a single Coulomb impurity.
A band gap 2� in the Dirac fermion spectrum may be
caused by a variety of mechanisms, e.g., by strain engi-
neering [11], spin-orbit coupling [12,13], substrate-induced
superlattices [14,15], or simply as a finite-size effect in a ribbon
geometry [3]. The Coulomb interaction strength is customarily
quantified in terms of the effective fine-structure constant,

α = e2

κh̄vF

� 2.2

κ
, (1)

where κ is a dielectric constant due to the surrounding substrate
and vF � 106 m/s denotes the Fermi velocity [7]. The estimate
in Eq. (1) follows with c/vF � 300 and e2/(h̄c) � 1/137. The
value of α thus depends on the choice of gating geometry and
the ensuing screening effects. As explained below, the weak
interaction regime where our theory is applicable is defined
by α � 0.4. In this regime, we find that a pair of repulsively
interacting Dirac fermions subject to the attractive potential
of a Coulomb impurity with charge Ze will form a two-body
bound state localized near the impurity. We mainly focus on
the most interesting case of Z = 1 but also comment on what
happens for Z > 1.

The signatures of the predicted bound state could be
observed by means of scanning tunneling microscopy (STM)
experiments similar to those previously reporting supercritical

behavior in graphene [16–18] and trapped electron states
in electrostatically defined graphene dots [19,20]. An ex-
perimental observation of the predicted two-body bound
state could therefore probe and quantify Coulomb interaction
effects. In order to consistently formulate this relativistic
quantum-mechanical two-particle problem, it is necessary
to stay away from the supercritical instability [3,7,21,22],
otherwise one inevitably has to face a complicated many-
body problem [7]. For small values of α, supercriticality is
absent, and as explained below, a two-particle bound state
exists. We mention in passing that the two-body problem in
graphene has also been studied in Refs. [23–30]. In contrast
to our paper, however, those papers considered translationally
invariant settings without Coulomb impurity. Similar problems
(again without Coulomb impurity) have also been analyzed in
the context of Dirac excitons in single-layer transition-metal
dichalcogenides [31–33].

The negatively charged two-electron hydrogen ion H−
represents a classic problem of nonrelativistic quantum me-
chanics [34–39]. In particular, it is well known [36] that H− has
a single bound state in three spatial dimensions. The simplest
way to prove its stability is to demonstrate the existence of a
variational wave function with energy below the ground-state
energy of the hydrogen atom. Interestingly, it is impossible
to achieve this task with a factorized wave function [39].
The simplest way to construct a variational wave function
for the ground state of H− is due to Chandrasekhar [34]. With
rl=1,2 = |rl| denoting the distance of the respective electron
from the proton, the Chandrasekhar ansatz for the spatial
part of the two-particle wave function �(r1,r2) contains two
variational parameters (a,b) and is (up to a normalization
factor) given by

�(r1,r2) = e−ar1−br2 − εe−br1−ar2 , (2)

where ε = ∓1 corresponds to a spin-singlet/spin-triplet state,
respectively. Here the important insight is that a and b are
not required to be identical. Indeed, the minimal variational
energy for a two-body bound state is obtained for a �= b in
the spin-singlet configuration (ε = −1). Improved variational
energy estimates can be obtained by taking into account the
dependence on the relative distance r12 = |r1 − r2| in Eq. (2),
e.g., through a correlation factor of the form (1 + c r12) [39].
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Since the inclusion of such a factor is technically cumbersome
yet not expected to cause qualitative changes, cf. Ref. [39],
we here restrict ourselves to uncorrelated wave functions and
leave the analysis of correlation effects to future work.

The nonrelativistic hydrogen ion has also been studied
for the 2D case. For instance, the so-called D− problem
describes a donor impurity ion with two attached electrons
in a 2D semiconductor quantum well [40–45]. Interesting
experimental results on the D− problem have appeared in
Ref. [46], where effects of quantum confinement on two-body
bound-state energies have been studied. In the absence of a
magnetic field, only a single bound state in the spin-singlet
sector is expected again. We note in passing that the D−
problem is also similar to the negatively charged exciton
(X−) problem, which was experimentally studied in quantum
wells [47].

In this paper, we turn to the 2D relativistic counterpart
of the above system, which is realizable in gapped graphene
monolayers (or topological insulator surfaces) containing a
Coulomb impurity. The corresponding relativistic H− problem
is more difficult to define (and solve) because the single-
particle Dirac Hamiltonian is unbounded from below [48–50].
It then appears at first sight as if two-particle states of
arbitrarily low energy can be generated by electron-electron
interactions. As discussed below, in order to avoid this spurious
and ultimately unphysical effect, it is necessary to employ
a projection scheme which defines a mathematically clean
framework. Such a projection scheme can be devised for
interacting Dirac fermions in graphene if: (i) a single-particle
gap exists (� > 0), and (ii) electron-electron interactions are
weak, see Refs. [51–54].

The structure of the remainder of this article is as follows.
We introduce the Dirac-Coulomb model and the appropriate
projection scheme in Sec. II, followed by a discussion of the
variational approach to the two-body bound-state problem in
Sec. III. (Details have been delegated to two appendices.) To
that end, we formulate a Chandrasekhar-Dirac spinor ansatz
generalizing Eq. (2) to the relativistic case. We evaluate all
needed matrix elements and discuss the variational bound-state
energy as a function of α. In particular, we show variational
estimates for the energy of the bound state in the presence of
a standard Dirac mass term causing a band gap, assuming a
spin-singlet state and impurity charge Z = 1. We then turn
to generalizations in Sec. IV, where we will address: (i)
what happens for impurity charge Z > 1, (ii) the effects of
a topologically nontrivial band gap as obtained, e.g., from
spin-orbit coupling effects, and (iii) the role of the valley state
of each quasiparticle. In Sec. V, we address the observable
consequences of the two-body bound state accessible to STM
experiments. Finally, we offer some conclusions in Sec. VI.

II. DIRAC-COULOMB MODEL

We model the interacting two-particle problem for a gapped
graphene monolayer in the presence of a charge impurity by the
(properly projected, see below) Dirac-Coulomb Hamiltonian

H =
∑
l=1,2

HD(l) + V2b. (3)

Here HD(l) is the usual single-particle massive Dirac-Weyl
Hamiltonian for particle l = 1,2,

HD(l) = H0(l) + Hgap(l) + V1b(l), (4)

with kinetic part (the index l being understood) [3]

H0 = vF (τzσxpx + σypy), (5)

where Pauli matrices τ (σ ) act in valley (sublattice) space
and the momentum operator is p = −ih̄∇. With the dielectric
constant κ , see Eq. (1), the single-particle potential

V1b = −Ze2

κr
= −Zαh̄vF

r
(6)

describes a charge-Z impurity at the origin. We mainly focus
on the most interesting case of unit charge Z = 1 but comment
on the case Z > 1 in Sec. IV A. In HD, we also include the
term

Hgap = �σz, (7)

which results in a topologically trivial band gap of size 2� [3].
However, it is straightforward to generalize our analysis to the
case of a spin- and valley-dependent topological band gap, e.g.,
due to an intrinsic spin-orbit coupling mechanism [12,13],

Hso = �σzτzsz, (8)

where s are Pauli matrices in spin space, see Sec. IV B. Note
that Hgap has the same sign for both spin projections whereas
Hso has the opposite sign.

The operator HD is Hermitian only for Z < Zcrit = 1/(2α).
Indeed, the lowest single-particle bound-state energy becomes
imaginary for Z > Zcrit, see Eq. (A9) in Appendix A. We note
that by regularizing the r → 0 singularity of the Coulomb
potential, the threshold shifts to a larger value, Z̃crit, which
weakly depends on the precise regularization prescription [22].
Even in the regularized scheme, however, Hermiticity is lost for
Z > Z̃crit. In the latter regime, bound states of the regularized
Hamiltonian H̃D dive into the negative part of the continuum
spectrum (E < −�) one by one and thereby become qua-
sistationary states, see Ref. [22]. As remarked in Sec. I, one
then necessarily has to consider the full many-body problem
for Z > Z̃crit. For this reason, we will restrict ourselves to the
weak-coupling regime. Moreover, for the sake of transparency,
we focus on the narrower range Z < 1/(2α) where no need
for regularization arises and the exact Dirac-Coulomb wave
functions summarized in Appendix A can be used. For the
most interesting case of Z = 1, this implies that our theory is
at best applicable for α < 1/2.

Since HD is diagonal in valley and spin space, we can
always choose a factorized form for the single-particle wave
functions,

�τ,s(x,y) = �(x,y)|τ,s〉, (9)

where �(x,y) refers to the spatial part (including sublattice
space) and |τ,s〉 with τ = K/K ′ = ±1 and s =↑ / ↓= ±1
denotes the eigenstates of the operator τzsz. For an eigenstate
�τ,s of HD with energy E, the symmetry relations

σy�
∗
τ,s = �τ,−s , σy�τ,s = �−τ,s , �∗

τ,s = �−τ,−s

(10)
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are a manifestation of the well-known fourfold spin-valley
degeneracy of each energy level [3].

Next, the two-body Coulomb interaction in Eq. (3) is
formally given by (see Appendix B)

V2b = e2

κ|r1 − r2| . (11)

However, since the spectrum of the single-particle Dirac
Hamiltonian is unbounded from below, the many-body Dirac-
Coulomb Hamiltonian (3) cannot have true two-particle bound
states. This problem was pointed out long ago by Brown and
Ravenhall in their study of relativistic effects in the helium
atom [48].

A rigorous procedure to construct a mathematically well-
defined many-particle Hamiltonian for interacting massive
Dirac fermions in three spatial dimensions was devised by
Sucher [51,52]. Fortunately, as has been shown in detail
in Refs. [53,54], Sucher’s approach can readily be adapted
to the case of 2D Dirac fermions in graphene as long as
the single-particle spectrum exhibits a band gap. In effect,
H in Eq. (3) thereby has to be replaced by the projected
Hamiltonian [53,54],

H+ = HD(1) + HD(2) + 	+V2b	+, (12)

with the projection operator 	+ = 	+(1)	+(2). Here, us-
ing E(l) = [H 2

D(l)]1/2, the single-particle operator 	+(l) =
[E(l) + HD(l)]/2E(l) projects onto the space spanned by
the positive-energy eigenstates of HD(l). As detailed in
Refs. [51–54], the projected Hamiltonian H+ takes into
account the most important effects of the electron-electron
interaction. In fact, due to the presence of a band gap, the
replacement H → H+ does not introduce approximations
concerning the ground state of the system in the limit of weak
Coulomb repulsion. Moreover, the projection guarantees that
the Hamiltonian H+ can possess bona fide two-particle bound
states. For instance, in the nonrelativistic limit realized for
energies very close to the upper band edge, by expanding
Eq. (12) to lowest nontrivial order in 1/�, we obtain (up to a
constant energy shift 2�) the Schrödinger Hamiltonian,

HS =
∑
l=1,2

(
p2

l

2m
+ V1b(l)

)
+ V2b, (13)

with the mass m = �/v2
F . Equation (13) describes a D− center

in a 2D semiconductor quantum well and has been studied in
Refs. [40–45]. One can therefore regard H+ in Eq. (12) as a
natural relativistic generalization of the D− impurity center
problem.

In the remainder of this paper, we will employ units with
h̄ = vF = 1.

III. VARIATIONAL APPROACH

The Hamiltonian H+ acts in the tensor space of two copies
of the eight-dimensional single-particle Hilbert space. For the
noninteracting system with V2b = 0, two-particle spinor wave
functions for bound states are written as antisymmetrized
products of single-particle wave functions,


(r1,r2) = A
[
�(1)

τ1,s1
(r1) ⊗ �(2)

τ2,s2
(r2)

]
, (14)

where A is the antisymmetrization operator and �(l)
τl ,sl

is
a single-particle eigenstate with eigenenergy Enl,jl

for the
2D relativistic hydrogen problem described by HD(l). To
keep the paper self-contained, we summarize the well-known
solution of HD in Appendix A. Eigenstates are labeled by
the principal quantum number n = 0,1,2, . . . and by the
half-integer angular momentum j . The ground state of HD(l)
is realized for nl = 0 and jl = 1/2. Hence the noninteracting
(V2b = 0) two-particle ground state has the energy Egs =
2E0,1/2 where both particles occupy the respective single-
particle ground state. This two-particle state has finite total
angular momentum j = 1, where the angular momentum
operator is Jz = Jz(1) + Jz(2) with Jz(l) = −i∂θl

+ σz(l)/2.
To study the ground state of the interacting system, one

could attempt to treat the two-body Coulomb repulsion by
perturbation theory. However, one then finds that, for Z = 1,
the resulting binding energy is always negative. In other words,
first-order perturbation theory in the Coulomb interaction
incorrectly predicts that there is no bound state (see below)
and one has to proceed in a nonperturbative manner to
investigate this issue. We here employ a variational treatment
and construct a relativistic version of the Chandrasekhar wave
function (2), dubbed the Chandrasekhar-Dirac ansatz. We will
see that the corresponding energy functional is bounded from
below and thus provides a variational estimate of the binding
energy.

In this section, we focus on a valley- and spin-independent
band gap, see Eq. (7). The topological band gap term in
Eq. (8) then only requires a few adjustments, see Sec. IV B.
Moreover, we assume here that both quasiparticles are in
the same valley but show in Sec. IV C that the variational
result does not change for quasiparticles in opposite valley
states. Since the Hamiltonian commutes with both Sz and
S2, where S = s(1) + s(2) is (twice) the total spin operator,
we have a spin-singlet and a spin-triplet state, where in the
first (second) case the spatial part of the wave function must
be symmetric (antisymmetric). We will see that, for Z = 1,
the Chandrasekhar-Dirac ansatz predicts a bound state in the
singlet but not in the triplet channel. However, for Z > 1,
bound states are found in both cases.

A. Chandrasekhar-Dirac ansatz

Our Chandrasekhar-Dirac ansatz is formulated as follows.
We assume that the two-particle wave function has a factorized
form 
tot = 
|χ〉, where |χ〉 is the normalized spin part
(singlet or triplet) and 
 is the spatial part,


(r1,r2) = �I (r1)�O(r2) − ε�O(r1)�I (r2), (15)

where �I and �O are the normalized ground-state eigen-
spinors of the 2D relativistic hydrogen problem, see Ap-
pendix A, with Z replaced by variational parameters ZI

and ZO , respectively. The parameter ε = ∓1 corresponds to
the spin-singlet/spin-triplet sector, and the valley part of the
wave function is understood. We mention in passing that in
the triplet case, a wave function composed of two ground-state
single-particle orbitals might not represent the optimal choice,
see Sec. IV A.

Since the single-particle Hamiltonian does not depend on
the spin projection, we can use the same wave function for
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both particles. Explicitly, the spinors with λ = I,O have the
form (see Appendix A)

�λ(r) = Nλr
γλ−1/2e−pλr

(
1
iκλe

iθ

)
, (16)

where

γλ =
√

1

4
− Z2

λα
2, pλ = 2�Zλα,

(17)

κλ =
√

1 − 2γλ

1 + 2γλ

= Zλα
1
2 + γλ

=
1
2 − γλ

Zλα
.

The normalization constant is given by

Nλ =
√

(2pλ)2γλ+1

2π
(
1 + κ2

λ

)
�(2γλ + 1)

, (18)

with the gamma function �(x). Equation (16) represents
the ground-state eigenspinor of the single-particle Dirac
Hamiltonian,

Hλ = −iσ · ∇ + �σz − Zλα

r
, (19)

with eigenvalue E = 2�γλ = �
√

1 − 4Z2
λα

2. Note that the
spinors �λ are not orthogonal. Their overlap S = 〈�I |�O〉 is
given by

S = (1 + κI κO)√(
1 + κ2

I

)(
1 + κ2

O

) �(γI + γO + 1)√
�(2γI + 1)�(2γO + 1)

× (2pI )γI +1/2(2pO)γO+1/2

(pI + pO)γI +γO+1
. (20)

B. Energy functional

We now evaluate the energy functional

Eε(ZI ,ZO) = 〈
tot|H+|
tot〉
〈
tot|
tot〉 = 〈
|H+|
〉

〈
|
〉 , (21)

with H+ in Eq. (12). The index ε = ∓ in Eε refers to the
spin-singlet/spin-triplet state, and the normalization factor is
given by

〈
tot|
tot〉 = 〈
|
〉 = 2〈�I |�I 〉〈�O |�O〉 − 2ε〈�I |�O〉2

= 2(1 − εS2). (22)

Next, the matrix element of the single-particle Hamiltonian
has the form

∑
l=1,2

〈
tot|HD(l)|
tot〉 = 2

(∑
λ

〈�λ|HD|�λ〉

− 2ε〈�I |HD|�O〉S
)

, (23)

where we have used the normalization of the one-particle
spinors. By writing the single-particle Hamiltonian as

HD = Hλ + (Zλ − Z)
α

r
, (24)

one can directly evaluate the matrix elements. We

obtain

〈�λ|HD|�λ〉 = 2�γλ + (Zλ − Z)Vλ,

〈�λ̄|HD|�λ〉 = 2�γλS + (Zλ − Z)U
= 2�γλ̄S + (Zλ̄ − Z)U , (25)

where λ̄ = O for λ = I and vice versa and

Vλ = 〈�λ|(α/r1)|�λ〉 = α
pλ

γλ

,

(26)

U = 〈�I |(α/r1)|�O〉 = α
pI + pO

γI + γO

S.

It is reassuring to note that the minimum with respect to Zλ

for the energy

〈�λ|HD|�λ〉 = 2�

√
1/4 − Z2

λα
2 + 2�Zλ(Zλ − Z)α2√

1/4 − Z2
λα

2

(27)

occurs exactly at Zλ = Z provided that Z < Zcrit = 1/(2α).
Since we have used the exact structure of the Dirac-Coulomb
wave function, the result reproduces the exact ground-state
energy Egs = 2�γ .

We now proceed with the two-body matrix element, see
also Appendix B,

V2b = 〈
tot|(α/r12)|
tot〉 = 2
(
Vdir

2b − εVexc
2b

)
,

Vdir
2b =

∫
dr1dr2|�I (r1)|2 α

r12
|�O(r2)|2, (28)

Vexc
2b =

∫
dr1dr2[�†

I (r1)�O(r1)]
α

r12
[�†

O(r2)�I (r2)].

The standard procedure to evaluate the multiple integrals in
Vdir

2b and Vexc
2b is to use a 2D partial-wave expansion of 1/r12.

However, the resulting series representation converges only
very slowly. Following Ref. [44], we found it more convenient
to use an integral representation in terms of elliptic functions,

Vdir
2b = 2α

π

p
2γI +1
I p

2γO+1
O(

γI + γO + 1
2

)
B(2γI + 1,2γO + 1)

×
∫ 1

0
ds K(s)

[
s2γO

(pI + spO)2(γI +γO )+1

+ s2γI

(spI + pO)2(γI +γO )+1

]
, (29)

Vexc
2b = 8α

π

(pI + pO)S2

(γI + γO)B(γI + γO,γI + γO)

×
∫ 1

0
ds K(s)

sγI +γO

(1 + s)2(γI +γO )+1
, (30)

where B(x,y) = �(x)�(y)/�(x + y) is Euler’s beta function
and K(s) denotes the complete elliptic integral of the first
kind [55].

Importantly, we here calculated the matrix elements of the
full interaction operator rather than those of the projected
operator 	+(α/r12)	+, which are more difficult to obtain
and would require a detailed numerical analysis. Both matrix
elements coincide if the trial wave function has a vanishing
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projection onto the negative energy eigenfunctions of HD. We
show in Sec. III C that this is in general not the case and
hence using the unprojected Coulomb interaction is strictly
speaking not justified. However, the energy functional turns
out to be bounded from below and does predict a two-particle
bound state. More importantly, we have verified that for
α � 0.4 the cumulative weight of negative energy states in
our trial wave function is very small (�1%), see Sec. III C.
Indeed, negative energy states will only be important if
typical interaction matrix elements can overcome the band
gap 2�. For small α, one therefore expects at most small
quantitative corrections in the bound-state energy because of
this approximation. For a treatment of stronger interactions
with 0.4 � α < 1/2, however, one must resort to the matrix
elements of the projected two-body operator. We leave this
task for future work.

We now collect all terms and obtain

Eε(ZI ,ZO) =
∑

λ

(
2�γλ + (Zλ − Z)(Vλ − εSU)

1 − εS2

)

+ Vdir
2b − εVexc

2b

1 − εS2
. (31)

The energy functional Eε(ZI ,ZO) has the following interesting
features. First of all, Eε(ZI ,ZO) is symmetric under an
exchange of its arguments. Second, as illustrated in Fig. 1
for the spin-singlet case, this energy is bounded from below as
long as Zα < 1/2. Third, for small α, we have checked that
Eε(ZI ,ZO) reduces to the corresponding nonrelativistic en-
ergy functional for the D− problem in 2D semiconductors [44].
However, in contrast to the nonrelativistic case, Eε(ZI ,ZO)
is not homogeneous in α, and hence the bound-state energy
explicitly depends on α. As in the nonrelativistic case, this
energy minimum is realized for unequal values of ZI and ZO .

With γ =
√

1/4 − Z2α2, the binding energy of the two-
body bound state is defined for the optimized choice of

FIG. 1. Energy functional Eε=−1(ZI ,ZO ) in units of � for the
spin-singlet state as a function of ZI for Z = 1, taking ZO = 0.3.
The green dashed-dotted (red dashed, blue solid) curve is for α =
0.3(0.35,0.4), respectively. Horizontal lines indicate the respective
threshold energies �(1 + 2γ ). When a minimum exists below the
threshold (as is the case for all shown α’s), a bound state is present.

TABLE I. Rescaled binding energy Ē−,b, see Eq. (32), for the
two-body bound state in the spin-singlet sector with Z = 1 and several
values of α. These values are plotted in Fig. 2. We also specify the
effective charges ZO and ZI minimizing the energy functional, cf.
Fig. 3.

α Ē−,b ZO ZI

0.01 0.307 0.289 1.090
0.05 0.308 0.290 1.090
0.10 0.310 0.292 1.088
0.15 0.314 0.295 1.086
0.20 0.320 0.299 1.081
0.25 0.327 0.305 1.076
0.30 0.337 0.314 1.068
0.35 0.350 0.325 1.058
0.40 0.366 0.341 1.045

ZI,O as

Eε,b(ZI ,ZO) = �(1 + 2γ ) − Eε(ZI ,ZO)

≡ α2�

2
Ēε,b(ZI ,ZO), (32)

where �(1 + 2γ ) denotes the energy of a state in which one
of the particles is in the ground state of HD and the other is
in the lowest positive energy state of the continuum spectrum
of HD, just above the gap. Equation (32) defines the rescaled
dimensionless binding energy Ēε,b (in units of α2�/2). In the
singlet case, Ē−,b approaches the nonrelativistic value Ē

(0)
−,b =

0.307 [44] for α → 0. For finite α, deviations of Ē−,b from
Ē

(0)
−,b indicate the importance of relativistic effects.
Figure 1 shows that the energy functional for the singlet

state with Z = 1 has a minimum for all studied values of α.
Moreover, the energy minimum is located below the threshold,
i.e., the binding energy is positive, and we have a two-body
bound state in the spin-singlet sector. In contrast to that, our
variational approach predicts that the energy functional has a
minimum also for the spin-triplet sector but the minimum
is now above the threshold and thus does not describe a
bound state. We also notice that the energy functional for
ZI = ZO = Z simply yields the ground-state energy of a
two-particle state with the Coulomb repulsion treated within
first-order perturbation theory. As anticipated above, we find
E−(1,1) > �(1 + 2γ ), and therefore perturbation theory is
not able to correctly describe the bound state for Z = 1.

Table I lists the binding energy in the spin-singlet sector for
several values of α. Note that both ZI and ZO are (well) below
the critical value of Zcrit = 1/(2α) for all cases considered in
Table I. The fact that for Z = 1 the minimum happens to be at
ZO < 1 and ZI > 1 (or vice versa due to the symmetry of Eε)
is rationalized by noting that only in this case the two factors
(ZI − 1)VI and (ZO − 1)VO in Eq. (31) will have opposite
signs. Physically, one quasiparticle then partially screens the
impurity charge seen by the other quasiparticle.

We observe from Table I that relativistic effects tend
to increase the binding energy. Approximately, we find the
scaling Ē−,b − Ē

(0)
−,b ∼ α2 illustrated in Fig. 2. It is interesting

to note that the variational parameter ZO increases with α
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FIG. 2. Rescaled dimensionless binding energy Ē−,b vs α, see
Eq. (32), in the spin-singlet sector with Z = 1.

whereas ZI decreases, see Fig. 3. Since the atomic Bohr
radius is ∼1/Zα, we conclude that in the relativistic case
the outer (inner) electron will be closer to (further away from)
the nucleus than in the nonrelativistic case.

C. Validity of the variational approach

Before we conclude this section, we comment on the
validity of this variational calculation. First, we observe that
the single-particle orbital |�λ〉 is the normalized ground state
of a modified Dirac Hamiltonian Hλ which is related to HD by

HD = Hλ + (Zλ − Z)α

r
. (33)

Assuming that |�E,j 〉 is in the continuous spectrum of HD, we
have

(E − Eλ)〈�λ|�E,j 〉 = 〈�λ|[(Zλ − Z)α/r]|�E,j 〉. (34)

As a consequence, for Eλ �= E and Zλ = Z, the state |�λ〉
is orthogonal to |�E〉. This is to be expected since in that
case they are eigenstates of the same Hermitian operator with
different eigenvalues. However, for Zλ �= Z, both states will
generically have a finite overlap. Since we take |�λ〉 as the
ground-state orbital, it is clear that the overlap with states in
the negative-energy continuum will be suppressed by a factor
on the order of 1/�. Actually, the overlap 〈�λ|�E,j 〉 can

FIG. 3. Optimal values of ZI (main panel) and ZO (the inset) vs
α for the spin-singlet case with Z = 1.

FIG. 4. Cumulative weight Wλ vs α, see Eq. (35), of the negative
energy states in the variational wave function for Z = 1, where λ =
I (λ = O) corresponds to black circles (red squares).

be evaluated analytically, see Appendix A. We can thereby
compute the total weight of our variational wave function on
the negative energy states,

Wλ(α) =
∫

E<−�

dE

2π
√

E2 − �2
|〈�λ|�E,j 〉|2. (35)

The result is shown in Fig. 4 for several values of α and the
corresponding Zλ from Table I. We find that the total weight
Wλ(α) for α � 0.4 is at most on the order of 0.01. It then
stands to reason that neglecting the projection operator in
the evaluation of Coulomb matrix elements does not signif-
icantly affect the variational estimate of the binding energy
for α � 0.4.

IV. GENERALIZATIONS

So far we have restricted ourselves to the case of two
quasiparticles in the same valley, in the presence of a band
gap, and for an impurity of charge Z = 1. In this section, we
briefly address various extensions, namely: (i) the case of an
impurity with charge Z > 1, (ii) a topological band gap, and
(iii) quasiparticles in different valleys.

A. Impurity charge Z > 1

From a theoretical perspective, the case of Z > 1 is less
interesting than Z = 1 because a bound state is found then
already in perturbation theory. In fact, when treating the two-
body Coulomb interaction perturbatively, the energy of the
lowest singlet state, taken in the simple factorized form 
tot =
�0,1/2(r1)�0,1/2(r2)|χ〉, coincides with the value of the energy
functional Eε(ZI ,ZO) for ε = 0 and ZI = ZO = Z,

Epert = E0(Z,Z) = 4 �γ + Vdir
2b . (36)

Straightforward evaluation of Eq. (36) then shows that the
perturbative estimate for the binding energy Ē−,b, cf. Eq. (32),
is negative for Z = 1 but positive for Z > 1. Hence a bound
state is predicted already by perturbation theory for Z > 1, in
contrast to the case of Z = 1.

Moreover, for Z > 1, our variational method turns out to be
restricted to rather small values of α. Table II summarizes the
rescaled binding energies Ē−,b and the optimal charges ZI,O
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TABLE II. Rescaled binding energy Ē−,b, see Eq. (32), for the
two-particle bound state in the spin-singlet sector for Z = 2 and
several values of α. We also specify the effective charges ZO and ZI

minimizing the energy functional.

α Ē−,b ZO ZI

0.01 7.524 1.142 2.266
0.05 7.591 1.148 2.261
0.10 7.817 1.169 2.243
0.15 8.265 1.210 2.207
0.20 9.136 1.292 2.141

for Z = 2 and several values of α. We here consider only the
regime α � 0.2 to ensure that the optimal charges remain well
below the singular value of Zcrit = 1/(2α).

For Z > 1, we also find a bound state in the spin-triplet
channel. However, the variational wave function used here for
the triplet state is probably not the most appropriate. In the case
of the helium atom, textbooks [37] show that the simplest wave
function for the lowest triplet state combines the single-particle
ground state and the first excited state. By analogy, for our 2D
case, a better choice for the triplet case might be to take instead
of Eq. (15) the ansatz


j=0 = �0,1/2,I (r1)�1,−(1/2),O (r2)

−�1,−(1/2),O (r1)�0,1/2,I (r2), (37)

which is an eigenstate of the total angular momentum operator
Jz = Jz(1) + Jz(2) with eigenvalue j = 0. Another option is


j=1 = �0,1/2,I (r1)�1,1/2,O (r2)

−�1,1/2,O (r1)�0,1/2,I (r2). (38)

In the absence of Coulomb interactions, this state has the same
energy as 
j=0, but Coulomb interactions will mix them.
Therefore a variational approach should take into account
both of them. However, this analysis goes beyond the scope
of this paper.

B. Topological band gap

Let us next consider the case of a topological gap Hso =
�σzsz, see Eq. (8), where we set τz = 1 as we will still
assume that both quasiparticles are in the same valley. (For
related studies of the case without Coulomb impurity, see
Refs. [31–33].) Since the total Hamiltonian now does not
commute with S2 anymore, we must distinguish whether the
two quasiparticles have the same or opposite spin projections,
Sz = ±1 or Sz = 0. If both quasiparticles have the same spin
projection (e.g., Sz = 1), we are back to the case discussed in
Sec. III but with ε = +1 (spin triplet). Within our variational
approach for Z = 1, there is no stable bound state.

Turning now to Sz = 0, we cannot separately consider spin-
singlet and spin-triplet states. A natural way to construct the
Chandrasekhar-Dirac variational wave function is as follows.
We consider the 2D subspace spanned by the wave functions:


1 = �I,↑(r1)|↑〉1 ⊗ �O,↓(r2)|↓〉2

−�O,↓(r1)|↓〉1 ⊗ �I,↑(r2)|↑〉2,


2 = �I,↓(r1)|↓〉1 ⊗ �O,↑(r2)|↑〉2

−�O,↑(r1)|↑〉1 ⊗ �I,↓(r2)|↓〉2, (39)

where spin and orbital degrees of freedom are entangled. In
Eq. (39), |s〉l is the eigenstate of sz with eigenvalue s = ± =↑
/ ↓ for particle l = 1,2, and �λ,s refers to the normalized
ground state of the single-particle Hamiltonian,

Hλ,s = −iσ · ∇ + s �σz − Zλα

r
, (40)

with λ = I,O. Again, ZI,O are variational parameters, and the
valley part is kept implicit. Since the valley part is assumed
symmetric, we have to choose antisymmetric combinations in
Eq. (39).

With the ground state of Hλ,+ given by

�λ,↑ ∼ rγλ−1/2e−pλr

(
1

iκλe
iθ

)
, (41)

we directly obtain

�λ,↓ = −iσy(�λ,↑)∗ ∼ rγλ−1/2e−pλr

(
iκλe

−iθ

1

)
(42)

as the ground state of Hλ,− with the same energy, where
〈�I,↑|�O,↓〉 = 0. In the subspace spanned by states 
1,2, the
Hamiltonian eigenvalue problem thus reduces to the problem
of finding solutions of the secular equation

det

(
H11 − 2E H12 − �12E

H21 − �21E H22 − 2E

)
= 0, (43)

where we use the notation (with a,b = 1,2),

Hab = 〈
a|H |
b〉, �ab = 〈
a|
b〉. (44)

Using the results of Sec. III and noting that the single-particle
matrix elements are independent of the spin projection, we
find �11 = �22 = 2 and �12 = �21 = −2S2. The roots of the
secular equation are given by

E±(ZI ,ZO) = 2H11 − H12�12 ± |2H12 − H11�12|
4 − �2

12

. (45)

It turns out that this expression has the same structure as the
energy functional in Eq. (31), and the corresponding results
therefore apply again. We conclude that the topological band
gap caused by Eq. (8) does not imply different bound-state
energies as compared to the topologically trivial band gap
resulting from Eq. (7).

C. Different valleys

So far we have assumed that the two quasiparticles occupy
the same valley state, and we thus only have a trivial double
degeneracy of the bound state. We will now briefly discuss the
case in which the two quasiparticles live in different valleys (cf.
Ref. [27] for a setting without Coulomb impurity). To properly
address this situation, we first recall that the Dirac-Weyl
spinors represent the slowly varying parts of the electronic
wave function. The complete wave function is obtained by
multiplying these spinors by the appropriate Bloch wave at the
K or K ′ point. In the continuum description, one neglects the
overlap between wave functions in opposite valleys 〈K|K ′〉 =
0. (Going beyond this approximation would require a study
of the lattice model.) Second, we observe that H0 in Eq. (5)
does not commute with the total squared valley operator T2,
where T = τ 1 + τ 2. This fact must be taken into account
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when building the appropriate Chandrasekhar-Dirac wave
function. Finally, the two-body Coulomb interaction potential
has the same form as for two quasiparticles with the same
valley quantum number, see Appendix B. A straightforward
calculation as in Sec. IV B then shows that the resulting
energy functional has the same structure as before. Therefore
the optimal binding energy coincides with the one for both
quasiparticles in the same valley.

V. OBSERVABLES

In this section, we turn to a discussion of the probability
density and of the pair distribution function for the bound state.
We consider the most interesting case Z = 1 and focus on the
Dirac band-gap term in Eq. (7) for the two-body spin-singlet
state. However, using the results in Sec. IV, it is straightforward
to obtain corresponding results also for other cases of interest.

A. Probability density

We start by calculating the probability density for the
two-particle bound state. The density operator is ρ̂(r) =∑

l=1,2 δ(r − rl), and thus the probability density is given by

ρ(r) = 1

〈
|
〉
∫

dr1dr2

†(r1,r2)ρ̂(r)
(r1,r2)

=
∫

dr2
|
(r,r2)|2

1 + S2
. (46)

The integral can be evaluated exactly, where the result for ρ(r)
does not depend on the polar angle θ . It is then convenient to
consider the radial density,

P (r) = r

∫
dθ ρ(r)

= 1

1 + S2

[ ∑
λ

(2pλ)2γλ+1

�(2γλ + 1)
r2γλe−2pλr

+ 2S2 (pI + pO)γI +γO+1

�(γI + γO + 1)
rγI +γO e−(pI +pO )r

]
, (47)

FIG. 5. Radial density P (r) vs distance r from the impurity (in
units ofh̄vF /�) of the spin-singlet two-body bound state, cf. Eq. (47),
for Z = 1 and several values of α. The solid lines correspond to the
relativistic case for α = 0.1, 0.2, and 0.3, shown in red, blue, and
black colors (from bottom to top), respectively. The dashed lines
indicate the corresponding nonrelativistic results.

FIG. 6. Radial profile of the pair distribution function g(r) vs
interparticle distance r (in units of h̄vF /�) for Z = 1 and several
values of α. The solid lines correspond to the relativistic case for α =
0.1, 0.2, and 0.3, shown in red, blue, and black colors (from bottom
to top), respectively. The dashed lines indicate the corresponding
nonrelativistic results.

with normalization
∫ ∞

0 dr P (r) = 2. The result is illustrated
for Z = 1 and several values of α in Fig. 5. With respect
to the nonrelativistic case, we observe that relativistic effects
tend to enhance the probability at short distance from the
Coulomb impurity. Since the radial density can be probed by
STM techniques, the result can be matched to the analytical
result in Eq. (47). Thereby one can hope to extract, e.g., the
value of the fine-structure constant α.

B. Pair distribution function

Next we turn to the pair distribution function of the two-
particle bound state,

g(r) = 1

2

〈∑
i �=j

δ[r − (ri − rj )]

〉

=
∫

dr1
|
(r1 − r/2,r1 + r/2)|2

〈
|
〉 . (48)

The result again turns out to be independent of the polar angle,
g = g(r) and is illustrated in Fig. 6. The pair distribution
function can be obtained experimentally by a statistical
analysis of STM images, see, e.g., Ref. [56], and can provide
additional information about the existence and the properties
of the two-body bound state predicted here.

VI. CONCLUDING REMARKS

In this paper, we have studied the two-particle bound-state
problem for gapped graphene in the presence of a Coulomb
impurity. We have shown that a variational approach using
the projected Hamiltonian and Chandrasekhar-Dirac spinors
as trial wave functions predicts the existence of at least one
bound state. We found that, in contrast to the Schrödinger
case, the variational energy functional is not a homogeneous
function of the coupling constant α. As a consequence, the
optimal values of the variational parameters Zλ depend on
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α, and the optimal binding energy has a more complicated
functional dependence on α. In particular, the binding
energy increases with respect to the nonrelativistic case.
Moreover, we have determined the relativistic corrections to
the probability density and to the pair probability density.
The predicted two-body bound state can thereby be accessed
experimentally, e.g., by means of STM techniques.

Finally, as a possibility for future theoretical work, it
would be interesting to diagonalize the projected many-body
Hamiltonian for graphene in a large basis set in order to com-
pute the ground-state energy without recourse to variational
wave functions. This route can also provide information about
low-lying excited resonant levels, which in turn are expected
to exhibit Fano line shapes when probed in transport or by
STM methods.

ACKNOWLEDGMENTS

We thank H. Siedentop for discussions. This work was
supported by the network SPP 1459 (Grant No. EG 96/8-2) of
the Deutsche Forschungsgemeinschaft (Bonn).

APPENDIX A: RELATIVISTIC 2D HYDROGEN ATOM

In order to keep the paper self-contained, we here collect
known results for the single-particle Dirac-Coulomb problem
in graphene, see, e.g., Refs. [3,7,21,22]. The massive Dirac-
Weyl Hamiltonian with a Coulomb impurity of charge Ze

reads (h̄ = vF = 1)

HD = −iσ · ∇ + �σz − Zα

r
. (A1)

The Hamiltonian (A1) is exactly solvable, and the bound-state
orbitals can be found, e.g., in Refs. [21,22]. Following the no-
tation of Ref. [21], in polar coordinates (r,θ ) they are given by

�n,j (r,θ ) = Nn,j ρ
γ−(1/2)e−(ρ/2)

(
(ϕ1 + cϕ2)ei[j−(1/2)]θ

iκ(ϕ1 − cϕ2)ei[j+(1/2)]θ

)
.

(A2)

The half-integer index j denotes the eigenvalue of the total
angular momentum operator Jz = −i∂θ + σz/2. The integer
index n � 0 is the principal quantum number where the
energy eigenvalues are given by

En,j = �√
1 + Z2α2

(n+γ )2

. (A3)

We use the notation

ρ = 2pr, p =
√

�2 − E2,

γ =
√

j 2 − Z2α2, κ =
√

� − E

� + E
, (A4)

c =
γ − ZαE

p

j + Zα�
p

=
j − Zα�

p

γ + ZαE
p

.

The functions ϕ1,2 in Eq. (A2) are confluent hypergeometric
functions of the first kind [55],

ϕ1(ρ) = M(γ − ZαE/p,2γ + 1,ρ),
(A5)

ϕ2(ρ) = M(γ + 1 − ZαE/p,2γ + 1,ρ).

Finally, Nn,j is a normalization constant such that∫
r dr dθ |�n,j |2 = 1. Explicitly, one finds

Nn,j = (−1)np3/2

��(2γ + 1)

√
�(2γ + 1 + n)(� + E)

(
j + Zα�

p

)
2πZαn!

.

(A6)

The energy eigenvalues (A3) now follow from the condition
γ − ZαE/p = −n such that the wave functions are normal-
izable. The confluent hypergeometric functions then reduce to
generalized Laguerre polynomials [55],

M(−n,2γ + 1,ρ) = �(n + 1)�(2γ + 1)

�(2γ + 1 + n)
L2γ

n (ρ). (A7)

The n > 0 bound states are doubly degenerate, En,j = En,−j ,
whereas the n = 0 bound states exist only for j > 0. Techni-
cally, this is due to the fact that, for n = 0, i.e., γ − ZαE/p =
0, ϕ2 grows exponentially ∼eρ and the corresponding solution
is admissible only for c = 0. This in turn occurs only for j > 0,
whereas c = −1 for j < 0.

The lowest-energy bound state is given by

�0,1/2 = N0,1/2ρ
γ−(1/2)e−(ρ/2)

(
1
iκeiθ

)
, (A8)

with the energy

E0,1/2 = 2�γ = �
√

1 − 4Z2α2, (A9)

and the normalization factor,

N0,1/2 = 2Zα�

√
2γ + 1

π�(2γ + 1)
. (A10)

States in the continuum spectrum |E| > � can be obtained
by means of analytic continuation in E, see Ref. [21]. One finds
that the states are given by Eq. (A2) with the substitutions,

p =
√

�2 − E2 → −i
√

E2 − �2 ≡ −ip̃,

ρ = 2pr → −2ip̃r,

c = γ − ZαE/p

j + Zα�/p
→ γ − iZαE/p̃

j + iZα�/p̃
≡ e−2iξ ≡ c̃,

κ =
√

� − E

� + E
→ −i sgn(E)

√
E − �

E + �

≡ −iκ̃ = −i
p̃

E + �
= −i

E − �

p̃
. (A11)

Explicitly, we get

�E,j = NE,j r
γ−1/2eip̃r

(
(ϕ1 + c̃ϕ2)ei[j−(1/2)]θ

κ̃(ϕ1 − c̃ϕ2)ei[j+(1/2)]θ

)
, (A12)

where

ϕ1 = M(γ − iZαE/p̃,2γ + 1, − 2ip̃r),
(A13)

ϕ2 = M(γ + 1 − iZαE/p̃,2γ + 1, − 2ip̃r).

The normalization factor NE,j follows by matching the
asymptotic behavior of Eq. (A12) to that of free spherical
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spinors [21] and reads

NE,j =
( |E+�|

2|E|
)1/2

∣∣�(
1+γ + iZαE

p̃

)∣∣
√

2π�(2γ +1)
eπZαE/2p̃(2p̃)γ eiξ .

(A14)

The spinors then satisfy the identity

∫
dr �

†
E,j (r)�E′,j ′ (r) = 2πδ(p̃ − p̃′)�(EE′)δjj ′ , (A15)

where � is the Heaviside step function. Therefore the
resolution of the identity for the (projected) Coulomb-Dirac

problem reads

1 =
∑
n,j

|�n,j 〉〈�n,j |

+
∑

j

∫
|E|>�

dE

2π
√

E2 − �2
|�E,j 〉〈�E,j |. (A16)

Finally, we provide the overlaps between our variational
wave-function |�λ〉 in Eq. (16) and the bound states as well as
with continuum states. Using the identity,∫ ∞

0
e−λrrνM(a,c,kr)dr = �(ν + 1)

λν+1 2 F1(a,ν + 1,c,k/λ),

(A17)

where 2 F1(a,b,c,z) is the hypergeometric function [55], the
overlap integrals with bound states are given by

Cn,j = 〈�λ|�n,j 〉 = 2πδj,1/2NλNn,j

�(γλ + γ + 1)

(pλ + p)γλ+γ+1

×
[(

1 + 2αλ(� − En,j )

(2γλ + 1)p

)
2 F1

(
−n,γλ + γ + 1,2γ + 1,

2p

pλ + p

)

− n

j + α�/p

(
1 − 2αλ(� − En,j )

(2γλ + 1)p

)
2 F1

(
−n + 1,γλ + γ + 1,2γ + 1,

2p

pλ + p

)]
, (A18)

whereas the overlap with continuum states is given by

Cj (E) = 〈�λ|�E,j 〉

= 2πδj,1/2NλNE,j

∫ ∞

0
dr rγλ+γ e−(2αλ−ip̃)r [(1 − iκ̃κλ)ϕ1 + c(1 + iκ̃κλ)ϕ2]

= 2πδj,1/2NλNE,1/2
�(γλ + γ + 1)

(pλ − ip̃)γλ+γ+1

×
[(

1 − i
2αλ(E − �)

(2γλ + 1)p̃

)
2 F1

(
γ − iαE/p̃,γλ + γ + 1,2γ + 1,

−2ip̃

pλ − ip̃

)

+ γ − iαE/p̃

j + i �α/p̃

(
1 + i

2αλ(E − �)

(2γλ + 1)p̃

)
2 F1

(
γ − iαE/p̃ + 1,γλ + γ + 1,2γ + 1,

−2ip̃

pλ − ip̃

)]
. (A19)

Using the identity 2 F1(a,b,b,z) = (1 − z)−a , one can check
that, for Zλ = Z, the overlaps Cn,j reduce to δn,0δj,1/2 and that
the overlaps Cj (E) vanish. Furthermore, since the |�λ〉 states
are normalized to unity, the expansion coefficients satisfy the
identity

∑
n,j

|Cn,j |2 +
∑

j

∫
dE

2π
√

E2 − �2
|Cj (E)|2 = 1. (A20)

APPENDIX B: COULOMB INTERACTION

Here we briefly discuss the form of the two-body interaction
used in our analysis. In general, the many-body Coulomb

interaction is given by

Hint = 1

2

∫
dr1dr2�

†
s1

(r1)�†
s2

(r2)V2b(r12)�s2 (r2)�s1 (r1),

(B1)
where �s(r) is the field operator with spin projection s = ±1
and the sum over spin projections is understood. For graphene,
the field operator in the continuum limit can be decomposed
into valley components,

�s(r) �
∑
τ=±

eiτK·r�s,τ (r),

where ±K are the two independent Fermi momenta (Dirac
points) and τ = ± is the valley index.
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Correspondingly, Hint decomposes into several terms, Hint � ∑5
j=1 H

(j )
int , where (the sum over repeated spin and valley indices

is understood, and τ̄ = −τ )

H
(1)
int = 1

2

∫
dr1dr2�

†
s1,τ

(r1)�†
s2,τ

(r2)V2b(r12)�s2,τ (r2)�s1,τ (r1),

H
(2)
int = 1

2

∫
dr1dr2�

†
s1,τ

(r1)�†
s2,τ̄

(r2)V2b(r12)�s2,τ̄ (r2)�s1,τ (r1),

H
(3)
int = Ṽ2b(2K)

2

∫
dR �†

s1,τ
(R)�†

s2,τ̄
(R)�s2,τ (R)�s1,τ̄ (R), (B2)

H
(4)
int = 1

2

∫
dr1dr2�

†
s1,τ

(r1)�†
s2,τ

(r2)e−i2τK·(r1+r2)V2b(r12)�s2,τ̄ (r2)�s1,τ̄ (r1),

H
(5)
int = Ṽ2b(K)

2

∫
dR �†

s1,τ1
(R)�†

s2,τ2
(R)e−i2τ1K·R�s2,τ2 (R)�s1,τ̄1 (R)

+ Ṽ2b(K)

2

∫
dR �†

s1,τ1
(R)�†

s2,τ2
(R)e−i2τ2K·R�s2,τ̄2 (R)�s1,τ1 (R). (B3)

In order to obtain Eqs. (B2) and (B3), we have switched to
center-of-mass and relative coordinates R = (r1 + r2)/2 and
r = r1 − r2, respectively, and subsequently integrated over the
relative coordinate. Furthermore, Ṽ2b(q) denotes the Fourier
component of the Coulomb potential, where q = K or q = 2K.

For our problem, we expect that the dominant matrix
elements of Hint in the two-particle subspace are those due

to H
(1)
int if both particles belong to the same valley or those

due to H
(2)
int if they belong to opposite valleys. The matrix

elements of all other terms are suppressed either by a small
coupling constant [H (3)

int ], or by rapidly oscillating exponen-
tial factors in the integral [H (4)

int ], or by both mechanisms
together [H (5)

int ].

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. Geim, Rev. Mod. Phys. 81, 109 (2009).

[4] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[5] A. F. Young and P. Kim, Annu. Rev. Condens. Matter Phys. 2,

101 (2011).
[6] E. Y. Andrei, G. Li, and X. Du, Rep. Prog. Phys. 75, 056501

(2012).
[7] V. N. Kotov, B. Uchoa, V. M. Pereira, A. H. Castro-Neto, and F.

Guinea, Rev. Mod. Phys. 84, 1067 (2012).
[8] V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1 (2015).
[9] M. Kim, J. H. Choi, S. H. Lee, K. Watanabe, T. Taniguchi, S. H.

Jhi, and H. J. Lee, Nat. Phys. 12, 1022 (2016).
[10] C. R. Dean et al., Nat. Nanotechnol. 5, 722 (2010).
[11] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys.

Rep. 496, 109 (2010).
[12] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[13] D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B

74, 155426 (2006).
[14] L. A. Ponomarenko et al., Nature (London) 497, 594 (2013).
[15] J. C. W. Song, A. V. Shytov, and L. S. Levitov, Phys. Rev. Lett.

111, 266801 (2013).
[16] Y. Wang, V. W. Brar, A. V. Shytov, Q. Wu, W. Regan, H. Z.

Tsai, A. Zettl, L. S. Levitov, and M. F. Crommie, Nat. Phys. 8,
653 (2012).

[17] A. Luican-Mayer, M. Kharitonov, G. Li, C.-P. Lu, I. Skachko,
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