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Spin filtering in all-electrical three-terminal interferometers
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Unlike the two-terminal device, in which the time-reversal invariant spin-orbit interaction alone cannot polarize
the spins, such a polarization can be generated when electrons from one source reservoir flow into two (or more)
separate drain reservoirs. We present analytical solutions for two examples. First, we demonstrate that the electrons
transmitted through a “diamond” interferometer into two drains can be simultaneously fully spin polarized along
different tunable directions, even when the two arms of the interferometer are not identical. Second, we show that
a single helical molecule attached to more than one drain can induce a significant spin polarization in electrons
passing through it. The average polarization remains nonzero even when the electrons outgoing into separate
leads are eventually mixed incoherently into one absorbing reservoir. This may explain recent experiments on
spin selectivity of certain helical-chiral molecules.
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I. INTRODUCTION

One of the major aims of spintronics is the generation
and manipulation of spin-polarized electrons in semicon-
ductors [1,2]. The coherent control of the electron spin [3]
has important implications for future spintronic devices [4],
as well as for spin-based quantum computation [5,6]. Two
classes of spin-based architectures may be distinguished. The
first uses static qubits, i.e., electrons localized in spatially
confined systems, such as quantum dots [6]. In this type
of architecture, single- and two-qubit gates function by a
suitable time-dependent tuning of magnetic and electric fields.
The second class is based on flying qubits, i.e., mobile
electrons which move through the circuit, passing via quantum
gates implemented in predefined areas by static electric and
magnetic fields [7]. In this paper we consider the second
class of spin qubits and focus on spin filters: devices which
polarize the spins of electrons going through them along
tunable directions or, equivalently, write quantum information
on these mobile qubits. Specifically, we concentrate on
time-reversal symmetric devices, operating in the absence
of external magnetic fields. We first discuss mesoscopic
interferometers, which can induce full polarization of the
outgoing electron spins, along tunable directions, and thus
can serve as spin filters. We then consider helical molecules,
which typically lead to only partial polarization (sometimes
called spin selectivity).

A natural source of spin polarization is the spin-orbit inter-
action (SOI) [8–10]. This interaction generates a momentum-
dependent effective magnetic field which operates on an
electron moving in an electric field. This effective field couples
to the electronic spin, which then precesses around it. When
electrons move on a single one-dimensional (1D) wire, all their
spins rotate by the same amount, hence no net polarization
appears. Technically, the SOI can be removed by a gauge
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transformation [11]. The effect of the SOI becomes nontrivial
in transport through more than one electronic path, for instance
by allowing for quantum interference [12]. Indeed, several
groups proposed spin filters based on a single loop connected
to two terminals by single-channel 1D leads [13–17]. If
time-reversal symmetry (TRS) is conserved in such networks
and the scattering matrix of the device is unitary (meaning
that the number of particles scattered at a certain energy is
conserved), then the 2 × 2 transmission and reflection matrices
(in spin space) must have degenerate eigenvalues [18,19]. As
a result, all directions of the spin polarization are equally
probable, and there cannot be any spin filtering. Since the SOI
conserves TRS, a spin filter based on a two-terminal device
requires departure from the above assumptions. One way to
achieve this is by breaking TRS, e.g., by adding a magnetic
field [13–17].

Alternatively, one may increase the number of terminals
connected to the device and thus generate a finite spin
polarization without exploiting ferromagnetic electrodes and
without applying magnetic fields. All-electrical single-loop
spin filters based on three-terminal devices have been studied
before [20–24]; in particular, Földi et al. [23] demonstrated
that a symmetric-ring interferometer attached to one source
and two drain terminals can act as a spin beam splitter,
which polarizes the electrons in the output leads along tunable
directions. In the first part of this paper we extend this result to a
more realistic setup. By analyzing the diamond interferometer
shown in Fig. 1 we find that it can serve as a perfect spin beam
splitter even when its two arms are not completely identical.
We obtain the spin-filtering conditions for the two output leads
and show that the two outgoing electron beams can be fully
polarized simultaneously along different directions, which are
determined solely by the parameters of the SOI.

In spin filters based on the single-loop interferometers
discussed above, the outgoing electrons are separated into two
beams; the quantity of interest is then the spin polarization
of each of these beams. However, other configurations, in
which the output leads are connected to a single reservoir
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FIG. 1. Illustration of a three-terminal diamond interferometer.
The electrons moving on the diamond edges (of length L) are
subjected to spin-orbit interactions.

where the transmitted electrons are mixed incoherently, are
also possible. Then the relevant spin polarization is the total
(average) polarization of all the transmitted electrons. As we
argue below, this may be the case in the chiral-induced spin
selectivity (CISS) effect. This remarkable effect has revealed
the ability of chiral organic molecules to act as efficient spin
filters [25–31], thus opening the route for organic spintronic
applications [32–34]. This is achieved without ferromag-
netic electrodes and in the absence of magnetic fields: the
organic molecules serve as active elements rather than passive
ones [35]. It was found experimentally that the conductance of
a chiral molecule adsorbed on a ferromagnetic substrate and
connected to a metallic nanoparticle at its other edge [27,30]
depends on the polarization direction of the substrate. Other
experiments detected the spin polarization of photoelectrons
transmitted through a self-assembled monolayer of molecules
adsorbed on a metallic substrate [26,28,30]. Here we model the
experimental setup by a multiterminal helical configuration,
and show that the total polarization of the outgoing electrons
can be quite significant.

The experimental observations of the CISS effect were
followed by numerous theoretical proposals aiming to explain
them [36–45]. However, there is still no consensus on the
appropriate theory. To explain the CISS effect without invoking
a magnetic field, several earlier theories calculated the current
between a single source and a single drain, but effec-
tively added coupling of the system to additional reservoirs.
References [38,39,45] used a phenomenological method due
to Büttiker [46], in which phase-breaking (or dephasing) pro-
cesses are modeled by additional electron reservoirs coupled
to the system via fictitious voltage probes, subjected to the
condition of zero net current. Some of the electrons enter the
fictitious probes and have their phases randomized before they
are reinjected into the system. Alternatively, Ref. [44] broke
the unitarity of the two-terminal scattering matrix by adding
leakage of electrons into additional reservoirs [47,48]. As we
argue below, the results of these calculations apply only when
the additional (leakage) leads are held at the same chemical
potential as the output lead. Unlike Ref. [44], which calculated

only the spin polarization in a single output lead, we calculate
below the polarization in all the output leads and also their total
polarization. We find that a significant spin polarization can be
achieved in the fully coherent and unitary transport regime, by
considering a multiterminal configuration in which electrons
are allowed to exit the molecule into more than one terminal.

A similar model was used to study the effects of various
contacts connected to a double-helical molecule [49]. As
expected, the net polarization vanished in all the examined two-
terminal configurations. In contrast, a finite spin polarization
was found when the double-helical molecule was connected in
a multiterminal configuration. The polarization was negligible
when the two strands were identical, and approached zero in
the limit of a single 1D strand. We study a minimal (simpler)
model for a single helical molecule in a three-terminal configu-
ration and show that a significant polarization can be obtained,
provided that interference between different electronic paths
is taken into account. The model also yields that the sign of
the polarization is reversed upon reversing the chirality sense
of the molecule, as observed in experiments [31].

The outline of the paper is as follows: in Sec. II we
present the tight-binding model used to study spin-dependent
transport in a finite quantum network with SOI, which is
connected to an arbitrary number of reservoirs by tight-binding
chains (“leads”), and express the spin polarization of the
electrons in each lead in terms of the scattering matrix of the
network. We then solve for the transmission of a three-terminal
diamond interferometer, and find the conditions for full spin
filtering in each output lead (Sec. III). In Sec. IV we apply
the multiterminal model to a single helical molecule, with
further-neighbor hopping which accounts for interference, and
calculate the total spin polarization of the outgoing electrons
along the symmetry axis of the molecule. The results are
discussed and summarized in Sec. V.

II. GENERAL CONSIDERATIONS

To study spin-dependent electron transport in the presence
of SOI, we exploit the tight-binding formalism in which
electrons hop between discrete sites. In this description, the
Schrödinger equation for the spinor |ψβ〉 at site β is

(E − εβ) |ψβ〉 = −
∑

α

JαβUαβ |ψα〉 , (1)

where E is the electron energy, εβ is the on-site energy, Jαβ

is the hopping amplitude from site α to site β (which can be
chosen to be real), and Uαβ is a 2 × 2 unitary matrix which
describes the spin precession of an electron moving from site α

to site β. Generally, these unitary matrices are of the form [50]

Uαβ = exp[iKαβ · σ ], (2)

with σ being the vector of Pauli matrices. The vector Kαβ

depends on the specific type of SOI [16,17]. Its magnitude
scales with the strength of the local SOI and its direction
depends on the type of SOI and on the direction of the bond αβ.
Specifically, we assume that the semi-infinite leads (see Fig. 1)
are free of the SOI; the nearest-neighbor hopping amplitude
on those leads (the same for all bonds) is denoted J0, and the
on-site energies there are set to zero.
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In the context of mesoscopic interferometers patterned from
a two-dimensional electron gas confined at the interface of
narrow-gap semiconductor heterostructures, the relevant types
of SOI are the Dresselhaus [8] and the Rashba [9] interactions.
The Rashba SOI originates in broken structural inversion
symmetry along the growth direction of the quantum well
(taken to be ẑ), and its magnitude can be tuned by applying an
electric field along that axis, via a gate voltage [51–57]. The
Dresselhaus SOI results from broken bulk inversion symmetry,
and its magnitude is nearly independent of the applied
electric field. For these two interactions, the vectors Kαβ are
[16,17]

Kαβ = θD(−d̂αβ,x,d̂αβ,y,0) + θR(−d̂αβ,y,d̂αβ,x,0), (3)

where θD and θR are the spin precession angles due to
Dresselhaus and Rashba SOI, respectively. These angles
are proportional to the strength of the corresponding SOI
mechanism and to the length of the bond αβ, the direction of
which is along the unit vector d̂αβ = (d̂αβ,x,d̂αβ,y,0). For chiral
molecules, a more plausible assumption about the specific SOI
is that it is due to the local electric fields within the molecule.
In this case [50]

Kαβ = λdαβ × Eαβ, (4)

where λ is the parameter representing the SOI strength, dαβ

is the vector along the bond αβ, and Eαβ is the average
electric field acting on an electron along this bond. Below we
assume that for a helical molecule this field points in the radial
direction, due to the potential which confines the electrons to
move on the helical cylinder. In atoms λ = e/(4mec

2), where
e and me are the free-electron charge and mass, respectively,
and c is the speed of light. The strength of the SOI is
enhanced in curved structures such as carbon nanotubes and
chiral helical molecules, as compared to its value in flat
configurations [31,58–65].

Quite generally, the spin-resolved currents in the leads can
be expressed using the Landauer-Büttiker formalism, which
yields the charge and the spin currents in terms of the electronic
populations in the various reservoirs, and the transmissions
between the leads. When the latter are free of SOIs and

magnetic fields and the electrons’ reservoirs to which they are
attached are not polarized, the charge and spin currents in lead
i read [66]

I
(C)
i = e

∫
dE

2πh̄

∑
j �=i

[fi(E) − fj (E)]T (C)
i,j (E),

I
(S)
i =

∫
dE

4πh̄

∑
j �=i

[fi(E) − fj (E)]T (S)
i,j (E), (5)

where fi(E) = (exp[(E − μi)/kBT ] + 1)−1 is the Fermi-
Dirac distribution of the ith reservoir, the chemical potential
of which is μi . In Eq. (5),

T
(C)
i,j (E) =

∑
σ,σ ′

Tiσ,jσ ′ (E),

T
(S)
i,j (E) =

∑
σ,σ ′

σTiσ,jσ ′ (E) (6)

are the charge and spin transmissions between lead j and lead
i. These are derived within scattering theory, by calculating
the scattering matrix S(E) (the elements of which are iσ,jσ ′)
of the setup at energy E; the various transmissions are
then Tiσ,jσ ′ (E) = |Siσ,jσ ′ (E)|2. The indices σ and σ ′ are
the eigenvalues of the spins along an arbitrary quantization
axis.

When all the leads but one are attached to reservoirs with
the same chemical potential, lower than that of the one coupled
to the remaining lead (say lead zero), the unitarity of the
scattering matrix implies that all the currents can be expressed
in terms of the reflection and transmissions from the source
lead zero; in this case only a single column (containing 2 × 2
matrices in spin space) of the scattering matrix is needed. This
is the situation implicitly assumed in our previous paper [44],
as well as in other works [22,23,49]; the same configuration is
exploited below. Presumably, this configuration applies to the
transport experiments carried out on chiral organic molecules,
in which a single voltage source is applied to the two edges of
the molecule [27].

To calculate the transmissions Tiσ,jσ ′ (E)s we assume a
scattering state at a given energy E, in which the site spinors
on the leads are given by

|ψn〉 =

⎧⎪⎨
⎪⎩

|χin〉 eik0(n−nin) + r |χr〉 e−ik0(n−nin) input lead

t (1)
∣∣χ (1)

t

〉
eik0(n−nout,1) first output lead

t (2)
∣∣χ (2)

t

〉
eik0(n−nout,2) second output lead, etc.

. (7)

Here |χin〉, |χr〉, and |χ (n)
t 〉 (n = 1,2, . . .) are the incoming,

reflected, and transmitted spinors, respectively, and the cor-
responding reflection and transmission amplitudes are r and
t (n). The total incoming current is normalized to a unit of
particle flux. The wave vector k0 (in units of the inverse of
the lattice constant of the leads [67]) obeys the dispersion
relation E = −2J0 cos k0; the indices nin, nout,1, and nout,2,
etc., stand for the sites connecting the system to the leads (e.g.,
nin = 0,nout,1 = nb = 0,nout,2 = nc = 0 for the interferometer
in Fig. 1).

The reflection and transmission amplitude matrices, R and
Tn, defined by

r|χr〉 = R |χin〉,
t (n)

∣∣χ (n)
t

〉 = Tn |χin〉 , (8)

are obtained by inserting the scattering wave Eq. (7)
into the Schrödinger Eq. (1). As we find in the exam-
ples studied below, one can write these matrices in the
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form

R = r1,

Tn = t
(n)
+ |n̂n〉 〈n̂| + t

(n)
− |−n̂n〉 〈−n̂| , (9)

where 1 is the 2 × 2 unit matrix and the spinors |±n̂〉 and
|±n̂n〉 are spin eigenstates with the polarization along ±n̂
and ±n̂n (see below); they depend on the geometry of the
system and on the specific SOI. Note that the scalar form of
the reflection amplitude matrix follows from the self-duality of
the scattering matrix [18]. Due to TRS, the reflected electrons
are never polarized when there is a single “input” channel, for
any number of “output” leads [19].

For an unpolarized incident beam, the polarization of the
outgoing beam in the nth output lead along n̂n is

P
(n)
n̂n

≡ Tr[T †
n (n̂n · σ )Tn]

Tr[T †
n Tn]

= |t (n)
+ |2 − |t (n)

− |2
|t (n)

+ |2 + |t (n)
− |2

. (10)

The total polarization along an arbitrary unit vector ẑ is given
by the weighted average of the polarizations in each lead with
respect to the total transmission into each lead:

Pẑ ≡
∑

n

qnP
(n)
n̂n

n̂n · ẑ, (11)

where

qn = Tr[T †
n Tn]∑

n′ Tr[T †
n′Tn′]

. (12)

These expressions are used in the following to analyze specific
setups.

III. THREE-TERMINAL DIAMOND INTERFEROMETER

Applying the general formulation to the three-terminal
diamond interferometer shown in Fig. 1, the Schrödinger
equations for the spinors at sites 0, b, c, and d are

(E − ε0) |ψ0〉 = −J0bU
†
0b |ψb〉 − J0cU

†
0c |ψc〉 − J0

∣∣ψ (0)
−1

〉
,

(E − εb) |ψb〉 = −J0bU0b |ψ0〉 − JbdU
†
bd |ψd〉 − J0

∣∣ψ (1)
1

〉
,

(E − εc) |ψc〉 = −J0cU0c |ψ0〉 − JcdU
†
cd |ψd〉 − J0

∣∣ψ (2)
1

〉
,

(E − εd ) |ψd〉 = −JbdUbd |ψb〉 − JcdUcd |ψc〉. (13)

The spinors with a single subscript stand for the wave functions
at the four sites 0, b, c, and d which define the interferometer.
Spinors with superscripts represent the sites along the leads,
where the superscript specifies the lead (zero for the input lead
and one and two for the two output leads) and the subscript
specifies the site within that lead (Fig. 1). Eliminating |ψd〉
from Eqs. (13), one finds

(E − ε0) |ψ0〉 = −J0bU
†
0b |ψb〉 − J0cU

†
0c |ψc〉 − J0

∣∣ψ (0)
−1

〉
,

(E − yb) |ψb〉 = −J0bU0b |ψ0〉 + JU
†
bdUcd |ψc〉 − J0

∣∣ψ (1)
1

〉
,

(E − yc) |ψc〉 = −J0cU0c |ψ0〉 + JU
†
cdUbd |ψb〉 − J0

∣∣ψ (2)
1

〉
,

(14)

where

yα = εα + J 2
αd

E − εd

(α = b,c), J = JbdJcd

E − εd

. (15)

Inserting the scattering state (7) into Eq. (14) and solving for
r |χr〉, t (1) |χ (1)

t 〉, and t (2) |χ (2)
2 〉 gives the 2 × 2 reflection and

transmission amplitude matrices [see Eq. (9)]:

R = −1 − 2iJ0Y sin k0[Z − J0bJ0cJ (u + u†)]−1,

T1 = 2iJ0 sin k0[Z − J0bJ0cJ (u + u†)]−1U0b

× (JJ0cu − XcJ0b),

T2 = 2iJ0 sin k0[Z − J0bJ0cJ (u + u†)]−1U0c

× (JJ0bu
† − XbJ0c), (16)

with

X0 = ε0 + J0e
−ik0 ,

Xα = yα + J0e
−ik0 (α = b,c),

(17)
Y = J 2 − XbXc,

Z = X0Y + XcJ
2
0b + XbJ

2
0c.

The unitary matrix u = U
†
0bU

†
bdUcdU0c in Eq. (16) represents

anticlockwise hopping from site zero back to site zero around
the loop. This matrix is of the general form

u = exp[iωn̂ · σ ] = cos ω + i sin ωn̂ · σ , (18)

where ω is the phase accumulated around the loop due to the
SOI-induced spin precession. The eigenspinors of u, |±n̂〉,
are the eigenstates of the spin component n̂ · σ along the unit
vector n̂; that is,

u |±n̂〉 = exp[±iω] |±n̂〉 . (19)

The SOI phase ω and the direction n̂ are determined by the SOI
on the edges of the interferometer. As stated before Eq. (3),
the angle θR due to the Rashba SOI can be controlled by a gate
voltage, as demonstrated in several experiments [51–57]. The
expressions for ω and n̂ in the presence of both the Rashba
and the Dresselhaus SOIs were analyzed in Refs. [16,17].

As expected [see the first of Eqs. (9)], the reflection
amplitude matrix R, given by the first of Eqs. (16) in
conjunction with Eq. (18), is proportional to the unit matrix
with the reflection amplitude

r = −1 − 2iJ0Y sin k0

Z − 2J0bJ0cJ cos ω
. (20)

To find the transmission amplitudes, we expand the incoming
spinor |χin〉 in the basis {|n̂〉 , |−n̂〉}, |χin〉 = c+ |n̂〉 + c− |−n̂〉.
Then, for |χin〉 = |±n̂〉, Eqs. (16) and (18) yield the spinors of
the electrons transmitted into the output leads:

t
(1)
±

∣∣χ (1)
t,±

〉 = 2iJ0 sin k0(JJ0ce
±iω − XcJ0b)

Z − 2J0bJ0cJ cos ω
U0b|±n̂〉,

t
(2)
±

∣∣χ (2)
t,±

〉 = 2iJ0 sin k0(JJ0be
∓iω − XbJ0c)

Z − 2J0bJ0cJ cos ω
U0c|±n̂〉. (21)

The transmission amplitude matrices T1 and T2 can therefore
be written in the form of Eq. (9) with

t
(1)
± = 2iJ0 sin k0(JJ0ce

±iω − XcJ0b)

Z − 2J0bJ0cJ cos ω
,

t
(2)
± = 2iJ0 sin k0(JJ0be

∓iω − XbJ0c)

Z − 2J0bJ0cJ cos ω
, (22)
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and

|±n̂1〉 = U0b |±n̂〉 ,

|±n̂2〉 = U0c |±n̂〉 . (23)

Note that the two terms in the brackets in Eqs. (22) reflect the
interference between the different arms of the interferometer.
When one of the arms is blocked (e.g., by setting J0b = 0),
one obtains |t (n)

+ | = |t (n)
− | and the polarization (10) vanishes, as

expected for a 1D wire.
The form Eq. (9) of the transmission amplitude matrices

indicates that the electrons transmitted into terminal 1 (2) are
fully spin polarized when one of the transmission eigenvalues
t

(1)
± (t (2)

± ) vanishes. For instance, if t
(1)
− = 0 (t (1)

+ = 0) the
electrons transmitted into terminal 1 are fully polarized along
the direction n̂1 (−n̂1), with the amplitude c+t

(1)
+ (c−t

(1)
− ). The

outgoing currents in these leads thus contain information on
the incoming spinor, via the factors |c±|2. Without loss of
generality, let us assume that t

(1)
− = 0, i.e.,

JJ0c exp[−iω] = XcJ0b. (24)

Recalling that the hopping amplitudes are real [68], the spin-
filtering conditions are

JJ0c

J0b

= |Xc| =
√

y2
c + 2ycJ0 cos k0 + J 2

0 ,

tan ω = J0 sin k0

yc + J0 cos k0
. (25)

Similar to the spin-filtering conditions obtained in
Refs. [16,17] for two-terminal interferometers, Eq. (25) for the
three-terminal configuration also contains two conditions for
the full filtering. The first relates the hopping amplitudes within
the two different paths. This condition involves the electron
energy E and the various hopping amplitudes and on-site
energies, and is independent of the SOI. In the linear-response
regime, and at low temperatures, all the transport electrons
have practically the same energy, equal to the average chemical
potential of the leads. The second condition determines the
SOI phase ω acquired upon completing a full turn (from
site zero back to site zero). When these two conditions are
fulfilled the spin of the transmitted electrons is fully polarized,
|χ (1)

t 〉 = |n̂1〉 = U0b |n̂〉.
A full spin filtering in lead 2 necessitates in addition that

either t
(2)
+ = 0 or t

(2)
− = 0. When t

(2)
+ = 0, the spin-filtering

conditions for lead 2 coincide with Eqs. (24) and (25), with
the replacements b ↔ c. From the equations for the SOI phase
ω [i.e., the second of Eqs. (25) and its equivalent for lead 2] one
concludes that yb = yc = y. The first of Eqs. (25) then implies
that J0b = ±J0c. The electrons transmitted into the two output
leads are thus fully polarized simultaneously, with their spinors
being |χ (1)

t 〉 = |n̂1〉 = U0b |n̂〉 and |χ (2)
t 〉 = |−n̂2〉 = U0c |−n̂〉,

provided that

yb = yc = y, J0b = ±J0c,

J = ±
√

y2 + 2yJ0 cos k0 + J 2
0 ,

tan ω = J0 sin k0

y + J0 cos k0
. (26)

The first two conditions are trivially fulfilled for a symmetric
interferometer, i.e, when the various parameters in the two
arms are identical. Then the conditions for full filtering are
given by the last two equations. This symmetric case was
explored in a ring interferometer in Ref. [23]. However, the
conditions (26) can be fulfilled also when the two arms of the
interferometer are not precisely identical, since the condition
yb = yc does not require the arms bd and cd to be identical.
Specifically, this condition holds for εb �= εc, provided that
J 2

cd − J 2
bd = (εb − εc)(E − εd ) [see the first of Eqs. (15)].

Also, the electrons in the two outgoing channels are fully
polarized under the asymmetric condition J0b = −J0c.

Similarly, when t
(2)
− = 0, the spin-filtering conditions for

lead 2 can be written in the same form as Eq. (25) with the
replacements b ↔ c and ω → −ω, and full polarization in
both output leads is achieved for disparate interferometer arms.
For example, the equations for the SOI phase ω then imply
that yb + yc = −2J0 cos k0. For appropriate parameters, the
spinors of the electrons transmitted into the two output leads
in this case are |χ (1)

t 〉 = |n̂1〉 = U0b |n̂〉 and |χ (2)
t 〉 = |n̂2〉 =

U0c |n̂〉.
Our analysis suggests that spin filtering by a three-terminal

interferometer may also be obtained for a partially asymmetric
interferometer, and thus generalizes the results of Ref. [23].
While tuning of two parameters is sufficient for a full filtering
in the two output leads of a symmetric interferometer, the
(probably more realistic) asymmetric one requires additional
tuning of J0b or J0c, and of either of εb, εc, Jbd , or Jcd .

In general, when the spin-filtering conditions are not
fulfilled exactly, the transmitted electrons in each output lead
are only partially polarized. The spin polarization in the nth
output lead along n̂n is readily calculated by substituting
Eqs. (22) into Eq. (10):

P
(1)
n̂1

= − 2JJ0bJ0c|Xc| sin ω sin δc

J 2J 2
0c + J 2

0b|Xc|2 − 2JJ0bJ0c|Xc| cos ω cos δc

,

P
(2)
n̂2

= 2JJ0bJ0c|Xb| sin ω sin δb

J 2J 2
0b + J 2

0c|Xb|2 − 2JJ0bJ0c|Xb| cos ω cos δb

, (27)

where the variables Xb and Xc [see Eqs. (24) and (25)] are pre-
sented in the form |Xb| exp[iδb] and |Xc| exp[iδc], respectively.
The polarizations (27) achieved in a symmetric interferometer
are equal in magnitude and of opposite signs [69]. However,
as n̂1 �= n̂2, the total polarization (11) does not vanish even in
the symmetric case.

The above results have been obtained from a tight-binding
model, with 1D leads and 1D arms of the interferometer. In
realistic situations the various wires are not 1D, and therefore
our detailed predictions may not apply at arbitrary energies
(especially near the van Hove singularities). However, they
are expected to be qualitatively valid when the transport in
the wire is through a single channel, and for energies near the
band center, E = 0 or k0 = π/2, where the density of states
depends only weakly on the energy. Figure 2 illustrates the
polarization along the direction n̂n in each of the output leads
as a function of ω, for E = 0. For the black (thick) curves
the first three conditions of Eqs. (26) are satisfied, and thus
full polarization is obtained in both leads when the fourth of
Eqs. (26) is satisfied, i.e., when tan ω = J0/y. The red (thin)
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FIG. 2. Spin polarization in the first (solid) and second (dashed)
output leads, along the directions n̂1 and n̂2, respectively, as a
function of ω at the center of the energy band in the leads,
E = 0. For the black (thick) curves yb = yc = y = 2J0, J0b = J0c,
and J =

√
y2 + J 2

0 = √
5J0. Full spin polarization is obtained for

ω = arctan(J0/y) ≈ 0.15π . For the red (thin) curves J0b = 0.7J0c

and only a partial spin polarization is obtained.

curves correspond to J0b �= J0c, so that the spin polarization is
only partial.

IV. THREE-TERMINAL HELICAL MOLECULE

This section is devoted to an analysis of spin-dependent
transport through a single helical molecule placed in a
multiterminal configuration, as shown in Fig. 3. The molecule
is modeled within the tight-binding formalism: the hopping
amplitude between nearest-neighbor sites along the helix is J

and that between sites along the axial direction ẑ, the distance
of which is h (h being the pitch of the helix, see Fig. 3), is J̃ .
The on-site energies are set to zero. It is assumed that the SOI
is effective only between nearest neighbors along the helix
(and not between the axial bonds). An analytical solution can
then be obtained for a unit cell with N sites along the helix,
assuming an arbitrary set of unitary matrices

Un = exp[iKn,n+1 · σ ], n = 1, . . . ,N, (28)

which describe the spin precession of an electron moving
between the nearest-neighbor sites n and n + 1 in each unit
cell. This description of the helical molecule is similar to that
investigated in previous works [38,39,44,45] in a two-terminal
geometry, where TRS or unitarity is effectively broken, as
discussed in Sec. I. Here we solve for the unitary scattering
matrix of this model when it includes M unit cells; the
molecule is attached to a single lead at one of its edges, and to N

leads at the other edge, by one-dimensional chains on which the
hopping amplitudes are all J0 and the on-site energies are zero.

As in Sec. III, we assume that all leads save one (“output
leads”) have the same chemical potential, which is lower than
that in the source reservoir attached to the lead singled out
(“input lead”). The results are demonstrated explicitly on a
molecule with two output leads, i.e., for a three-terminal setup.

The solution of the scattering problem, which yields the
scattering matrix, is carried out for a periodic structure which
contains M unit cells; the Schrödinger equation is solved for a
scattering state of the form Eq. (7) for the spinors |ψm,n〉 inside
the molecule, with 1 � m � M and 1 � n � N . The first

FIG. 3. Illustration of the model of a single helical molecule,
of radius R and pitch h. In the tight-binding picture, electrons hop
between adjacent sites along the helix (hopping amplitude J ) and
along the vertical direction ẑ, to the N th neighbor (hopping amplitude
J̃ ). Spin-orbit interaction is assumed to act only between nearest
neighbors along the helix. The molecule is connected to a single lead
at one edge and to N leads at the sites of the last (Mth) unit cell.

index indicates the unit cell and the second index indicates the
site within that cell. The continuity conditions on the scattering
state are then

|χin〉 + r |χr〉 = |ψ1,1〉 ,

t (n)
∣∣χ (n)

t

〉 = |ψM,n〉 , 1 � n � N. (29)

The dispersion relation relating the energy of the electron to
its wave vector is [44]

Ep,σ (k) = −2J̃ cos k − 2J cos

(
k + 2πp − σθ

N

)
. (30)

Here, k is the wave vector in units of (N)−1, where  is
the distance between nearest neighbors along the helix [see
Eq. (41)], and p = 1, . . . ,N is the band index. The spin index
σ = ±1 is the eigenvalue corresponding to the eigenspinor
|±n̂〉 of the spin projection along n̂. This direction is defined
by the unitary matrix:

U = UNUN−1 × . . . × U1 ≡ exp[iθ n̂ · σ ]. (31)

The spin precession angle per one turn of the helix, θ , is
equivalent to the SOI phase ω introduced in Sec. III. For
a given energy E and spin σ , the dispersion relation (30)
yields 2N solutions for the variable y = (k + 2πp)/N , and
the spinor inside the molecule is a linear combination of these
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solutions [44]:

|ψm,n〉 = U †
n . . . U

†
N

∑
σ=±1

2N∑
j=1

Aσ
j ei[yσ

j (mN+n)−σθn/N] |σ n̂〉 . (32)

The amplitudes Aσ
j are determined by the Schrödinger equations for the spinors in the first (m = 1) and the last (m = M) unit

cells:

(E − y0) |ψ1,1〉 = 2iJ0 sin k0 |χin〉 − JU
†
1 |ψ1,2〉 − J̃ |ψ2,1〉,

E |ψ1,N 〉 = −JUN−1 |ψ1,N−1〉 − JU
†
N |ψ2,1〉 − J̃ |ψ2,N 〉 , (33)

E |ψ1,n〉 = −JUn−1 |ψ1,n−1〉 − JU †
n |ψ1,n+1〉 − J̃ |ψ2,n〉 ,

and

(E − y0) |ψM,1〉 = −JU
†
1 |ψM,2〉 − JUN |ψM−1,N 〉 − J̃ |ψM−1,1〉,

(E − y0) |ψM,n〉 = −JUn−1 |ψM,n−1〉 − JU †
n |ψM,n+1〉 − J̃ |ψM−1,n〉,

(E − y0) |ψM,N 〉 = −JUN−1 |ψM,N−1〉 − J̃ |ψM−1,N 〉 , (34)

where 2 � n � N − 1 and y0 = −J0 exp[ik0]. When |χin〉 = |n̂〉, then A−
j = 0, and all the spinors |ψm,n〉 have only σ = 1.

Similarly, when |χin〉 = |−n̂〉, then A+
j = 0, and all the spinors |ψm,n〉 have only σ = −1. The remaining amplitudes are found

by solving the 2N linear equations:

2N∑
j=1

[
E − y0 + Jei(yσ

j −σθ/N) + J̃ eiyσ
j N

]
ei[yσ

j (N+1)−σθ/N]Aσ
j = 2iJ0 sin k0e

iσθ ,

2N∑
j=1

[
E + 2J cos

(
yσ

j − σθ/N
) + J̃ eiyσ

j N
]
eiyσ

j (N+n)Aσ
j = 0, 2 � n � N,

2N∑
j=1

[
E − y0 + 2J cos

(
yσ

j − σθ/N
) + J̃ e−iyσ

j N
]
eiyσ

j (MN+n)Aσ
j = 0, 1 � n � N − 1,

2N∑
j=1

[E − y0 + Je−i(yσ
j −σθ/N) + J̃ e−iyσ

j N ]eiyσ
j N(M+1)Aσ

j = 0. (35)

As seen from Eq. (29), the reflected electron is polarized along σ n̂ for |χin〉 = |σ n̂〉, whereas for the transmitted electron in the
nth output lead

t (n)
∣∣χ (n)

t

〉 = U †
n . . . U

†
N

2N∑
j=1

Aσ
j ei[yσ

j (MN+n)−σθn/N] |σ n̂〉, (36)

and therefore∣∣χ (n)
t

〉 = |σ n̂n〉 ≡ U †
n . . . U

†
N |σ n̂〉 . (37)

The solution for the 2 × 2 reflection and transmission
amplitude matrices R and Tn, defined in Eq. (8), has
the form Eq. (9) with the reflection and transmission
amplitudes

r = −1 + e−iθ(1+1/N)
2N∑
j=1

A+
j eiy+

j (N+1),

t
(n)
± = e∓iθn/N

2N∑
j=1

A±
j eiy±

j (MN+n), 1 � n � N. (38)

The solution of the scattering problem at a given energy E

requires finding the 2N roots yσ
j of a polynomial of degree 2N ,

and then solving the system of 2N Eqs. (35) for the amplitudes

Aσ
j . Therefore, in contrast to the diamond interferometer

presented in Sec. III, no simple analytic expression for the
transmission amplitudes t

(n)
± can be obtained for our model of

the molecule.
The model presented above is constructed for a molecule

with N sites in the unit cell which repeat themselves, and with
a coupling between neighboring unit cells. However, up to
this point the hopping amplitudes between nearest-neighbor
sites within the unit cell, described by the unitary matrices Un

[Eq. (28)], are arbitrary, allowing, e.g., for different atoms (or
side groups) within the cell, as might be expected for realistic
organic molecules.

To demonstrate the results, we apply the model to periodic
helical molecules, where all the nearest-neighbor bonds are
equivalent except for a rotation around the helix axis and a
shift by the helix pitch. We also assume that the vector Kn,n+1

in Eq. (2) is of the form Eq. (4). For a helical molecule of
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radius R and pitch h, the vector dn,n+1 is

dn,n+1 = 2R sin (0.5�ϕ)(−snx̂ + cnŷ) + h

N
ẑ, (39)

where sn = sin [(n + 0.5)�ϕ], cn = cos [(n + 0.5)�ϕ], and
�ϕ = ±2π/N is the twist angle between nearest-neighbor
sites, with the plus (minus) sign corresponding to right-handed
(left-handed) chirality. Assuming also that the SOI is induced
by the confinement of the electron to the cylinder which
contains the helix, the electric field is taken as constant in
the radial direction:

En,n+1 = E0(cnx̂ + snŷ). (40)

For this helical geometry, the spin rotation angle θ and the
directions n̂n are given in terms of R, h, the length of each
bond

 =
√

(h/N)2 + [2R sin (0.5�ϕ)]2, (41)

the spin precession angle per bond λ̃ = λE0, and the chirality
of the molecule (specified by the sign of �ϕ). In particular,
in the three-terminal configuration (N = 2), the matrix (31)
yields that the rotation angle θ is

cos θ = cos(2λ̃) + h2

22
sin2 λ̃, (42)

and the spin projection direction n̂ [see Eq. (31)] lies in the YZ
plane:

ny sin θ = 2hR

2
sin2 λ̃, nz sin θ = ∓2R


sin(2λ̃). (43)

FIG. 4. Spin polarization in the first (solid black) and second
(dashed blue) output leads, along the directions n̂1 and n̂2, respec-
tively, in a molecule of M = 6 unit cells (the other parameters are
J = 1.2J0 and J̃ = 0.5J0). (a) As a function of energy (in units of
J0) with λ̃ = 0.1π . (b) As a function of λ̃ at the center of the energy
band in the leads, E = 0.

FIG. 5. Total spin polarization along the z axis in a right-handed
(solid) and left-handed (dashed) molecule of M = 6 unit cells with
h/ = 0.8 (the other parameters are as in Fig. 4). (a) As a function of
energy (in units of J0) with λ̃ = 0.1π . (b) As a function of λ̃ at the
center of the energy band in the leads, E = 0.

For these values, Eq. (37) yields n̂1 = n̂ and n̂2 =
(sin α cos β, sin α sin β, cos α), where

cos α = ± h

2
sin(2λ̃)ny +

(
1 − h2

22
sin2 λ̃

)
nz,

tan β =
1
2 cos(2λ̃)ny ∓ h

4
sin(2λ̃)nz

∓R


sin(2λ̃)ny + h
2

(
2R


sin2 λ̃ + 1
2 sin(2λ̃)

)
nz

. (44)

The polarization along the direction n̂n in each of the output
leads, given by Eq. (10), is depicted in Fig. 4(a) as a function
of the electron energy E, and in Fig. 4(b) as a function of the
spin precession angle per bond λ̃. This is the direction along
which the polarization in each output lead is maximal [44].

Assuming that all the outgoing electrons are eventually
mixed incoherently, the total spin polarization along the ẑ
direction is calculated from Eq. (11). It is displayed in Fig. 5(a)
as a function of the energy, and in Fig. 5(b) as a function of the
spin precession angle per bond λ̃. As follows from Eqs. (43)
and (44), this polarization changes sign as the chirality of the
molecule is reversed. This feature is in agreement with the
experimental observation [31].

V. SUMMARY AND DISCUSSION

Spin-dependent transport through coherent multiterminal
mesoscopic systems in which the transport electrons are
subjected to spin-orbit interactions is analyzed. Explicit results
are demonstrated for three-terminal configurations. In contrast
to the two-terminal configuration, in a multiterminal setup the
transmitted electrons in each lead are in general spin polarized
even in the absence of magnetic fields. Specifically, it is found
that a simple three-terminal two-path interferometer can act
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as an all-electrical spin beam splitter. This device splits the
incoming electrons into two fully spin-polarized beams, with
tunable spin directions, as first discussed in Ref. [23] for a
symmetric ring interferometer. We have shown that such an
interferometer can serve as a perfect spin filter even in the
more realistic case where its two arms are not completely
identical. The conditions for full spin filtering in the general
asymmetric case and the resulting spin polarization in the two
output leads are derived analytically. The simple model for
the single interferometer was used to demonstrate analytically
that in a three-terminal configuration the total polarization of
all the transmitted electrons does not vanish in general.

In the second part of the paper we have argued that the
nonzero total polarization in a three-terminal configuration
may be relevant for the explanation of the recently observed
spin selectivity in chiral organic molecules. We have solved a
minimal model for a chiral helical molecule in a three-terminal

configuration, in which electrons can exit the molecule into two
terminals. This model is similar to the one of Refs. [38,39,44],
but does not involve any kind of fictitious probes that are
introduced to break time-reversal symmetry or unitarity. It
suggests that a significant spin polarization can be obtained in
a multiterminal configuration assuming a completely coherent
and unitary electron transport.
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