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We study lasing in distributed feedback lasers made from square lattices of silver particles in a dye-doped
waveguide. We present a systematic analysis and experimental study of the band structure underlying the lasing
process as a function of the detuning between the particle plasmon resonance and the lattice Bragg diffraction
condition. To this end, as gain medium we use either a polymer doped with Rh6G only, or polymer doped
with a pair of dyes (Rh6G and Rh700) that act as a Förster energy transfer (FRET) pair. This allows for gain,
respectively, at 590 or 700 nm when pumped at 532 nm, compatible with the achievable size tunability of silver
particles embedded in the polymer. By polarization-resolved spectroscopic Fourier microscopy, we are able to
observe the plasmonic/photonic band structure of the array, unraveling both the stop gap width, as well as the loss
properties of the four involved bands at fixed lattice Bragg diffraction condition and as a function of detuning
of the plasmon resonance. To explain the measurements we derive an analytical model that sheds insights on
the lasing process in plasmonic lattices, highlighting the interaction between two competing resonant processes,
one localized at the particle level around the plasmon resonance, and one distributed across the lattice. Both are
shown to contribute to the lasing threshold and the overall emission properties of the array.
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I. INTRODUCTION

Organic distributed feedback lasers have been widely
studied since the mid-1990s for their ability to provide large
area lasing upon optical or electrical pumping, while being
very simple to fabricate [1]. Such lasers generally consist
of an organic gain medium that is deposited as a thin
layer over a periodically corrugated dielectric surface, with
a periodicity chosen such that it offers an in-plane Bragg
diffraction condition within the gain window [2,3]. A wide
range of emission wavelengths can be selected through the
availability of a vast variety of organic fluorophores and
fluorescent polymers, while the typically small corrugations
over the surface can be realized through optical lithography,
or soft imprint lithography [4,5].

More recently a different class of lasers was proposed
that rely on plasmonic effects. Plasmonics uses the fact
that free electrons in metals offer a collective resonance
at optical frequencies [6]. This causes metal nanoparticles
or nanostructured surfaces to provide highly enhanced and
strongly localized electromagnetic fields upon irradiation,
boosting the spontaneous emission rate of coupled fluorescent
emitters [7–9]. When such plasmonic particles are placed
in two-dimensional diffractive periodic arrays, they can also
provide control over emission directivity and brightness, due
to the hybridization of localized plasmonic resonances with
grating anomalies associated with the array geometry and
surrounding dielectric environment [10–12]. In particular,
these systems have been studied as substrates for surface
enhanced Raman scattering (SERS) [13], sensing [14,15], and
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solid-state lighting [10,16]. Recently, several groups [17–20]
have shown distributed feedback lasing in such plasmonic
periodic systems. A significant difference with conventional
distributed feedback lasers is that, while the dielectric perturba-
tion is typically weak and nonresonant, for plasmonic systems
the scattering strength per unit cell of the lattice can become
very strong, and strongly dispersive, around the supported
resonance. One practical advantage is that strong scattering
implies broader stop gaps, which corresponds to smaller Bragg
scattering lengths, or equivalently much smaller required
device sizes for lasing, and large robustness to disorder [21].

In earlier work [20], some of us presented an experimental
observation of the plasmonic band structure underlying lasing
action of a plasmon particle lattice coupled to a dielectric
waveguide that also provides gain. In this system Bragg
resonance was established using diffraction by metal particles
which are relatively strong scatterers compare to all-dielectric
gratings. However, in that study the plasmonic particles were
off resonance within the gain window and the lasing frequency
set by the lattice periodicity. Therefore their individual
scattering, while stronger than that of dielectric corrugations,
was still weak compared to the maximum attainable cross
section. Likewise, in work by other groups [17–19] on lasing in
systems with surface lattice resonances (diffractive plasmonic
resonances without assistance of a waveguide mode), the
plasmon particle resonance frequency was not systematically
varied. On the contrary, here we present a systematic study
of the band structure underlying lasing when the plasmon
resonance is tuned close to, and onto, the lasing condition.
We identify a systematic dependence of the stop gap width
on the scattering strength of the particles. Moreover, we find
that, as the plasmon resonance crosses the lasing condition,
the loss characteristics of the supported bands interchange
and, as a consequence, also the stop gap edge at which
lasing occurs moves from the low to the high end of the gap.
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These findings are in full agreement with an electrodynamic
point dipole analytical model that we develop in this work,
accounting for near- as well as far-field interactions among the
particles mediated by the waveguide structure in which they
are deposited. This paper is structured as follows. In Secs. II
and III we develop and analyze a rigorous theoretical study
of the structure’s complex-valued dispersion relation based
on this dipolar model. In Secs. IV and V we introduce our
experimental methods and report on the spectroscopy of our
gain medium. In Secs. VI and VII we analyze band structure
measurements, showing that they validate our theory for the
competing resonant phenomena behind the lasing effect. We
close by a real-space full-wave analysis in Sec. IX.

II. SEMIANALYTICAL MODEL

In this section we theoretically analyze the mode structure
of two-dimensional plasmon particle lattices embedded in
planar waveguides using the discrete dipole approximation.
The geometry of interest is an infinite square lattice of silver
cylindrical particles with periodicity d embedded in a high
index slab that acts as waveguide and through doping also
acts as gain medium [Fig. 1(a)]. Commensurate with the
experiments reported here and in Ref. [20], we take this
slab to have a thickness h = 450 nm and relative dielectric
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FIG. 1. (a) Schematic of the sample geometry, consisting of a
periodic square lattice of thin silver disks (pitch d) on a glass substrate,
embedded in a high index polymer SU8 that supports a waveguide
mode and is doped with organic dye to provide gain. (b) Extinction
cross section according to FDTD simulations (Lumerical using CRC
tabulated optical constants) of single silver disks of various radii r

embedded in the air/SU8/glass system, under normal incidence from
the glass side. (c) and (d) Electric field profile of the single TE
and single TM mode supported by the structure. In (c) the in-plane
field is perpendicular to the in-plane wave vector, while in (d) it is
alongside it.

constant ε2 = 2.79 (equivalent to the polymer SU8). The slab
is surrounded by air on one side (ε1 = 1, located at z > h), and
glass on the other (substrate with ε3 = 2.25 located at z < 0).
The array is embedded close to the SU8-glass interface, as
shown in Fig. 1. The air/SU8/glass stack supports a single
transverse electric (TE) and a single transverse magnetic
(TM) mode of almost identical mode index (1.55, calculated
using the method of Urbach and Rikken [22]). Mode profiles
[Figs. 1(c) and 1(d)] evidence that the TE mode has a strong
polarization component in the plane in which the particles
are polarizable, while the TM mode has only weak overlap.
To understand the physics of the particles’ interaction with
the modes, we have conducted FDTD simulations (Lumerical,
using tabulated optical constants [23]) to determine extinction
cross sections of single particles in the stratified system
(incidence from the glass side). As the particle diameter
D = 2r increases, the extinction cross section [Fig. 1(b)]
strongly increases, and furthermore exhibits the well-known
shift to longer wavelengths due to dynamic depolarization
effects [24–26]. For D > 60 nm, the dipolar resonance has
a distinct Lorentzian shape, and is well separated from the
features at wavelengths λ < 500 nm, that are due to intraband
features in the dielectric constant.

Our goal is to calculate the passive array dispersion of the
composite system including loss, as well as the relation be-
tween the local surface plasmon resonance excitation strength
of the array and the efficiency of coupling to far-field radiation.
Since Ohmic and radiation loss are important we target
a complex-valued dispersion relation, where the imaginary
part of wave number quantifies loss. Lasing is established
by a combination of feedback and amplification processes.
Particularly, in distributed feedback lasers the former is
achieved by a distributed backward Bragg resonance, a result
of coupling between counterpropagating slab modes [1]. The
threshold for lasing is determined by the quality factor of
the feedback mechanism in the absence of gain. Therefore,
dominant lasing will take place in the frequency range for
which the quality factor of the feedback mechanism is the
highest, namely the frequency regions where the imaginary
part of the complex dispersion wave number of the resulting
coupled slab modes, in the absence of gain, is minimal. At
the same time, to observe lasing the emission must be able to
couple out into the far field. Our aim is hence to isolate the
low-loss points of the complex-valued dispersion diagram that
at the same time are not forbidden from coupling to radiation.
Since this type of passive-system model accounts for linear
loss, but not gain dynamics or spontaneous emission noise,
it only gives insight up to threshold, answering what modes
will lase first, but not what their nonlinear physics will be well
above threshold.

In order to rigorously tackle the above threshold dynamics,
one may apply a time-domain approach, such as the finite
difference time domain method, which can be used to
calculate the real-space field distribution, which is mutually
and nonlinearly affected by the four-level system describing
the medium through a simultaneous solution of the time-
dependent Maxwell equations and the active medium rate
equations [27]. Unfortunately, such an approach is limited
to finite structures and thereby cannot provide the complex
k-vector details that naturally emerge in our linear k-vector
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analysis. Full wave solution methods with periodic boundary
conditions naturally deal with infinite systems. However, the
Bloch-Floquet boundary condition imposes the wave vector,
as opposed to the physics of a lasing process that selects
the wave vector. With such real-space methods one can in
principle sample k space to map out dispersion and loss, by
doing many simulations that sample k space point by point.
This approach is limited to real wave vectors and requires
significant computational effort. An alternative approach is
proposed in [28], where the discrete dipole method is used
in the frequency domain, but with the Green’s function of
an infinite homogeneous medium (therefore no slab modes
are considered). In order to obtain a time-domain model that
includes the four-level system dynamics, the periodic system
response, i.e., the dipole lattice sum, is approximated using
the assumptions that (a) the lattice response at diffraction
resonance is a Lorentzian single resonance, and (b) that
lasing occurs at k = 0. Hence, although this analysis captures
interesting features of the lasing process above threshold, it
does not treat the lasing as a process that originates from
noise and settles at the minimal loss k(ω) points. Using our
linear model we find, in accord with our measured data, that
not only that lasing takes place at k �= 0 but also that under
certain conditions, that are discussed below, there are two
rather than one lasing points k(ω). Therefore we believe that
a complete picture of the lasing process in plasmonic array
systems requires various complementary perspectives. On the
one hand this includes the models proposed in [27–29] for
the nonlinear above-threshold regime. As demonstrated in
this paper, linear k-space modeling provides complementary
insight valid up to threshold. Linear k-space modeling fully
accounts for the loss mechanisms and hence explains the lasing
condition that arises from the tradeoff between gain and loss.

As method of choice for our work we focus on a semi-
analytical model that describes the particles as strong dipolar
scatterers, and accounts for all the electrodynamic multiple
scattering interactions in the lattice that may take place via
the waveguide. Such electrodynamic point dipole models for
lattices have been considered in earlier work mainly in the
context of lattices in a homogeneous background [30–33], with
a few exceptions that consider also the presence of a dielectric
slab [34,35]. It is important to distinguish this method from
coupled mode theory typically used for conventional period-
ically corrugated dielectric waveguides [36]. In solid-state
terms, such plane wave expansion methods are equivalent
to a “nearly free-photon” approach, where the waveguide
dispersion relation folds at the edges of the Brillouin zone,
and where the small index contrast causes minute stop gaps
to open up. This type of model is not applicable for the
case at hand, since the plasmonic particles are characterized
by strong individual scattering, which does not perturb, but
instead significantly modifies the band structure. This is also
evident in numerical plane wave expansion approaches to
periodic plasmon particle systems that either do not converge
or need of order 103 plane waves to resolve the plasmon
particle resonance despite the fact that at the operation point
(second order Bragg diffraction) only four diffraction orders
couple. Since the plasmonic particles are designed to operate
around their dominant dipolar resonance, we have a strong
basis to assume that the particle’s interaction is essentially

dipolar. For this reason, our analytical approach employs
an electrodynamic dipole model with Ewald summation to
deal with all the retarded dipole-dipole interactions medi-
ated by the waveguide slab. This model builds on recent
implementations of periodic point-dipole lattice models that
successfully describe the hybridization of localized plasmons
with propagating and evanescent photonic diffraction orders
[31–33,37–42].

The dipolar response of a scatterer is described by its
polarizability response α(ω), which for a resonant scatterer
in the quasistatic limit reads [32]

αstatic(ω) = V ω2
0

ω2 − ω2
0 − iωγ

(1)

[in CGS units, with ω the angular frequency, ω0 the particle
resonance, γ an Ohmic damping rate, and V an (effective)
particle volume], in the limit in which the response is locally
approximated by a single resonance [43]. One must include
radiation damping [30,32] to turn this polarizability into its
dynamic form, which is required to build a self-consistent
electrodynamic theory with a correct energy balance. For a
particle in free-space, the dynamic polarizability reads

1

α
= 1

αstatic
− i

2

3
k3 (2)

(with k = nω/c). However, our case is somewhat different,
since the particles are located inside a dielectric layered system
which affects both the radiation damping correction, as well as
redshifts the resonance frequency. In the following, we use the
model given in Eqs. (1) and (2), and fit the plasmonic resonance
model to our full wave simulations of a single inclusion in the
dielectric stratified system (discussed further below). This fit
yields a resonance frequency λ0 = 334 × 10−9 + 3.6 × 2r[m]
and a damping rate γ = 0.05ω0, where ω0 = 2πc/λ0, k =
2π

√
ε2/λ0. It turns out that, while in rigorous terms the

radiation damping in Eq. (2) should be corrected using
the imaginary part of the Green’s function at the location of the
particle [34], it is a fair approximation to simply use Eq. (2)
since the Ohmic damping in the particles dominates compared
with the radiation loss, and its modification is also partially
being taken into account by the fitting. Using this model, we
can use a fitted analytical expression for the polarizability
of the particles, which yields a very good approximation
to the scattering cross section we obtain from full wave
simulations in the diameter range 40–110 nm. As particles
used in experiments are flat in the z direction (30 nm height,
versus 100 nm diameter typically), we constrain the particle
polarizability to the xy plane, meaning that dipole moments
can only be excited in-plane.

The array is periodic by translation over d in both the x

and y directions, and thereby we can assume that the induced
dipole moments assume a Bloch form pmn = p00e

id(nkx+mky ),
where m,n are the particle indices and (kx,ky) is the wave
vector of the excited collective plasmonic mode parallel to the
layers. For a lattice driven by an incident field of the form
Eine

id(nkx+mky ), the induced dipole moments are given by

p00 = α

⎡
⎣Ein +

∑
n,m�=0,0

G(r00,rmn)pmn

⎤
⎦
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or equivalently p00 = 1
α−1−C Ein with

C =
∑

n,m�=0,0

G(r00,rmn)eid(nkx+mky ).

Here the term C accounts for all dipole-dipole interactions
and is also known as lattice sum [31–33,37–42]. The dyadic
Green function G accounts for the full physics of the stratified
system, meaning that it includes the TE and TM guided mode
that the assumed slab supports, plus the continuous spectrum
that accounts for radiation into the substrate and superstrate.

From this starting point, we can make several simplifi-
cations. The second order Bragg resonance on which lasing
occurs at the � point (kx,ky) = (0,0) takes place in the two
orthogonal directions parallel to the lattice primitive vectors
[diffraction by lattice vectors 2π/d(±1,0) and 2π/d(0, ± 1)].
Given the symmetry, without loss of generality we can
analyze the kx = 0 slice of the dispersion relation (propagation
direction is ŷ), in which case the dipole polarization is along
x̂. Hence, the modal matrix problem reduces to the simplified
scalar equation

	(ω,kx,ky) ≡ α(ω)−1 − C(ω,kx,ky) = 0, (3a)

C(ω,kx,ky) =
∑′

Gxx(ω,r00,rmn)eid(mkx+nky ). (3b)

In Eq. (3b), the symbol
∑′ denotes summation over all

indices except (m,n) = (0,0), and Gxx is the xx component
(the x̂ component of the electric field due to a x̂ polarized
dipole) of the electric Green’s function tensor in the three-layer
dielectric medium host.

Taking the full spectral content of the Green’s function into
account in the infinite summation in Eq. (3b) is numerically
challenging, as the Green function in a stratified medium is
generally expressed in angular spectrum representation as
a parallel wave vector integral that includes guided modes
as poles on top of a radiation continuum. We expect the
Green function to be dominated by its poles on the basis
of physical considerations: First, the distance between the
particles corresponds to Bragg resonance at the TE mode, and
second the particles strongly overlap with the TE waveguide
mode as a consequence of their position in the slab, and their
anisotropic, flat, geometry. Since the TE and TM modes of the
slab (in absence of particles) are very close in dispersion, we
expect significant TE-TM coupling. On this basis, we employ
the assumption that we can neglect any continuous spectrum
contribution to the Green’s function, yet need to retain the
TE and TM guided mode contribution to the Green function.
Based on these considerations, we replace the full Green’s
function Gxx with its modal part Gm

xx including both TE and
TM mode contributions, i.e., Gm

xx = GTE
xx + GTM

xx , where the
TE and TM contributions are separately given by

GTE
xx = 2ATE

[
H

(1)
0 (kTEρ) + ∂2

x ′H
(1)
0 (kTEρ)

(kTE)2

]
, (4a)

GTM
xx = −2ATM

[
∂2
x ′H

(1)
0 (kTMρ)

k2
TM

]
, (4b)

where ρ =
√

(x − x ′)2 + (y − y ′)2, and kTE,kTM are the wave
numbers in the transverse direction of the guided slab mode
in the absence of the array, given by a solution of the corre-
sponding mode transcendental equation [22]. The amplitudes
ATE,ATM are given by

AX = k3
0

4πε0

i

2η0
2πξXg(z,z,ξX), X = TE, TM, (5)

where ξX = kX/k0, and g is the 1D Green’s function given
in Appendix A. The infinite summation in Eq. (3) is slowly
converging due to the inverse square root dependence of
the Hankel function with respect to its argument. However,
the convergence can be significantly accelerated applying the
Ewald summation technique, adapted to the problem at hand
(Appendix B).

Solution of Eq. (3) provides the complex-valued dispersion
of the collective plasmonic excitation of the array in absence
of gain. The lasing process in the structure is expected
to build up in the regions of the frequency–wave number
plane where the imaginary part of the complex wave number
is minimal. To observe lasing, radiation must also couple
out of the waveguide. Focusing on x-polarized excitation,
the dipolar moment p00 due to an impinging x-polarized
plane wave with amplitude E0 at ω with (0,ky) is given by
p00 = E0/	(ω,0,ky). By reciprocity, the radiated field due to
a dipole strength p00 at ω and (real) (0,ky) can be calculated
from the reverse problem, i.e., from the induced dipole strength
p00 induced by an incident plane wave of given strength E0,
incident at ω with (0,ky). Therefore, the quantity 1/	(ω,0,ky)
essentially indicates the coupling between x-polarized induced
dipoles and x-polarized far-field radiation with k|| = ky . In the
following section, based on this analytical model, we explore
how the interplay of these two resonances controls the lasing
mechanism in the lattice.

III. THEORETICAL PREDICTION OF THE LASING
CONDITIONS

Figure 2 shows the coupling efficiency between the excited
dipolar moments and far-field radiation in a relatively wide
frequency region around the TE Bragg resonance frequencies
as grayscale where, black (white) represents poor (strong) ra-
diation. Figures 2(b)–2(d) correspond to three distinct cases of
interest, λTE

B < λLSPR, λTE
B ≈ λLSPR, and λTE

B > λLSPR, respec-
tively, where λLSPR is the wavelength of the plasmonic particle
resonance frequency, and λTE

B is the free-space wavelength
at which the second order TE mode Bragg resonance takes
place. The salient feature is an anticrossing at kx = ky = 0
and ω around 3.1 × 1015 s−1 that involves four bands. These
originate from the folded free-photon dispersion [Fig. 2(a)]
that generates two linear bands [dispersion ky = nTEω/c

diffracted by 2π/d(0, ± 1)], and two parabolas [diffracted by
2π/d(±1,0)]. While in the case of significant red and blue
detuning from the plasmon resonance (tuned by particle size)
the photon dispersion is recognizable in the coupling efficiency
1/	 as narrow features close to the free-photon dispersion, for
the on-resonance case, the dispersion is qualitatively different.
In Figs. 2(e)–2(g) we zoom in at the frequency of the TE
Bragg condition and plot the coupling efficiency (grayscale
map) together with the complex dispersion of the collective
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FIG. 2. (a) Sketch of the free-photon approximation to the dispersion relation between ky on the x axis, and dimensionless frequency
nωd/2πc, where d is the lattice pitch and n is the mode index. The dispersion relation folds back by diffraction at 2π/d(0, ± 1) [2π/d(±1,0)]
to give the lines (parabolas) crossing at ky = 0 (second order Bragg diffraction). (b)–(d) Coupling efficiency between x-polarized dipolar
excitation and x-polarized far field for incidence in the kx zero plane (varying real ω and ky). (a) λTE

B < λLSPR, (b) λTE
B ≈ λLSPR, and (c)

λTE
B > λLSPR. (e)–(g) The left panels show the dispersion of the imaginary part of ky , while curves in the right-hand panels show the

corresponding real part of the dispersion relation (blue and brown curves indicating different dispersion branches). The background grayscale
shows the efficiency of coupling taken from (b)–(e). We expect that lasing is observed at a minimum of Imky (indicated by red dashed lines)
and simultaneously good outcoupling (conditions marked by circles). For reference in the left panels we indicate with black dashed lines the
free-photon Bragg conditions for the TE and TM waveguide mode. (e)–(g) The same parameters as (b)–(d), meaning that they correspond to
λTE

B < λLSPR (λTE
B ≈ λLSPR and λTE

B > λLSPR).

plasmonic excitation, obtained as a solution of Eq. (3). This
figure allows us to predict at which frequencies lasing is
expected.

The curves (blue only or blue and brown) in each panel
represent the relevant parts of the complex dispersion. In the
left (right) side of each panel, we show the dispersion of the
imaginary (real) part of k||. Additional dispersion branches
with much higher imaginary part are not shown, since we
focus only on branches with an imaginary part close to zero
that can contribute to lasing. For all three detuning scenarios
considered, there are two frequencies for which the imaginary
part of k|| has a minimum. If only a single waveguide mode
would contribute (e.g., TE only), only a single minimum would
be expected, as one would expect one of the two stop gap edges
to correspond to strong overlap (large loss), and one with weak
overlap (low loss), of the corresponding Bloch mode with the
particles. The fact that two minima occur is hence a sign of
TE-TM coupling. While each minimum indicates a distributed
resonance for which field amplification is expected when gain
is added, observing clear laser output also requires efficient
outcoupling. In other words, we now focus on simultaneously
finding a frequency corresponding to minimum of Im{k||}, and
at the same time significant outcoupling as indicated by the
grayscale colormaps on the right-hand side of each panel in
Figs. 2(e)–2(g) (for Re{k||} near zero).

In the first scenario, shown in Fig. 2(e), λTE
B < λLSPR is the

only point for which we have a simultaneously low imaginary
part of k|| and significant coupling efficiency is at a frequency
just above the kinematic TE Bragg condition (dashed line).
In the opposite-detuning case, Fig. 2(g), λTE

B > λLSPR, the
only point with low imaginary part of k|| and simultaneously
good outcoupling is below the kinematic TE Bragg condition.
Finally, in the case in which particle resonance and lasing
condition are tuned close to each other [Fig. 2(f), λTE

B = λLSPR],
there are two points, one above and one below the TE Bragg
condition, where this condition is satisfied. These results
hence predict that for plasmon resonance and Bragg condition
detuned from each other, one expects a distinct splitting in
the dispersion relation, with lasing occurring always on the
stop gap edge that is close to the plasmon resonance. For the
intermediate case, both stop gap edges would lase. We further
note that the proximity of the imaginary part of k|| to the zero
axis, and the brightness of the grayscale images representing
coupling strength to radiation, are expected to relate to the
lasing mode loss (and hence, required threshold) and lasing
outcoupling efficiency. In the following, we discuss a cam-
paign of experiments analyzing plasmonic arrays satisfying the
three detuning conditions outlined in Fig. 2. Sections IV and
V report on methods, while measured band structure results
as a function of the detuning between Bragg condition and
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plasmon resonance are discussed in Sec. VI and compared to
the point dipole model in Sec. VII.

IV. SAMPLE GEOMETRY, SETUP, AND
CHARACTERIZATION OF THE GAIN MEDIUM

We fabricated silver particle arrays using electron beam
lithography on ZEP resist, thermal evaporation of silver, and
lift-off, on standard glass coverslips (Menzel, borosilicate).
The square lattices are embedded in SU8. We study cylindrical
particles with varying diameter (about 60 to 120 nm), and
a height of about 30 nm. Since previously we established
[20] that only silver gives advantageous results for plasmon
lasers, owing to the much higher loss in other metals, this
study focuses on silver. The dye-doped SU8 film of about
450 nm thickness is prepared by spin coating from a solution
that is prepared by mixing equal parts of SU8-2005 (SU8 in
cyclopentanone, 45% solids, Microchem) and cyclopentanone
in which the dye is mixed. As gain medium we have used
two systems. On one hand, with Rh6G as dye (5 mM in
cyclopentanone), we can achieve gain near 590 nm. This
requires small pitches, between 360 and 400 nm, and gives
access to cases with particles red detuned from the gain
medium. With a gain medium at 700 nm, and concomitantly
larger lattice pitch of 460 nm, we can access blue detunings.
To obtain a gain medium in this range that we can actually
pump with our pump laser at 532 nm, we use a pair of
dyes, namely 5 mM of Rh6G that absorbs the pump light,
and acts as donor for Förster energy transfer to Rh700 which
provides the gain, and which we have included at 0, 0.5, 3,
5, and 10 mM concentration. If one assumes that after spin
coating all material except the cyclopentanone remains, dye
concentrations in the film are approximately 2.2 times the
nominal dye concentrations in solution. By ellipsometry we
verified that the dye doped films have a refractive index of
around 1.60, resulting in a single TE and a single TM mode
that both have an effective index of about 1.55. We note that
as the particle diameter is changed to control detuning, this
changes the scattering strength at the lasing condition both
because there is simply more polarizable matter per particle
and because the resonance shifts.

We collect fluorescence emission that is resolved in fre-
quency and parallel wave vector using the setup presented
in Ref. [20] in which the sample is placed on an inverted
optical microscope equipped with a 100× Nikon objective
(Plan Apo NA = 1.45). We excited a 40 μm spot using
532 nm light offered in a 0.5 ns pulse with energy per
pulse controlled in the range 0–20 nJ via an acousto-optical
modulator. We also performed spectroscopy and fluorescence
lifetime measurements on dye-doped films without plasmon
particles to calibrate the dye system. To this end we used
the fluorescence lifetime and spectroscopy setup presented in
Ref. [44].

V. SPECTROSCOPY OF CONSTITUENTS AND FRET

Figure 3 shows reference results for the gain medium
composed of the FRET pair Rh6G and Rh700. Using samples
without plasmonic particles, and low excitation amplitude,
we measured emission spectra at fixed Rh6G concentration,

and various Rh700 concentrations. Emission at the short
wavelength end is clipped by a 540 nm longpass filter.
Evidently the strong Rh6G emission band (550 to 620 nm)
rapidly decreases in intensity as Rh700 is mixed into the film,
while at the same time strong emission of the Rh700 dye
(650 to 750 nm band) arises. At a one-to-one ratio (where the
nominal dye concentrations prior to mixing with SU8 is 5 mM)
the Rh6G emission has almost completely vanished. For
larger concentration of Rh700, the Rh700 emission decreases,
and redshifts. The disappearance of Rh6G emission and the
appearance of Rh700 fluorescence, that is poorly pumped
by 532 nm directly, is commensurate with Förster resonance
energy transfer (FRET). As usual [45] we define the energy
transfer efficiency as E = 1 − FDA/FD , where FD is the
integrated (detector-corrected) spectral intensity of the donor-
only sample, while FDA is the integrated spectral intensity of
the acceptor. Figure 3(c) shows the energy transfer efficiency
deduced from the data in (b) as a function of the nominal
concentration (symbols) alongside the prediction [45–47]

E = −√
πγ eγ 2

(1 − erfγ )

that is appropriate for FRET in 3D homogeneous media.
This expression depends only the dimensionless concentration
C/C0 via the parameter

γ = �(1/2)

2

C

C0
with C0 =

(
4

π
R3

0

)−1

,

where � represents the Gamma function. We obtain a reason-
able fit to the data for a critical concentration C0 = 0.9 mM.
Correcting for the difference between nominal concentrations
before spin coating this result implies C0 = 2.2 × 0.9 mM in
the SU8, which in turn translates to a Förster radius of about
R0 = 5.5 nm. Since this is on par with expected Förster radii
[45], we conclude that the concentration dependence of spectra
is consistent with FRET.

As an independent check, we also measured fluorescence
decay traces of the donor emission. If energy transfer is due to
FRET, decays should be given by [46]

ID(t) = I0exp
[−t/τD − 2γ (t/τD)1/2], (6)

where τD is the donor decay time. Figure 3(d) shows measured
decay traces at various concentrations alongside the prediction
Eq. (6) convoluted with the instrument response function of
our setup. We note that for this comparison we only adjust
the overall scaling I0, but adjust neither τD = 3.4 ns, which is
taken from a donor-only measurement, nor γ , which is taken
from the spectral data. We note excellent correspondence,
especially given that no parameter except overall scaling was
adjusted. We identify the one-to-one 5 mM sample as most
suited for our gain measurements as it provides strong Rh700
emission by FRET from Rh6G pumped by our 532 nm pump
laser. From here onwards, in this paper we focus on samples
with this gain medium, referring to them simply as “Rh700
samples.”

It should be noted that in this paper we will not deeply
discuss any above-threshold data, instead focusing on answer-
ing which mode reaches threshold (first) depending on the
detuning between plasmon and Bragg condition. In order to
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FIG. 3. (a) Emission spectra of dye mixtures under weak pumping. Here the concentration of Rh6G is fixed to 5 mM and the concentrations
given in the figure represent Rh700 concentrations. (b) FRET efficiency curve from spectral integrals. The horizontal axis represents the
concentration of Rh700, and the vertical axis represents energy transfer efficiency from the donor to the acceptor. (c) Lifetime traces for four
concentrations (0.5, 1, 3, and 5 mM) of Rh700. The solid curves plotted through the data points are FRET theory where no adjustable parameter
is used except a vertical scaling. (d) Sketch of the lasing setup consisting of a inverted fluorescence microscope used in back focal plane spectral
imaging mode. (e) Spectra (inset) at pump powers just below (10 nJ, blue curve) and just above (15 nJ, orange curve), considering only a
narrow band of wave vectors around ky = 0. Note the stop gap and lasing on the blue edge of the stop gap. The intensity of the lasing peak
shows distinct threshold behavior.

show that lasing does occur (for all the samples we report on),
Fig. 3 shows an exemplary result for a sample with particle
size 2r = 74 nm in diameter and pitch of 460 nm, lasing at
710 nm, using the Rh6G:Rh700 dye mixture as gain medium.
The spectra are obtained using the inverted fluorescence
microscope in Fourier imaging mode [Fig. 3(d)]. At pump
powers below about 12 nJ, the spectrum [Fig. 3(e), obtained by
integrating only a narrow band of emission directions around
ky = 0] is similar to that on substrates with no particles, except
for the appearance of a shallow gap near 715 nm. At the blue
edge of this gap a narrow lasing peak appears for pump powers
above 12 nJ. Tracing the intensity in a 5 nm wide spectral bin
around the narrow lasing peak shows clear threshold behavior
[20].

VI. BAND DIAGRAMS

Figure 4 shows measured ω,k diagrams of fluorescence
below threshold. The measurements generically display two
linear bands, as well as the expected parabolic feature, with a
distinct anticrossing centered around 2.63 × 1015 s−1 (715 nm,
in accord with 1.55d). The most notable feature in Fig. 4
that is distinct from the free-photon folded dispersion relation
sketched in Fig. 2(a) is that the two parabolic bands are
not degenerate but distinctly split. Such a splitting is also
observable in the calculated dispersion for the point dipole
model. In particular, Figs. 2(d) and 2(g) corresponds to a
particle size/pitch combination that can be compared with the
data in Fig. 4(d), where the reader is admonished that the data
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FIG. 4. Fluorescence (pumping below threshold) mapped in
ω-k space as function of plasmon particle diameter, where the
diameter varies from 53,61,74,82,86, to 95 ± 5 nm for (a)–(f), for
samples with pitch d = 460 nm, using the Rh6G:Rh700 dye mixture,
taken below threshold. Maxima are 5350, 8600, 11 650, 14 300,
25 200, and 27 950 counts/μJ/shot, respectively. Note how the stop
gap increase in size. (g) and (h) Polarization-resolved dispersion
measurements for a particle diameter of 86 nm, taking polarization
along and perpendicular to the spectrometer slit. (i) Sketch of parallel
momentum space. At a fixed frequency ω (here chosen at second order
Bragg diffraction), the slab waveguide mode appears as a circle of
radius nWGω/c centered at the origin (black), and due to diffraction by
the lattice repeated every reciprocal lattice vector 2π/d(m,n) (color
coded). For the TE waveguide mode, the electric field polarization is
in-plane, normal to the momentum. The slit (rectangle) maps a slice
of momentum space. In (g) and (h) the color bar maximum is at 5500
(2400) counts per μJ of pump power.

extends over a wider frequency and wave number scale. In
addition, the linear bands also show a stop gap, with band
edges coincident with the minima of the parabola. This stop
gap corresponds to the narrow gap visible also in Fig. 3(e)
(inset) around 715 nm, at the blue edge of which lasing occurs
once threshold is exceeded.

Fluorescence in momentum space is expected to show
distinct structure tracing out features close to the waveguide-
array dispersion [10,20], commensurate with the predictions
that the outcoupling efficiency of the excited lattice will
depend on frequency and angle [see maps of 1/	(ω,ky) in

Figs. 2(b)–2(d)]. Figures 4(a)–4(f) show the progression of the
measured band structure as we increase particle size. Clearly
the band structure stays qualitatively identical up to a particle
size of 86 nm diameter, however, with a distinct increase in
stop gap width. For particles above 95 nm in diameter, the
band structure develops a qualitatively different appearance,
both in terms of avoided crossing geometry, and in terms of the
widths of the various bands. This is the regime where particles
and lasing condition come in resonance, whereas for smaller
diameters, the particles are blueshifted with respected to the
Bragg condition that is set by the lattice.

The polymer slab supports two modes, the fundamental TE
and fundamental TM mode, as reported in Figs. 1(c) and 1(d).
According to our modeling both participate in setting the
geometry of the anticrossing in Fig. 2, although outcoupling
is predominantly through the TE waveguide. To verify this
assertion we collected data on a series of samples using a linear
polarizer in front of the spectrometer slit. To understand the
measurement, we refer to a sketch of the repeated zone scheme
dispersion that is projected on the spectrometer entrance plane
[Fig. 4(i)]. Fluorescence is expected to dominantly be emitted
into the waveguide mode. Since back focal plane imaging
directly maps k||/k0, this would appear on our detector as a
ring that is nTE,TM ≈ 1.55 times bigger then the free space light
cone, if it were not for the fact that the objective clips the signal
to its NA of 1.45. Bragg diffraction causes the dispersion to
be replicated every reciprocal lattice vector G = 2π/d(m,n)
(with m,n integer), leading to a set of intersecting circles of
radius 1.55k0 on the spectrometer entrance port [20]. In our
measurement we only collect a slice along one axis (labeled
ky), spectrally dispersing the fluorescence from this slice over
the other axis of our CCD camera. In such a measurement,
the diffracted orders δ(|k| − k0nmode) ± 2π/d(0,1) appear as
straight lines that intersect at ky = 0 for the second order
Bragg diffraction conditions. In contrast, the diffracted orders
δ(|k| − k0nWG) ± 2π/d(1,0) appear as the two parabolas that
have their minimum at the second order Bragg diffraction
condition. If the dominant waveguide mode is TE (TM)
polarized, i.e., tangential (radial) to the mode circles, this
reasoning implies that the parabolic bands must be polarized
along (crossed to) the slit, while the linear bands are polarized
crossed to (along) the slit. Measurements of the band structure
with a linear polarization analyzer along and across the slit
are shown in Figs. 4(g) and 4(h) The observed behavior
clearly indicates that the features we observe are strongly TE
polarized. Indeed, the TE mode has a strong electric field
component in the plane of the particles, along their main
polarizability tensor axes. The TM mode mainly provides field
along the sample normal. Through the small in-plane field,
however, coupling between TE and TM polarized slab modes
is possible via scattering at the particles. Especially the fact
that the upper parabola remains visible in Fig. 4(h) indicates
TE-TM mixing.

VII. STOP GAP WIDTH

The measured band structures as a function of particle
size indicate a strong dependence of gap width on particle
scattering strength, or detuning. To quantify this relation, we
extract the relative stop gap width (	ω/ω) and plot it versus
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FIG. 5. (a) Relative stop gap width versus particle size. Red
and blue points correspond to two distinct sample series. Error
bars in particle size are from SEM measurements. The drawn line
corresponds to the Lumerical-simulated extinction cross section.
(b) Stop gap width versus normalized detuning between plasmon
resonance and Bragg diffraction wavelength. Points in red and blue
have been taken from Rh6G:Rh700 samples with large pitch (as in
Fig. 4), while the black points at positive detuning are obtained using
RH6G, with 110 nm particles and pitches from 360 to 400 nm [20].
The red line represents the scattering cross section expected in a
dipole model, while in blue the cross section versus diameter from
Lumerical calculations is shown, which is also plotted in (a).

particle size in Fig. 5(a). A direct relation between stop gap
width and a scattering parameter such as cross section is not
unexpected. For instance, in 3D dielectric photonic crystals of
spheres the relative stop gap width is given by [48]

	ω

ω
= 4π

α

V
, (7)

where α stands for (electrostatic) polarizability (real and
positive for dielectric spheres), and V for the unit cell volume.
At first sight it stands to reason that a similar relation holds
in 2D plasmonic systems. However, in the plasmonic case the
physics is richer, since α is a complex quantity, while stop
gap widths must obviously be real and positive. There is no
currently available theory that reports the equivalent of Eq. (7)
for stop gap width in terms of scattering parameters of plasmon
particles.

To bring out the dependence of stop gap width on scattering
strength more clearly, we construct a “master diagram” that

plots the data obtained here with the Rh6G-Rh700 FRET pair,
and data obtained earlier with just Rh6G [20] as a function
of a normalized frequency detuning parameter. We use the
detuning between particle plasmon and lasing wavelength
ωLSPR − ωlasing, normalized to the bandwidth of the plasmon
resonance (FWHM �LSPR). Note that this is the only apparent
relevant linewidth to normalize to in our system. The relevant
single-particle frequency and linewidth are obtained by fitting
a Lorentzian to the simulated particle response (specifically,
σscatλ

4 ∝ |α|2). The data in Fig. 4 taken with Rh700 as gain
medium appear at negative detuning, while data taken with
Rh6G correspond to positive detuning. We remind the reader
that for the Rh700 data we kept lasing frequency ωlasing fixed
(fixed pitch), while particle size tuned the plasmon resonance
ωlasing onto the lasing condition. For positive detuning, data
were taken with a fixed particle size of 110 nm, varying pitch
from 360 to 400 nm.

The resulting stop gap width clearly drops when detuning
in either direction away from zero detuning, however, in an
asymmetric fashion. Stop gap widths are about three times
higher for detuning to the blue of the resonance, then for equal
detuning to the red of the resonance. Such an asymmetry
could be expected, in the sense that even if one starts with
a Lorentzian polarizability α(ω) as in Eq. (1), the scattering
response of a plasmon particle is asymmetric in frequency
as a consequence of radiation damping [Eq. (2)]. This is
highlighted by plotting (cf. Fig. 5) the scattering cross section

σscatt = 8π

3
k4|α|2

for an archetypical Lorentzian scatterer alongside the data
[taking typical Ohmic damping for silver (γ = 0.05ω0) and
a particle volume chosen to obtain a scattering cross section
at 80% of the unitary limit (3/2πλ2)]. The stop gap width
correlates well with the scattering cross section which shows
a similar asymmetry as the data. For reference, in blue the
cross section from full-wave simulations for each particle
size [Fig. 1(b)], taken at the stop gap center frequency, is
reproduced. It should be noted that Fig. 5 reports no stop gap
width for any sample at zero detuning, although near-zero
detuning is achieved for 2r > 100 nm. As discussed below,
for these large scattering strengths, the band structure we
measure cannot be trivially traced to the original four-band
crossing in a coupled-mode/slightly perturbed free-photon
picture, hampering a stop gap width assignment.

VIII. BAND STRUCTURE TOPOLOGY VERSUS
DETUNING

We now turn to discussing more detailed features of the
measured dispersion relations beyond just stop gap width.
Figure 6 shows three measured dispersion diagrams.
Figure 6(a) shows a dispersion diagram taken from Ref. [20],
obtained on a sample that has the lasing condition well to
the blue of the localized surface plasmon resonance (Rh6G
sample, d = 380 nm, 55 nm radius particle). Figure 6(c) shows
a dispersion diagram for the converse case, i.e., with the lasing
condition well to the red of the plasmon resonance [case (e),
Fig. 4]. The panel in the middle, finally, corresponds to a
case where the lasing condition is aligned to the plasmon
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FIG. 6. Generic ω-k diagrams for three cases: lasing condition
blue detuned, red detuned, and centered on the plasmon resonance
[(a), (c), and (b)]. These concern (a) d = 380,2r = 55 nm, (b)
d = 460,2r = 129 nm, and (c) d = 460,2r = 86 nm. For (a) we
used Rh6G only, while the other panels used the Rh6G:Rh700 FRET
mixture. White arrows indicate the ω-k point on which system lases
first.

resonance (Rh700 sample, particle diameter 129 nm). These
three detuning cases correspond to the separation into blue
detuning, zero detuning, and red detuning case that we also
presented for our theory results in Fig. 2.

We note the following progression in the data. First, when
the Bragg condition is well to the red of the localized surface
plasmon resonance [negative detuning, Fig. 6(c)], the lower
and upper parabola have their minima coincident with the
maximum and minimum of the anticrossing linear dispersion
relations, quite similar to nearly free-photon band structure
predictions would yield [36,49]. Lasing in these samples
always occurs on the upper band edge, consistent with the
complex dispersion analysis in Fig. 2. The fact that the parabola
and the anticrossing lines share a common gap is consistent
with the scalar coupled mode theory for dielectric DFB lasers
(adapted to metal hole array plasmon lasers by van Exter et al.
[49, Fig. 4b]) in the limit that coupling by G = 2π/d(0, ± 1)
and (±1,0) dominates, and (±1,±1) scattering is weak. For
the opposite-detuning case, i.e., Fig. 6(a) in which the Bragg
condition occurs to the blue of the particle resonance (positive
detuning), again two split parabola, and two anticrossing linear
bands are retrieved, now with the upper parabola consistently
very broad. For these samples lasing occurs on the lower
stop gap edge instead of the upper stop gap edge, again
commensurate with the complex-valued dispersion analysis
reported in Fig. 2. Finally, when the particle plasmon and
lasing condition coincide, i.e., Fig. 6(b), the band structure
is markedly different. The minimum of the lower parabola
is pushed below the frequency range of the measurement,
and a set of additional features has appeared that cannot be
trivially traced to the original four-band crossing in a coupled-
mode/slightly perturbed free-photon picture [for which reason,
the sample in Fig. 6(b) does not appear as a data point in
Fig. 5]. Lasing occurs on both apparent band edges, with
similar thresholds.

IX. REAL SPACE COMSOL STUDY

Complementary to a wave vector space study that identifies
which dispersion branches have low loss, yet good outcou-
pling, one can also perform a real space analysis that targets to
understand what distinguishes the modes with large and low
loss. A likely explanation carries over from coupled mode
theory and the field of photonic crystals, where it is well
known that gap edge modes are standing waves concentrated
at different locations in the unit cell. For dielectric photonic
crystals the band with the most energy density in the dielectric
(air) corresponds to the the lower (upper) band edge, giving
rise to the terminology of “dielectric (air) band.” One can
hypothesize that also in plasmonic crystals one band will reside
at, and one band will reside away from, the plasmon particles.
The energetic ordering, as well as the Ohmic loss, of these
two bands could then be expected to flip when the sign of the
scattering potential, i.e., polarizability α flips, which occurs as
one goes from negative to positive detuning. In turn this would
explain that opposite sign of detuning also implies a swap in
the band edge that lases.

Since dipole models are not suited to obtain near fields, we
consider a COMSOL 3D finite element simulation. As indices
for the dielectric stack we take 1.46/1.65/1.0—although the
actual glass we use is not quartz but fused silica (n = 1.52),
and the SU8 index from ellipsometry is actually 1.60, not
the data sheet value of 1.65. The reason for this choice
is that it provides a larger separation between waveguide
mode indices, and hence easier separation in the discussion,
between waveguide modes, and plain diffraction into the glass.
Figure 7(a) shows calculated lattice extinction alongside the
single particle resonance in Fig. 7(b). As particles we assume
silver disks of height 30 nm and diameter 100 nm. The single-
particle extinction [Fig. 7(b)] shows a strong resonance at
ω = 2.76 × 1015 s−1, equivalent to 680 nm light, comparable
to the result in Fig. 3. Next, we implemented Bloch-Floquet
boundary conditions to obtain the diffractive properties upon
plane wave driving incident from the glass side. We studied
two pitches, i.e., 500 and 370 nm, to meet the second order
Bragg condition on either side of the resonance, and use
slightly off-normal excitation (0.5◦ along ky) to make sure
that symmetry does not forbid coupling.

Figure 7(a) shows the transmission in a small frequency
range around the diffractive coupling condition for both
pitches. The curves present the following three features. First,
the generally high transmission is dominated by a relative
broad (though still narrow compared to the plasmon resonance)
asymmetric minimum that has the appearance of a Fano
line shape. Second, the spectra show two extremely narrow
features. The frequency at which the two narrow features occur
match very well with diffractive coupling to the TE and TM
waveguide mode. We interpret the wide minimum, and the
narrow TE feature as the relevant lower, and upper stop gap
edge for the TE-like waveguide mode. This assignment is
supported by examination of field cross cuts (see below). Note
that for the large-pitch case d = 500 nm, the broad minimum
occurs at a frequency below the narrow feature, while for
the small-pitch case, the ordering is reversed. We examine
the scattered fields (i.e., full field, minus the field that we
calculate in absence of the particle) upon plane wave driving

085409-10



SYSTEMATIC STUDY OF THE HYBRID PLASMONIC- . . . PHYSICAL REVIEW B 95, 085409 (2017)

ω [rad/s]
2.2 2.6 3.0 3.4

x1015

0

σ
e

xt
[a

.u
.]

0.2

0.4

0.6

0.8

1.0

0.6

0.7

0.8

0.9

1.0

T
ω

-
ω

-
ω

+
ω

+

TE

TM

TE
TE

TM

TE

(a)

(b)

y

x

z 2

0

-2

Pitch 500 nm

ω
-

y

y

x

z

y

2

0

-2

2

0

-2y

x

z

y

y

x

y

2

0

-2

E
x  [V

/m
]

E
x  [V

/m
]

Pitch 370 nm

z
ω

+

x

x x

z
x

(c)

FIG. 7. The blue curve in (b) shows the extinction cross section
for a single silver disk with a height of 30 nm and a diameter of 100 nm
on a substrate with index n = 1.46, embedded in a waveguide with a
refractive index of 1.65 and a thickness of 450 nm. (a) Transmission
for an array of these particles with a pitch of 500 (pink) and 370 nm
(green). The pink and blue areas represent the frequencies limited by
ω = 2πcnmatd with nmat = 1.65 and 1.46 for both pitches that would
correspond to grazing angle grating coupling into solid SU8, or the
glass. The dotted lines show the frequencies for which the waveguide
mode without particles has a TE and a TM mode, as indicated. We
label the broad and narrow dip that are associated with the stop gap
edges as ω− and ω+ [near 2.4 (3.25 × 1015 s−1) for pitches of 500 nm
(370 nm)]. (c) Crosscuts in the xy plane, xz and yz plane through one
unit cell of a particle array for frequencies ω− and ω+ indicated in
(a), for pitches 500 and 370 nm as marked. Plotted is scattered field
Ex − Ex,in along the 1 V/m x-oriented incident field.

at the center frequencies of the broad and narrow minima.
Figure 7(c) shows the scattered field component Ex that is
along the incident polarization for both pitches, and for each
pitch at the labeled lower and upper gap edge ω±. The vertical
cuts show that the transverse field distributions are essentially
the mode profile of a TE mode. At the frequency of the narrow
feature [ω+ (ω−) for the large (small) pitch case], the scattered
field has a nodal plane at the particle, and resides mainly away
from it. Conversely, at the broad minimum in transmission, the
associated field plot shows strong excitation of the particle. The
COMSOL simulation hence corroborates the interpretation
that lasing selects the stop gap edge that corresponds to the
Bloch mode that forms a standing wave with energy density

predominantly away from the particle, as this is the lowest-loss
mode that still couples out. As one goes through resonance,
the stop gap edge to which this standing wave corresponds is
reversed, as the real part of the polarizability flips sign.

X. CONCLUSIONS AND OUTLOOK

In summary, we have shown how the optical response of
plasmonic scatterers affects the band diagram of a plasmon
particle array embedded in a dye doped waveguide layer. By
combining data for lasers with various particle sizes, pitches,
and two gain media near 590 nm and FRET-based gain at
700 nm, we were able to systematically map the behavior of
plasmon lattice lasers as a function of the detuning between
particle resonance and lasing condition as set by the lattice
periodicity. A main conclusion is that the stop gap width
in the band structure of the plasmon lattice lasers is much
larger than in dielectric distributed feedback lasers, and is
essentially proportional to the particle scattering cross section.
Commensurate with the complex lattice dispersion that we
calculate from an electrodynamic coupled dipole model, the
stop gap edge that gives rise to lasing is always the one closest
to the particle resonance, and corresponds to the condition
of a low loss Bloch mode that at the same time has nonzero
outcoupling efficiency. While the strong scattering by plasmon
particles couples TE and TM mode, the outcoupled light is of
TE nature. When plasmon and lattice resonance are aligned,
the band structure is particularly far from a nearly free-photon
approximation, which is qualitatively correct only for lasing
far to the red of the plasmon resonance.

We note that our work also provides pointers for further
experiments and theory. Any theory must account at least
for the scaling of stop gap with scattering strength, the
qualitatively very different band structure at zero detuning,
and for subtle features such as where the mode resides
and what mode has least loss, depending on the choice of
detuning. It is a surprisingly challenging problem to build a
theory for this system. Coupled mode theory [36,49] would
treat the particles as a weak perturbation, and is essentially
valid only for small dielectric perturbations. Numerically
the difficulties in extending it to plasmon particles are clear
from the fact that Fourier modal, i.e., plane wave expansion,
methods are very poorly convergent for plasmon particle
gratings [20]. Coupled dipole theory as presented here can treat
complex-valued dispersion relations at very large scattering
strength, yet only provides partial insight into laser physics.
A more refined treatment of near fields and of nonlinear
dynamics of lasing above threshold is required to quantitatively
account for loss, local pump and Purcell enhancements,
the overlap of modes with the gain medium, and gain
dynamics. Finite element treatment, finally accurate for near
field, can include gain [29] and allows complicated unit cell
geometries. However, although possible, this approach may be
significantly more computationally demanding when extended
to deal with complex-valued dispersion relations of decaying
modes. Experiments that could guide these theoretical efforts
would for instance include studying variations in particle
material, or using core-shell geometries, to independently vary
physical particle volume, loss, and scattering cross sections.
Also we envision that using gain media of different spatial
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distributions, be it arranged lithographically or by controlling
the optical pump field [50], and gain media of different
quantum efficiency, will allow us to unravel the role of near
field enhancements. Finally, we note that our considerations
likely also carry over to lasing structures that use surface lattice
resonances, but no waveguide [17–19]. In the case of surface
lattice resonances there is no waveguide, but lasing does occur
at resonance crossings [17–19]. According to Rodriguez et al.
[51], extinction spectra of such systems also can show gaps,
with a width that depends on the tuning of local plasmon
resonance and diffraction condition. In our system, evidently
lasing occurs on a hybrid plasmonic-photonic mode where
the waveguide helps us to optimize mode overlap with the
scatterers, thereby aiding the opening of a stop gap that is
wide.
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APPENDIX A: 1D GREEN’S FUNCTION

First we define normalized longitudinal wave numbers

ζX
i =

√
εri − ξ 2

X, with X = TE/TM and subject to the radi-

ation condition Im{ζX
i } � 0. Then, the 1D Green’s function

used in Eq. (5) is given by

g(ω,z,z′) = 1

2

ZX
2

DX

(
eikX

z |z−z′ | + RX
1 eikX

z [2h−(z+z′)]

+RX
3 eikX

z (z+z′) + RX
1 RX

3 eikX
z (2h−|z−z′ |)), (A1)

where h is the SU8 layer thickness and kX
z = k0ζ

X
2 , and

RX
i = ZX

i − ZX
2

ZX
i + ZX

2

, i = 1,3,

ZTM
i = η0

ζ TM
1

εri

, ZTE
i = η0

ζ TE
i

, i = 1,2,3,

and

DX = d

dξ

(
1 − RX

1 RX
3 e2ik0ζ

X
2 h

)∣∣∣∣
ξX=kX/k0

.

APPENDIX B: EWALD SUMMATION

The convergence of the infinite summation in Eq. (3) can
be significantly accelerated by using the Ewald summation

technique [31–33,37–42]. First, we write

C(ω,kx,ky) = 2ATE

(
S(kTE) + Sxx(kTE)

k2
TE

)

− 2ATM
Sxx(kTM)

k2
TM

, (B1)

with kTE = k0ξTE, and kTM = k0ξTM, and

S(k) = lim
x ′y ′→0

∑′
H

(1)
0 (kRmn)eid(mkx+nky), (B2a)

Sxx(k) = ∂x ′x ′S(k), (B2b)

where Rmn =
√

(x ′ − md)2 + (y ′ − nd)2. The primed sum-
mation sign in Eq. (B2a) is used to exclude the (m,n) =
(0,0) term from the infinite two-dimensional summation. The
summation can also be written as

S(k) = lim
x ′y ′→0

∑
H

(1)
0 (kRmn)eid(mkx+nky) − H

(1)
0 (kρ ′),

where ρ ′ =
√

x ′2 + y ′2. The unprimed summation is used
for infinite summation (m,n) ∈ (−∞,∞) × (−∞,∞). Next
we replace the Hankel function by one of its integral
representations

H
(1)
0 (kRmn) = −2i

π

∫ ∞

0

du

u
e(k2/4u2−R2

mnu
2).

Note that since R2
mn > 0, and assuming that k2 > 0, to

formally guarantee convergence of the integral representation
in Eq. (B3) we have to require that u pass to infinity along the
line argu = −π/4. However, once we use this representation
and derive an alternative, rapidly converging representation for
the summation, we may apply Cauchy theorem and calculate
the required integrals along a more convenient path.

The semi-infinite integration path above is decomposed into
two intervals, 0 → E and E → ∞, where E is an arbitrarily
chosen constant picked as a trade off between fast convergence
of S1 and S2. We define

S1 =
∑

−2i

π

∫ E

0

du

u
e(k2/4u2−R2

mnu
2)eid(mkx+nky ), (B3a)

S2 =
∑′ − 2i

π

∫ ∞

E

du

u
e(k2/4u2−R2

mnu
2)eid(mkx+nky ), (B3b)

C = 2i

π

∫ E

0

du

u
e(k2/4u2−ρ ′2u2), (B3c)

such that S = S1 + S2 + C. Note that as long as E � k/2, the
integration in the summands of S2 yields a Gaussian decay of
the summands with respect to the summation indexes hence the
summation over this part of the integral convergence rapidly.
Similarly, the integration required to calculate C converge
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rapidly. The only issue left is the slow convergence of S1

which is similar to the poor convergence of the original series.
In this case, however, we are able to apply Poisson summation
to accelerate the convergence. We obtain

S1 = 4i

d2

∑
p,q

ek2
zpq/4E2

k2
zpq

, (B4)

where kρpq = (kx,ky) − 2π/d(p,q), and k2
zpq = k2 − kρpq ·

kρpq , p,q ∈ Z2 (Z denotes the set of integers). The conver-
gence of the summation for S1 in its new representation is
Gaussian, therefore, practically only a few terms are required.

Finally, we have Sxx = S1xx + S2xx + Cxx , where

S1xx = − 4i

d2

∑
p,q

ek2
zpq/4E2

k2
zpq

(
kx − 2π

d
p

)2

, (B5a)

S2xx =
∑′ 4i

π

∫ ∞

E

du(1 − 2m2d2u2)u

× e(k2/4u2−R2
mnu

2)eid(mkx+nky ), (B5b)

Cxx = −4i

π

∫ E

0
duue(k2/4u2−ρ ′2u2). (B5c)
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