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Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms
such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across
the interface. The relative contributions of these different transport mechanisms to the interface conductance
remains unclear in the current literature. In this work, we use a combination of first-principles calculations under
the density functional theory framework and heat transport simulations using the atomistic Green’s function
(AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal
interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct
computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance
of commonly used “mixing rules” to obtain the cross-interface force constants from bulk material force constants.
Another important algorithmic development is the integration of the recursive Green’s function (RGF) method
with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and
its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling
reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is
mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes
that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in
the metal. We also provide a direct comparison between simulation predictions and experimental measurements
of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance
technique. Importantly, the experimental results, performed across a wide temperature range, only agree well
with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon
coupling in the metal, and electron-phonon coupling across the interface.
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I. INTRODUCTION

Interfaces between heterogeneous materials provide a
plethora of possibilities for the design of devices with en-
gineered electronic and optical properties. This work concerns
the study of heat transport across metal-semiconductor hetero-
junctions that form a technologically important class of inter-
faces used in electronic devices. The understanding of charge
and heat transport through metal contacts to semiconductor
channels is critical to ensure reliable operation of field effect
transistors that form the basic building block of high-power
electronic devices. Understanding of thermal transport through
metal-semiconductor interfaces is also important in the design
of modern memory storage devices such as heat assisted mag-
netic recording [1] and phase change memory [2]. Apart from
their technological relevance, metal-semiconductor interfaces
also provide a material system in which various physical
mechanisms of heat transport such as elastic interfacial phonon
scattering, inelastic phonon scattering, and electron-phonon
coupling co-exist. In this work, we provide a rigorous modeling
framework to understand the contribution of various interfacial
scattering mechanisms to thermal transport across cobalt
silicide (CoSi2)–silicon interfaces that are extensively used
in microelectronic devices [3].

*tsfisher@purdue.edu

Elastic scattering of phonons at an interface is the most
widely studied framework to understand and predict thermal
interface conductance at heterojunctions. Under the elastic
transport framework, a phonon of energyh̄ω incident from one
side of an interface is either transmitted across the interface or
reflected back into the same material. For elastic interfacial
transport, the primary quantity of interest is the phonon
transmission function that represents the probability that a
phonon incident from one side of the interface transmits to the
other side. Anharmonic or three-phonon scattering processes
typically become important at room temperature and above,
in which a phonon of energy h̄ω incident on the interface
could transmit or reflect multiple phonons with appropriate
energies to ensure energy conservation. This mechanism has
been postulated to be important in acoustically mismatched
interfaces such as Pb-diamond [4,5].

Electrons are the primary energy carriers in metals, while
phonons are dominant in intrinsic semiconductors. Hence
electron-phonon coupling can be another important energy
transfer mechanism that affects thermal interface conductance
in metal-semiconductor interfaces. Electron-phonon coupling
within the metal provides an additional resistance to heat
transfer [6]. However, electron-phonon coupling across an
interface, i.e., coupling between metal electrons and semi-
conductor phonons, provides a parallel heat flow path in
addition to phonon-phonon heat transfer across the interface.
Time domain thermoreflectance (TDTR) experiments in the
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FIG. 1. Schematic of various mechanisms involved in heat
transfer between the dominant energy carriers, i.e., electrons in the
metal and phonons in the semiconductor. Phonon-phonon energy
transfer across the interface could involve elastic and inelastic
interfacial scattering processes. Electron-phonon coupling could
involve coupling between electrons in the metal with phonons in
the metal and with phonons in the semiconductor.

literature [7,8] suggest that direct electron-phonon coupling
can contribute significantly to heat transport across metal-
semiconductor interfaces, and models [9–14] have been devel-
oped to quantify its contribution. The different mechanisms
of heat transport at a metal-semiconductor interface are
summarized in Fig. 1.

Simplified empirical models are commonly used to in-
terpret experimental thermal conductance data for metal-
semiconductor interfaces. Elastic interfacial phonon scat-
tering is commonly modeled using the acoustic [15] and
diffuse [16] mismatch models (AMM, DMM), which are
heuristic approaches applicable for smooth and rough inter-
faces respectively. Also, simplifying assumptions such as the
Debye approximation to phonon dispersion can compromise
the quantitative accuracy of such models. Even atomistic
simulation approaches for elastic interfacial thermal transport
such as the atomistic Green’s function (AGF) method often
involve empirical force constant models that can produce
significant discrepancies when compared to calculations that
employ harmonic force constants obtained from ab initio ap-
proaches [17]. The contribution of inelastic phonon scattering
to thermal interface conductance has also been modeled in
a simplified manner using heuristic extensions to the elastic
diffuse mismatch model [18]. The strength of electron-phonon
coupling is typically modeled using idealized approximations
such as bulk metal deformation potentials [9,19], and such
approximations are expected to be inaccurate for the direct
coupling of metal electrons with joint or interface phonon
modes. Little work exists on rigorous first-principles determi-
nation of the strength of coupling between electrons and joint
interface phonon modes at a metal-semiconductor interface.

Apart from the complexity of various thermal transport
mechanisms described above, the uncertainty in interfacial
atomic structure has historically made direct comparisons
between simulations and experiments difficult. Much of the
existing experimental data [8,20,21] on thermal conductance
of metal-semiconductor interfaces involves materials with
mismatched lattice constants, for which the interface atomic

structure is likely to be at least partially amorphous. Ex-
perimental studies that simultaneously characterize interfa-
cial atomic structure along with interface conductance are
scarce [22,23]. However, predictive atomistic transport sim-
ulations that involve first-principles approaches are typically
limited to crystalline epitaxial interfaces because of the
associated computational tractability. This disparity between
simulations and experimental studies often makes quantitative
comparisons challenging. To overcome this difficulty, we
choose to work with CoSi2 (metal)–Si (semiconductor) inter-
faces in the present work. Both CoSi2 and Si have FCC lattice
structures with similar lattice constants of 5.36 and 5.43 Å,
respectively. Measurements of thermal interface conductance
on CoSi2 (111)/Si (111) interface using the TDTR technique
have been reported in our recent work [24], and the interface
has been verified to be epitaxial and smooth using TEM
imaging (see Ref. [24] for a TEM image of the interface). We
use the same experimental data to compare with the present
simulation predictions on a lattice-matched CoSi2 (111)/Si
(111) interface; the interfacial atomic configuration was also
chosen to match with the atomic configuration of samples
used in the experiment (see Sec. II B for details of the various
interfacial atomic configurations). The close correspondence
between the atomic structures used in the present work and
the experimental data reported in Ref. [24] enables a direct
comparison between simulations and experiments.

Although the primary focus of the present work is the study
of thermal transport across metal-semiconductor interfaces,
the methods developed and reported here are also expected to
be useful for a broad class of problems that use the nonequilib-
rium Green’s function (NEGF) method for atomistic transport
simulations. From a methodology standpoint, we report a
framework that combines first-principles calculations of in-
teratomic force constants with the atomistic Green’s function
method and evaluate the validity of the “mixing rule” that
is commonly used to approximate interfacial bonding at a
heterojunction. The conventional AGF method that is suitable
for elastic phonon transport is extended to include anharmonic
phonon scattering using a Büttiker probe approach [25]. Since
the Büttiker probe approach is not directly compatible with
the conventional recursive Green’s function (RGF) method
(see Sec. II C 1), we develop a modification that enables the use
of the RGF method in simulations that involve Büttiker probe
scattering. The new RGF algorithm enables computationally
efficient simulations of phonon-phonon scattering using the
Büttiker probe approach and is expected to be applicable for
a wide range of problems that require efficient representation
of dephasing processes under the NEGF framework. Ab initio
calculations of electron-phonon coupling are also integrated
into the AGF transport simulations.

Apart from the development of new methods, the present
work also provides useful insights into the physics of ther-
mal transport across metal-semiconductor junctions. Rigor-
ous first-principles calculations indicate that elastic phonon
transport underpredicts the experimental data over a wide
temperature range. Analysis of the cross-interface heat flux
accumulation function provides useful insights on the mi-
croscopic mechanisms responsible for increased interface
conductance due to anharmonic phonon scattering in the bulk
materials forming the interface. First-principles calculations
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of electron-phonon coupling on an interface supercell along
with a detailed analysis of the contribution from different
kinds of phonon modes to the Eliashberg function reveal
that delocalized phonon modes mediate cross-interface energy
transfer between metal electrons and the semiconductor lattice.
We also obtain an effective length scale of electron-phonon
interaction in the semiconductor by comparing simulation
predictions with experimental data and evaluate the accuracy
of prior approximations to the length scale of joint or interface
phonon modes.

II. METHODS

A. First-principles calculations

All first-principles calculations in this paper were per-
formed under the framework of density functional theory
(DFT) using a plane-wave basis set as implemented in the
QUANTUM ESPRESSO suite of codes [26]. Rappe-Rabe-Kaxiras-
Joannopoulos (RRKJ) ultrasoft pseudopotentials were used for
both Co and Si atoms, and the exchange correlation energy was
approximated under the generalized gradient approximation
(GGA) using the Perdew-Burke-Ernzerhof (PBE) functional
form. Three sets of first-principles calculations are performed
for the results reported in this paper; these involve calculations
on bulk Si (six atom nonprimitive unit cell along [111]
direction), bulk strained CoSi2 (nine atom unit cell along
[111] direction) where a tensile strain is applied along the
(111) plane, and a Si (111)-CoSi2 (111) interface supercell.
The relaxed lattice constants of bulk Si and bulk CoSi2 are
5.44 and 5.36 Å, respectively. For all simulations considered
in this paper, a tensile strain of 1.5% is applied on CoSi2 along
the (111) plane to match the lattice constants of Si and CoSi2.
Table I shows the cutoff energies and k-point grids used for
DFT calculations on all three systems. Structural relaxation is
carried out to reduce the Hellmann-Feynman forces on every

atom below 10−3 eV Å
−1

. A full stress relaxation is carried
out for bulk Si while the stresses on bulk strained CoSi2 and
the interface supercell are relaxed only along the transport
direction. CoSi2 is stretched along the in-plane direction to
match its lattice with Si, and hence the in-plane stresses are
not relaxed.

Phonons are analyzed using density functional perturbation
theory (DFPT) where the dynamical matrices are obtained on
a 4 × 4 × 3 q-point grid for bulk Si (six atom unit cell along
the [111] direction), bulk strained CoSi2 (nine atom unit cell
along the [111] direction), and a 4 × 4 × 1 q-point grid for the
interface supercell. The real-space interatomic force constants
(IFCs) needed for Green’s function transport calculations are
obtained from a Fourier transform of the dynamical matrices.

B. Coherent phonon transport using the
atomistic Green’s function method

The terms “coherent” and “ballistic” phonon transport
are used interchangeably in the present manuscript and
refer to simulations performed under the conventional AGF
framework. These simulations do not model phonon dephasing
(cf. coherent) and inelastic phonon scattering (cf. ballistic).
However, elastic interfacial scattering, i.e., reflection and
transmission of phonon waves at the interface is included in
this framework. The next section describes modifications to
the conventional AGF approach to model phonon dephasing
and inelastic phonon scattering. The details of the AGF method
are available in prior reports [27,28], and a brief description is
provided in this section. The basic conceptual framework for
the AGF method involves a “device” region that is connected to
semi-infinite “leads”. The device Green’s function G is given
by

G(ω) = (ω2I − Hd − �1 − �2)−1, (1)

where Hd is the force constant matrix corresponding to the
device region, and �1, �2 are the contact self-energies. The
contact self-energies are obtained from the surface Green’s
functions g1, g2 as follows:

�1 = τ1g1τ
†
1 , �2 = τ2g2τ

†
2 , (2)

where τ1, τ2 represent the force constant matrices for in-
teraction between atoms in the device region and the semi-
infinite contacts. g1 and g2 are the surface Green’s functions
of the contacts that are obtained using the Sancho-Rubio
method [29,30]. The phonon transmission function across the
device is obtained from the Caroli formula:

T (ω) = Tr(�1G�2G
†); (3)

where �1,2 = i[�1,2 − �
†
1,2] denotes the imaginary part of

the contact self-energies and physically represents the phonon
“escape rate” [28] from the device into the respective contacts.
In all the above expressions, the dependence of the Green’s
function, contact self-energy, and the transmission function
on the transverse phonon wave vector q|| (for structures
with periodicity in the transverse or in-plane direction)
and frequency ω is implicitly assumed. After obtaining the
transmission function, the thermal interface conductance GQ

can be obtained using the Landauer formula:

GQ =
∑
q||

1

2π

∫ ∞

0
h̄ωT (ω,q||)

∂f o
BE

∂T
dω, (4)

where f o
BE is the equilibrium Bose-Einstein distribution func-

tion.

TABLE I. Parameters used for DFT, DFPT calculations on bulk Si, bulk strained CoSi2, and the Si-CoSi2 interface supercell.

Parameter Bulk Si Bulk strained CoSi2 Interface supercell

Kinetic energy cutoff (eV) 680 820 820
Charge density cutoff (eV) 6800 8200 8200
Electron k-point grid 12 × 12 × 9 16 × 16 × 12 16 × 16 × 1
Phonon q-point grid 4 × 4 × 3 4 × 4 × 3 4 × 4 × 1
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C. Inelastic scattering using Büttiker probe approach

The AGF formulation presented in the previous sec-
tion is applicable only for elastic phonon transport, i.e.,
anharmonic scattering mechanisms such as umklapp scattering
are not considered. The formulation for extension of AGF to
include anharmonic phonon scattering has been developed in
Ref. [31]; however, the approach is computationally expensive,
and we are not aware of its application to study phonon
transport through realistic three-dimensional crystals. The
authors recently proposed a phenomenological Büttiker probe
approach to model anharmonic phonon scattering within
the AGF method [25]. The approach is an extension to phonons
of the widely used Büttiker probe method to model inelastic
electron scattering processes in the NEGF framework [32–34].
Although the method is heuristic, it provides a computationally
efficient alternative to the self-consistent Born approximation
(SCBA) [35] that is not phenomenological but is computation-
ally intensive in both memory and time. The essence of the
Büttiker probe approach involves attaching fictitious contact
probes to every atom in the device, and the temperatures of
these fictitious contacts are then iteratively solved to ensure
energy conservation in the device region. The Büttiker probes
contribute an additional self-energy to the device Green’s
function (in addition to the self-energies due to the real
contacts):

G = (ω2I − Hd − �1 − �2 − �BP)−1. (5)

In the present formulation, the Büttiker probe self-energy
is assumed to be a diagonal matrix whose diagonal elements
are of the form

�BP(j,p)(ω) = −i
2ω

τ (ω)
, (6)

where �BP(j,p) denotes the Büttiker probe self-energy at atom
j and vibrational direction p (x, y, z). Similar to the matrices
�1, �2, we also define �BP = i(�BP − �

†
BP) that represents the

imaginary part of the Büttiker probe self-energy. τ (ω) denotes
the frequency dependent scattering time due to umklapp
scattering and is assumed to be of the form τ−1(ω) = Aω2

for both Si and CoSi2. Quadratic frequency dependence of
the umklapp scattering rate has been used in prior studies
involving the BTE [36] and Landauer approach [37,38].
The parameter A is chosen by fitting (see Ref. [39]) to the
experimental thermal conductivity of bulk Si (at different
temperatures) and bulk CoSi2 (at room temperature). Due to
lack of experimental data on the temperature dependence of
the lattice thermal conductivity, the scattering parameter A

is assumed to be independent of temperature for CoSi2. This
assumption is acceptable because the thermal conductivity of
CoSi2 is dominated by electrons, and the interface conductance
is found to exhibit a weak dependence on the lattice thermal
conductivity of CoSi2 (see Ref. [39]).

Recursive Green’s function method for efficient solution of
Büttiker probe temperatures

Büttiker probes offer a heuristic but efficient method to
implement scattering in NEGF simulations. However, the
popular recursive Green’s function (RGF) method [40] that
avoids full inversion in the calculation of the retarded Green’s

function G and the lesser Green’s function Gn = G(�1 +
�2 + �BP)G† is not compatible with Büttiker probes. This
incompatibility can be understood from the following equation
used to enforce heat current conservation in each Büttiker
probe i:

Qi =
∑

j

∑
q||

∫ ∞

0

h̄ω

2π
Tr(�iG�jG

†)
[
f o

BE(ω,Ti)

− f o
BE(ω,Tj )

]
dω = 0, (7)

where the summation in the variable j runs over all other
Büttiker probes (i �= j ) and the contacts. The computation
of the transmission function matrix Tr(�iG�jG

†) between
every pair of Büttiker probes requires calculation of the full
Green’s function matrix G. The equation for charge current
conservation in electronic transport is similar to the foregoing
equation for heat current conservation [32,34]. Hence prior
implementations [25,32,34] of the Büttiker probe formalism
have employed direct matrix inversion instead of the RGF
method to calculate the full device Green’s function matrix.

Equation (7) enforces the condition that the total integrated
energy flux in each Büttiker probe is zero, i.e., inelastic scat-
tering between different energy levels is allowed. Alternative
implementations of the Büttiker probe approach invoke energy
flux conservation at each phonon frequency instead of the total
integrated energy flux over all phonon frequencies [32,33].
Such an approach is suitable only for elastic dephasing and is
hence not adopted in this work.

Equation (7) can be cast in a slightly different form as

Qi =
∑
q||

∫ ∞

0

h̄ω

2π
Tr

(
�in

i A − �iG
n
)
dω = 0, (8)

where �in
i = f o

BE(ω,Ti)�i and A = i(G − G†) denotes the
spectral function. In the above equation, the matrices �in

i

and �i are block-diagonal. Hence, only the block-diagonals
of A and Gn need to be computed, and this can be done using
the RGF algorithm. However, the computation of �in

i and Gn

require knowledge of the Büttiker probe temperatures. Hence
the use of RGF with Büttiker probes requires that �in

i and Gn

are recalculated during every Newton iteration of the solution
for Büttiker probe temperatures. Although this step is not
needed in a conventional Büttiker probe implementation with
full matrix inversion, the computational advantage of RGF
over full inversion far outweighs the computational expense of
repeated RGF calculations in every Newton iteration. Also, the
memory required to store and invert the full Green’s function
matrix can become prohibitively large with increasing device
length.

Anantram et al. [40] provide a detailed discussion of the
RGF methodology for computation of the block diagonals of
G and Gn. Here, we provide only the modifications needed to
combine RGF with the Büttiker probe formalism. The RGF
algorithm for computation of the block-diagonal elements
of the retarded Green’s function G remains unchanged.
However, the RGF algorithm for computation of Gn requires
modification to also calculate the derivative of the diagonal
elements of Gn with respect to the Büttiker probe temperatures.
We also assume that all Büttiker probes within a RGF “block”
have the same temperature, i.e., the number of Büttiker probe
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temperatures that need to be solved is equal to the number of
blocks in the device region.

The equation for left-connected gnL is given by [40]

gnLi+1
i+1,i+1 = gLi+1

i+1,i+1

(
�in

i+1,i+1 + σ in
i+1,i+1

)
g

Li+1†
i+1,i+1, (9)

where σ in
i+1,i+1 = Bi+1,ig

nLi
i,i B

†
i,i+1, B = (ω2I − Hd − �1 −

�2 − �BP). Our terminology follows that of ref. [40] where
gL denotes the left-connected retarded Green’s function, and
�in denotes the lesser self-energy. The derivative of gnLi+1

i+1,i+1
with respect to the Büttiker probe temperature Tj is given by

∂gnLi+1
i+1,i+1

∂Tj

=

⎧⎪⎪⎨
⎪⎪⎩

gLi+1
i+1,i+1Bi+1,i

∂gnLi
i,i

∂Tj
B

†
i,i+1g

Li+1†
i+1,i+1, if j < i + 1,

gLi+1
i+1,i+1�BP,i+1g

Li+1†
i+1,i+1

∂f o
BE(ω,T )
∂T

∣∣
Tj

, if j = i + 1,

0, if j > i + 1.

(10)

The equation for Gn
i,i is given by

Gn
i,i = gnLi

i,i + gLi
i,i

(
Bi,i+1G

n
i+1,i+1B

†
i+1,i

)
g
†Li

i,i

− (
gnLi

i,i B
†
i,i+1G

†
i+1,i + Gi,i+1Bi+1,ig

nLi
i,i

)
. (11)

The derivative of Gn
i,i with respect to Büttiker probe tem-

peratures can be computed using the derivatives of the left
connected Green’s function gnL computed in Eq. (10):

∂Gn
i,i

∂Tj

= ∂gnLi
i,i

∂Tj

+ gLi
i,i

(
Bi,i+1

∂Gn
i+1,i+1

∂Tj

B
†
i+1,i

)
g
†Li

i,i

−
(

∂gnLi
i,i

∂Tj

B
†
i,i+1G

†
i+1,i + Gi,i+1Bi+1,i

∂gnLi
i,i

∂Tj

)
. (12)

Overall, the RGF algorithm for Gn needs to be modified to
compute the derivatives of Gn with respect to the Büttiker
probe temperatures. The new RGF algorithm’s commutation
involves the following steps:

(1) gnL1
11 = gL1

11 �in
11g

L1†
11 , ∂gnL1

11
∂T1

= gL1
11 �BP,1g

L1†
11

∂f o
BE(ω,T )
∂T

|
T1

,

∂gnL1
11

∂Tj
= 0 (j > 1).

(2) For i = 1,2, . . . ,N − 1 and j = 1,2, . . . ,N , compute
Eqs. (9) and (10).

(3) Gn
NN = gnLN

NN , ∂Gn
NN

∂Tj
= ∂gnLN

NN

∂Tj
for j = 1,2, . . . ,N .

(4) For q = N − 1,N − 2, . . . ,1 and j = 1,2, . . . ,N ,
compute Eqs. (11) and (12).

The algorithm proceeds as follows:
(1) Start with an initial guess for the Büttiker probe

temperatures.
(2) For each phonon frequency, compute GR

ii , G
n
ii , and ∂Gn

ii

∂Tj

using the RGF algorithm described above.
(3) Compute energy current densities in each Büttiker

probe using Eq. (8).
(4) Compute the Jacobian matrix whose (i,j )th element is

given by the following equation:

Ji,j =
∑
q||

∫ ∞

0

h̄ω

2π
Tr

(
�iAii

∂f o
BE

∂T

∣∣∣∣
Tj

δij−�i

∂Gn
ii

∂Tj

)
dω, (13)

where δij is the Kronecker delta function.

(5) Update the temperature of Büttiker probes using the
Newton equation:

Tnew = Told − J−1f. (14)

(6) If ‖Tnew − Told‖ > ε, go back to step 1 with the new
guess for Büttiker probe temperatures as Tnew.

An alternative to the Newton-Raphson method is the secant
method in which the exact Jacobian needs to be computed
only in the first iteration. For further iterations, the Jacobian
could be updated using the Broyden’s update formula [41], and
this method was also found to give satisfactory convergence.
With the secant method, the derivative of the lesser Green’s
function with respect to Büttiker probe temperatures need only
be computed in the first iteration. For the remaining iterations,
the traditional RGF function is sufficient. For large device
lengths, the computation and storage of the full Jacobian matrix
can become prohibitively expensive; an alternative approach
involves approximation of the Jacobian by a sparse block
diagonal matrix. Such an approximate Jacobian was also found
to lead to convergence, however, with an increased number of
iterations compared to the exact Jacobian. The approximate
Jacobian provides a memory-time tradeoff as storage of the
sparse block diagonal matrix involves lesser memory but the
computational time increases relative to the Newton Raphson
scheme with exact Jacobian. All the results presented in this
paper involve the secant method in which the exact Jacobian
is computed in the first iteration and the Broyden’s update
formula is used for further iterations.

Figure 2 shows a comparison of the computational times for
AGF simulations of bulk silicon with Büttiker probe scattering
using direct inversion and the RGF algorithm described above.
The computational times were obtained using MATLAB, and
both direct inversion and the RGF methods were parallelized
over transverse wave vectors. The computational time for full
matrix inversion increases rapidly with device length [matrix
inversion scales asO(n3

||n
3
z), where n||, nz denote the number of

atoms per slab and the number of slabs in the transport direction
respectively], while that for the RGF algorithm proposed above
shows a more gradual scaling with device length [RGF scales
as O(n3

||nz)].

8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Length of device (nm)

T
im

e 
(m

in
ut

es
)

 

 

Full Inversion
RGF

FIG. 2. Comparison of computational times for different device
lengths obtained using direct inversion and the RGF algorithm.
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Apart from the computational time improvement, another
important advantage of the RGF method over full inversion is
the reduced memory needed to store and invert full Green’s
function matrices. The device sizes considered in the present
work (see Sec. IV) are computationally intractable with direct
matrix inversion. Hence the extension of the RGF algorithm to
Büttiker probes is expected to be critical for application of the
Büttiker probe method to realistic device sizes. Also, the results
in Fig. 2 confirm that the computational expense of repeated
AGF calculations of Gn(ω; q||) for each RGF iteration is far
less than the computational expense for a single calculation
of the full retarded Green’s function of the device G(ω; q||)
through direct inversion.

D. Fourier diffusion of electrons coupled with phonons

Electrons are the primary heat carriers in metals, and they
transfer energy to phonons near the interface between metal
and semiconductor. Intrinsic Si is the semiconductor of interest
in this paper, and hence the contribution of electrons in Si to
thermal transport is neglected. We neglect any cross-interface
electron transport through the CoSi2-Si interface and consider
diffusive transport of electrons in CoSi2. Electrons are included
in the AGF simulation within the framework of a two-
temperature model that is commonly used to interpret ultrafast
laser experimental data and is also used to model energy
transfer between electron and phonon subsystems within
the Eliashberg function framework. The primary assumption
involved in the definition of a local electron and phonon
temperature is the existence of electron-electron and phonon-
phonon collisions that enable local equilibrium separately
within electron and phonon subsystems. The electron and
phonon subsystems exchange energy through electron-phonon
coupling that is expressed in terms of the Eliashberg function.
The steady-state Fourier diffusion equation for electrons in the
metal (x > 0) is given by

ke

d2Te(x)

dx2
+ Qep(x) = 0, (15)

where Qep(x) denotes the volumetric heat source term due to
coupling between electrons and phonons and is expressed in
terms of the Eliashberg function α2F (ω) as derived by Allen
in Ref. [42]:

Qep(x) = 2πD(Ef )
∫ ∞

0
(h̄ω)2α2F (ω)

[
f o

BE(Tp(x))

− f o
BE(Te(x))

]
dω. (16)

In the foregoing equation Te(x), Tp(x) denote the local electron
and lattice temperatures respectively at location x, and D(Ef )
is the electronic density of states at the Fermi energy. The above
term can be included as a source term in the Büttiker probe at
location x, i.e., the energy current conservation equation for
the i th Büttiker probe in the metal is given by∑

q||

∫ ∞

0

h̄ω

2π
Tr(�in

i A − �iG
n)dω + Qep,i�xi = 0, (17)

where �xi is the length that the Büttiker probe occupies
along the transport direction. In a phonon-only simulation,
the total energy current in each Büttiker probe is set to

zero to ensure energy flux conservation [see Eq. (8)], i.e.,
Büttiker probes redistribute the energy, but with no net transfer
of energy between electrons and phonons via the fictitious
Büttiker contacts. When electrons are included in the transport
calculation, the total energy current in each Büttiker probe is
set to the electron-phonon energy exchange given by Eq. (16).

The local lattice temperature Tp in Eq. (16) is obtained by
equating the local phonon energy density to the product of
a local Bose-Einstein distribution at temperature Tp and the
local phonon density of states:

∑
q||

∫ ∞

0
ω2Gn(ω; q||)dω=

∑
q||

∫ ∞

0
ω2A(ω; q||)f o

BE(ω,Tp)dω.

(18)

The above equation makes use of the following expressions for
the local phonon number density ρ(ω) and the local phonon
DOS D(ω) in terms of the lesser Green’s function Gn(ω) and
the spectral function A(ω), respectively,

ρ(ω) =
∑
q||

ωGn(ω; q||)
π

, D(ω) =
∑
q||

ωA(ω; q||)
π

. (19)

Equations (15), (17), and (18) constitute a set of coupled
nonlinear equations that are solved iteratively to obtain the
electron temperature, the Büttiker probe temperature, and
the local device temperatures. Similar to the methodology
for Büttiker probe temperatures in Sec. II C 1, the Newton-
Raphson method is used for the solution of the above equation
and details of the algorithm are provided in Ref. [39].

III. COHERENT PHONON TRANSPORT

This section contains results for the phonon transmission
function and thermal interface conductance of Si-CoSi2

interface from ballistic phonon transport calculations (i.e.,
Büttiker probe scattering turned off). Different interfacial
atomic configurations are possible for the Si-CoSi2 interface
depending on the coordination number of the Co atom closest
to the interface (possible values of 5, 7, and 8) and the relative
crystal orientation between the (111) surfaces of Si and CoSi2.
The “A” type orientation occurs when the Si-CoSi2 stacking is
continuous while the “B” orientation occurs when the CoSi2
crystal is rotated by 180◦ about the [111] direction. Previous
first-principles calculations in the literature [43,44] indicate
that the 8A and 8B configurations have the lowest interfacial
energies and are hence the most probable interfacial atomic
structures. Both configurations are considered for the present
phonon transport calculations using AGF.

While bulk IFCs are quite commonly obtained from first-
principles calculations, little work exists on the use of rigorous
DFPT calculations to determine the force constants between
atoms belonging to different materials across a heterogeneous
interface. Force constants (in AGF) and interatomic potentials
(in molecular dynamics) between atoms belonging to different
bulk materials are commonly represented using simplifying
approximations without rigorous calculations of the actual
strength of interfacial bonding [45,46]. In the present work,
both bulk and cross-interface IFCs needed for AGF transport
simulations are determined entirely from DFPT calculations.
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(a)

(b)

FIG. 3. Atomic structures of Si-CoSi2 interface supercells used in
DFPT calculations (two unit cells shown along the in-plane direction
for clarity). The red dotted boxes indicate the region around the
interface for which IFCs are extracted from the interface supercell
calculation. (a) 8A configuration. (b) 8B configuration.

Figures 3(a) and 3(b) shows supercells of the 8A and 8B
interfacial atomic configurations respectively. Each supercell
contains two interfaces because of periodic boundary condi-
tions. Although DFPT calculations are performed on a finite
interface supercell, transport simulations are performed on
a single Si-CoSi2 interface formed by semi-infinite Si and
CoSi2 crystals. The red dotted boxes enclose atoms around the
interface for which the force constants are obtained from the
interface supercell DFPT calculation. In the atomic structure
considered for transport calculations, the IFCs for atoms
outside the red dotted box are assumed to equal the bulk IFCs
of Si (left of the box) and CoSi2 (right of the box). Results that
illustrate the convergence of cross-interface force constants
with respect to the size of interface supercell are provided in
Ref. [39].

Enforcement of the acoustic sum rules is an important
consideration when IFCs obtained from DFPT calculations
are used in thermal transport simulations. Acoustic sum rules
constitute a set of translational invariance conditions on the
IFCs to ensure that long wavelength acoustic modes of a crystal
have zero vibrational frequency:∑

j

Hiα,jβ = 0, (20)

where i, j denote atom indices while α, β denote the directions.
The spatial range of inter-atomic interactions is artificially
truncated in DFPT by the finite q-point grid used in the
calculations. Although the neglected long-range interactions
are typically small, this procedure results in small violations
of the translational invariance conditions. Hence the raw force
constants obtained from DFPT do not satisfy the acoustic sum
rules exactly and need to be enforced as a post-processing
step on the IFCs [47]. Common DFT codes such as Quantum
Espresso automatically enforce translational invariance for the
IFCs of the crystal on which DFPT calculations are performed.
However, in the present calculations, the IFCs obtained for
bulk Si and bulk CoSi2 are combined with that obtained for the
interface supercell. Hence the IFCs for Si and CoSi2 unit cells

nearest to the interface will require modifications to ensure
that the acoustic sum rules are satisfied. In the present work,
the diagonal blocks of the force constant matrix are modified
to ensure that Eq. (20) is satisfied.

Cross-interface force constants between heterogeneous
materials are commonly approximated using simplifying as-
sumptions due to the computational complexity of performing
direct DFPT calculations on an interface supercell with a
large number of atoms. If the materials on both sides of
the interface have the same lattice structure such as Si-Ge
interfaces, a common approximation is to assume the same
force constants for both materials with the assumption that
interfacial scattering is primarily affected by the change in
atomic mass across the interface [17]. Other approximations
include the use of empirical corrections to obtain the cross-
interface force constants from the bulk force constants [45].
Another common approximation involves the use of mixing
rules to obtain the strength of cross-interface interactions from
an average of the bulk material parameters [48].

In order to evaluate the validity of a simple averaging
approximation for the cross-interface force constants, Fig. 4(a)
compares the phonon transmission function at normal inci-
dence (q|| = 0) when the cross interface IFCs are assumed to
be a simple arithmetic average of the bulk IFCs and when the
cross-interface IFCs are obtained from DFPT on the interface
supercell shown in Fig. 3(a). In the averaging approach, the
cross-interface Co-Si and Si-Si IFCs are obtained by averaging
the interactions in bulk Si and bulk CoSi2. The averaging
approximation is found to over-estimate the transmission
function for most of the frequency range except at very low
frequencies or long wavelengths [see inset in Fig. 4(a)] where
the predictions from both the average and DFPT IFCs converge
to the acoustic mismatch limit. Long-wavelength phonons are
insensitive to the local details of interfacial bonding, and
hence the transmission function at low phonon frequencies
is expected to be insensitive to the exact interfacial force
constants. However, rigorous predictions of cross-interface
force constants are necessary for accurate prediction of trans-
mission at higher frequencies that are expected to dominate
phonon transport at room temperature and beyond. The thermal
interface conductance computed directly from Eq. (4) includes
contributions from the ballistic contact conductances at the
contact-device interfaces in addition to the conductance of
the Si-CoSi2 interface in the middle of the device region. To
obtain the conductance of the Si-CoSi2 interface alone, we
use the following expression to subtract the ballistic contact
resistances from the total resistance obtained from Eq. (4) [17]:

G′
Q(T ) = GQ(T )

1 − 1
2

( GQ(T )
GQ,Si(T ) + GQ(T )

GQ,CoSi2 (T )

) , (21)

where GQ(T ) is the interface conductance computed from
Eq. (4), and G′

Q(T ) is the thermal interface conductance of a
single Si-CoSi2 interface and plotted in Fig. 4(b). GQ,Si(T ) and
GQ,CoSi2 (T ) are the ballistic conductances of homogeneous Si
and CoSi2 slabs, respectively.

The use of a simple arithmetic average for cross-interface
IFCs over-estimates the thermal interface conductance [see
Fig. 4(b)] by almost 70% at room temperature, and the
errors increase at higher temperatures. Hence the prediction
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FIG. 4. Results from ballistic phonon transport calculations for
a Si-CoSi2 interface. (a) Phonon transmission function at normal
incidence computed using average and DFPT force constants for
the 8A interface. The inset shows the same graph for small phonon
frequencies or long wavelengths. (b) Thermal interface conductance
for 8A and 8B Si-CoSi2 interfaces.

of phonon thermal interface conductance for temperatures
beyond a few tens of degree Kelvin requires the rigorous pre-
diction of interfacial bonding strength, and simple averaging
approximations are not expected to be quantitatively accurate.
Similar conclusions on the overestimation of interface conduc-
tance due to simple approximations that neglect local changes
in the force field near a heterogeneous interface were found in
Ref. [49].

IV. EFFECT OF ANHARMONIC SCATTERING ON
THERMAL INTERFACE CONDUCTANCE

In this section, the effect of anharmonic phonon scattering
in Si and CoSi2 on the thermal interface conductance is
presented. This section contrasts with results in the previous
section for which phonon transport in Si and CoSi2 were

assumed to be ballistic. The Büttiker probe scattering rates
for both Si and CoSi2 were assumed to be of the form
τ−1(ω) = Aω2, and the parameter A was fitted to obtain the
bulk thermal conductivity of Si and CoSi2 (see Ref. [39]). Since
Si has a relatively high phonon thermal conductivity compared
to CoSi2, this circumstance corresponds to a low scattering
rate on the Si side of the interface and a high scattering rate in
CoSi2. To understand the effect of bulk scattering rates on the
interface conductance, we also performed simulations in which
the scattering rate in CoSi2 is reduced by a factor of 100, while
the Si scattering rate is maintained the same (case A) and the
scattering rate in Si is increased by a factor of 100 while that
in CoSi2 is maintained the same (case C). Case B corresponds
to the nominal scattering rate in both Si and CoSi2, i.e., the
scattering rate that reproduces the bulk thermal conductivity
of Si and CoSi2. The present simulations assume that all the
Büttiker probes on the Si and CoSi2 sides of the interface
have scattering rates of bulk Si and bulk CoSi2, respectively.
However, the local anharmonicity near the Si-CoSi2 interface
is likely to differ from the bulk anharmonicities of Si and
CoSi2. Future work on determining the change in umklapp
scattering rates near a heterogeneous interface is needed to
improve the present model.

Figures 5(a)–5(c) show the local device temperature profile
corresponding to all three cases and the associated thermal
interface conductance. A temperature difference of 10 K
is applied across the leads in all cases. The conductance
is enhanced with increase in the bulk scattering rates of
the materials comprising the interface. As expected from
conventional scattering theory, the bulk material conductances
however decrease with increased scattering rates [observe the
progressive rise in temperature drops within Si and CoSi2
in Figs. 5(a)–5(c)]. The foregoing results suggest that the
inclusion of inelastic phonon scattering in the AGF simulations
produces contrasting effects on the interface and bulk material
conductances.

To elucidate the microscopic mechanisms responsible for
the enhancement in interface conductance with inelastic
scattering, Figs. 5(d)–5(f) show the spectral variation of heat
flux from the Si and CoSi2 contacts. For case A with low
scattering on both sides of the interface, the spectral heat
fluxes from the two contacts follow each other, suggesting
that “vertical transport”, i.e., mixing between different energy
levels is insignificant. However, higher scattering rates result
in a shift of the frequencies at which the spectral heat
flux is a maximum. Also, the maximum allowed phonon
frequency in strained CoSi2 is about 7 × 1013 rad s−1, while
that in Si is close to 1014 rad s−1. Hence the phonons in
Si between 7 × 1013 and 1014 rad s−1 do not contribute to
cross-interface heat transport in a ballistic simulation [see
Fig. 4(a)]. Inelastic scattering enables phonon scattering into
the high-energy optical modes of Si whose contribution is
enhanced with a rise in the scattering rates of Si and CoSi2.
The elevated participation of high-energy optical phonons in
Si can also be observed in Figs. 5(g)–5(i) where phonons
with frequencies larger than 7 × 1013 rad s−1 contribute 8%,
10%, and 18% of the total energy flux in Si for cases
A, B, and C, respectively. Although the spectral heat flux
shows spatial variation, the total energy flux integrated over
all phonon frequencies is independent of position. Similar
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FIG. 5. (a)–(c) Device temperature profile for cases A, B, and C, where case B corresponds to nominal scattering rates in Si and CoSi2,
while cases A and C correspond to artificially decreased and increased scattering rates, respectively. The magenta lines correspond to linear
fits of the temperature profiles on either side of the interface. (d)–(f) Spectral variation of the energy flux from Si and CoSi2 contacts for cases
A, B, and C, respectively. (g)–(i) Accumulation of energy flux in the Si and CoSi2 contacts with respect to phonon frequency for cases A, B,
and C, respectively.

conclusions on the enhancement of thermal interface conduc-
tance due to inelastic scattering have been reported in prior
work [4,5,50].

V. EFFECT OF ELECTRON-PHONON COUPLING ON
THERMAL INTERFACE CONDUCTANCE

A. First-principles calculations

The results from first-principles calculations of electron-
phonon coupling, both in bulk strained CoSi2 and Si-CoSi2
interface supercells, are reported in this section. The phonon
linewidth γqp due to electron-phonon scattering is given

by [42,51]

γqp = 2πωqp

∑
νν ′

∫
d3k
�BZ

∣∣gqp

kν,k+qν ′
∣∣2

δ(Ekν − Ef )

× δ(Ek+qν ′ − Ef ), (22)

where g
qp

kν,k+qν ′ is the electron-phonon coupling matrix ele-
ment for scattering of an electron with energy Ek in band ν by
a phonon of energy h̄ωqp into a state with energy Ek+q in band
ν ′. The above expression is valid at low temperatures when
electron-phonon scattering is restricted to a narrow energy
window around the Fermi surface. The phonon linewidth can
be used to compute the spectral Eliashberg function α2F (ω)
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which quantifies the strength of electron-phonon coupling:

α2F (ω) = 1

2πD(Ef )

∑
q,p

γqp

h̄ωqp

δ(ω − ωqp). (23)

The spectral Eliashberg function can be used to obtain
an effective volumetric electron-phonon coupling coefficient

Gep:

Gep = 2πD(Ef )
∫ ∞

0
(h̄ω)2α2F (ω)

∂f o
BE

∂T
dω. (24)

To understand the spatial variation of electron-phonon cou-
pling across a semiconductor-metal interface, we also define a
local Eliashberg function α2Fl(ω) as [52]

α2F (ω) = 1

2πD(Ef )

∑
q,p

γqp

h̄ωqp

δ(ω − ωqp)

= 1

2πD(Ef )

∑
q,p

γqp

h̄ωqp

δ(ω − ωqp)
∑

l

∑
m=x,y,z

φqp,lmφ∗
qp,lm

(∑
l

∑
m=x,y,z

φqp,lmφ∗
qp,lm = 1

)

= 1

2πD(Ef )

∑
l

∑
m=x,y,z

∑
q,p

γqp

h̄ωqp

δ(ω − ωqp)φqp,lφ
∗
qp,l =

∑
l

α2Fl(ω), (25)

where φqp denotes the phonon eigenvector, the index l runs
over all the atoms in the unit cell, and the index m represents
the vibrational degrees of freedom (x, y, z) for each atom.
The local Eliashberg function is then used to define a local
volumetric electron-phonon coupling coefficient Gep,l :

Gep,l =
(

2πD(Ef )
∫ ∞

0
(h̄ω)2α2Fl(ω)

∂f o
BE

∂T
dω

)
Vunit cell

Vl

,

(26)

where the additional factor Vunit cell/Vl ensures that Gep,l is
the local volumetric coupling coefficient around atom l that
occupies a volume Vl .

The Eliashberg functions of bulk strained CoSi2 and the
interface supercell calculated from DFPT are provided in the
Ref. [39] along with a discussion on convergence with respect
to k-point grid and smearing parameters. Equations (22)
and (23) are appropriate for bulk materials in which transla-
tional periodicity is assumed in the scattering matrix elements
g

qp

kν,k+qν ′ . These equations also apply for the Si-CoSi2 inter-
face supercells because these supercells represent Si-CoSi2
superlattices with periodicities of the order of a few nm. The
Eliashberg function for the supercells physically represents
the coupling between electron and phonon modes of the
Si-CoSi2 superlattice. To ensure that the electron-phonon
coupling coefficients obtained from DFT/DFPT calculations
on superlattices are transferrable to transport simulations of
a single Si-CoSi2 interface, we performed calculations on
a series of Si-CoSi2 supercells with varying Si and CoSi2
slab thicknesses. Figure 6(a) shows the spatial variation of
the electron-phonon coupling coefficient for three interface
supercells (SC) of the 8B configuration with different lengths
of the Si and CoSi2 slabs forming the interface. The local
coupling coefficient on the CoSi2 side of the interface is
averaged over one Co and two Si atoms to remove atomistic
fluctuations in the local coupling coefficient. The electron-
phonon coupling coefficients for bulk strained CoSi2 and bulk
intrinsic Si are also shown in Fig. 6(a). The electron-phonon
coupling in intrinsic bulk Si is zero since the Fermi level

lies in the middle of the band gap, and the delta functions
around the Fermi surface in Eq. (22) are zero. An important
observation from Fig. 6(a) is the appearance of a nonzero
coupling coefficient on the Si side of the interface. Also, the
magnitude of this coupling is approximately constant in Si
beyond two atomic layers from the interface for all three
supercells considered in Fig. 6(a). The convergence of the
plateau on the Si side of the interface for supercells SC2 and
SC3 in Fig. 6(a) indicates that the electronic wave functions
of CoSi2 are sufficiently localized within the CoSi2 slab and
do not tunnel across the Si slabs of the superlattice. The
Si-CoSi2 interface forms a Schottky barrier with a p-type
Schottky barrier height of 0.2 eV. Hence the local electronic
DOS at the Fermi level decays rapidly in Si away from the
Si-CoSi2 interface [see Fig. 6(b)]. However, such a two-order-
of-magnitude decay in local electronic DOS does not result in a
commensurate reduction in the local electron-phonon coupling
coefficient shown in Fig. 6(a).

This unusual result can be understood by considering the
relative contributions of different types of phonon modes of the
Si-CoSi2 interface supercell to the overall Eliashberg function.
The different phonon modes of the interface supercell are
classified into four types based on the spatial localization of the
phonon eigenvector corresponding to the mode. The present
approach is analogous to the classification of interface modes
in Ref. [53]. The interface supercell [SC 2 in Fig. 6(a)] shown
in Fig. 7(a) is decomposed into three regions consisting of Si,
CoSi2, and interfacial atoms. The criteria for classification of
a phonon mode φqp are defined as follows:

φqp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Si mode, if ‖φqp,Si‖
‖φqp,tot‖ > 0.85,

CoSi2 mode, if
‖φqp,CoSi2 ‖
‖φqp,tot‖ > 0.85,

interfacial mode, if ‖φqp,int‖
‖φqp,tot‖ > 0.85,

delocalized mode, if none of the above,

(27)

where ‖φqp,Si‖, ‖φqp,CoSi2‖, and ‖φqp,int‖ denote the norm of
the phonon eigenvector within the Si, CoSi2 and interfacial
regions respectively in Fig. 7(a). ‖φqp,tot‖ denotes the norm
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FIG. 6. (a) Spatial variation of the electron-phonon coupling coefficient Gep across a Si-CoSi2 interface for different supercell lengths. The
coupling coefficient in bulk strained CoSi2 and bulk Si are also shown for comparison. (b) Spatial variation of the local electron DOS at the
Fermi energy across the Si-CoSi2 structure shown in Fig. 3(c).

of the phonon eigenvector of the entire interface supercell and
is normalized to unity. The choice of spatial extent of the
interfacial region and the value 0.85 in Eq. (27) are arbitrary
and used only to provide a physical understanding of the
mechanism of cross-interface coupling between electrons in
metal and phonons in the semiconductor.

The contribution of the different types of phonon modes
to the total phonon DOS and the total Eliashberg function
of the interface supercell are shown in Figs. 7(b) and 7(c),
respectively. Figure 7(b) indicates that phonon modes in the
frequency range of ω = (8 − 10) × 1013 rad s−1 are localized
in the Si region of the interface. These high-frequency

modes correspond to optical modes of Si and are above
the maximum allowed phonon frequency of bulk CoSi2.
Although the optical modes of Si contribute to phonon
DOS of the interface supercell, their contribution to the
Eliashberg function shown in Fig. 7(c) is negligible. This result
demonstrates that modes localized in Si do not couple with
metal electrons. However, the significant volumetric coupling
coefficient on the Si side of the interface in Fig. 6(a) can
be attributed to delocalized modes whose vibrational energy
is distributed across Si and CoSi2 atoms of the interface
supercell. Metal electrons transfer energy to delocalized
phonon modes whose vibrational patterns dictate that a portion
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of the energy is transferred to silicon atoms across the
interface.

Hence our results suggest that energy exchange between
electrons in metal and atomic vibrations in the semiconductor
is manifested primarily by the coupling between electrons and
delocalized interface modes whose vibrational energy is dis-
tributed across Si and CoSi2 atoms. An important implication
of this result is that strength of direct electron-phonon coupling
is intimately tied to the strength of interfacial bonding and
the phonon-phonon conductance across the interface. For an
interface with weak or van der Waals bonding, the contribution
of such delocalized modes to phonon DOS is expected to be
much smaller, and the phonon modes will be localized on
either side of the interface.

Figure 7(c) also suggests that the mechanism of energy
transfer from metal electrons to phonons in Si is primarily
mediated by acoustic delocalized phonon modes and the
contribution from coupling between electrons and optical
modes of Si is negligible. This result contrasts with electron-
phonon coupling in bulk Si where the contributions from
acoustic and optical modes are similar in magnitude (see
Sec. VI in Ref. [39]). In the interface supercell considered
here, optical modes of Si are localized to the Si side of the
interface where the electron DOS at Fermi level is very small
[see Fig. 6(b)]. The acoustic modes in Si are delocalized
with the acoustic modes of CoSi2, leading to their stronger
coupling with electrons in CoSi2. Figure 7(c) also indicates that
coupling between metal electrons and CoSi2 optical phonon
modes contributes significantly to the Eliashberg function of
the interface supercell. However, such coupling is localized
within the metal and contributes little to energy transfer across
the interface. Localized interfacial modes, i.e., modes with
vibrational energy localized to a few atomic layers around the
interface are observed to contribute to the Eliashberg function
in a small frequency range ω = (7–8) × 1013 rad s−1.

B. Effect of electron-phonon coupling on
thermal interface conductance

In this section, results from first-principles calculations
of electron-phonon coupling are incorporated into the AGF
transport simulations. The details of the approach are described
in Sec. II D and Ref. [39]. The primary difference between
the results presented here and those in Sec. IV is the
presence of nonzero energy fluxes in the Büttiker probes
to represent the energy exchanged between electrons and
phonons. Hence the simulation results presented in this section
include contributions from both anharmonic phonon scattering
and electron-phonon coupling.

We consider first the case where electrons exchange energy
only through the Büttiker probes in the metal, i.e., no
direct coupling between metal electrons and semiconductor
phonons. The Eliashberg function of bulk strained CoSi2 is
used to calculate the energy exchange term Qep in Eq. (16).
Figure 8(a) shows a typical electron and lattice temperature
profile obtained from such a simulation along with the heat
fluxes from the various Büttiker probes in Si and CoSi2 [see
Fig. 8(c)]. The heat fluxes in all the Büttiker probes on the
Si side of the interface are zero while the heat fluxes in the
Büttiker probes of CoSi2 decrease away from the interface.

This decay in the electron-phonon energy transfer away from
the interface is a consequence of the equilibrium between
electrons and phonons away from the interfacial region [see a
temperature profile in Fig. 8(a)].

Also, comparison of the lattice temperature profiles in
Fig. 5(b) with that in Fig. 8(a) shows that for the same
scattering rates and applied temperature difference across the
Si and CoSi2 contacts, the lattice temperature drop in CoSi2
is reduced when electrons are included in the simulation. The
reduced lattice temperature drop in CoSi2 is a consequence of
electrons in metal providing a parallel heat flow path with lower
resistance compared to phonons (κe,CoSi2 = 46 W m−1 K−1 and
κp,CoSi2 = 4.9 W m−1 K−1). Hence a significant fraction of
energy in CoSi2 is carried by electrons that transfer energy
to the lattice near the metal-semiconductor interface.

The present simulation is conceptually similar to the
analytical model developed by Majumdar and Reddy [6] who
suggested that electron-phonon coupling within the metal
effectively provides a resistance in series with the phonon-
phonon resistance across the interface. Hence the interface
conductance in Fig. 8(a) is smaller than the phonon-only
conductance in Fig. 5(b). Majumdar and Reddy’s model for the
effective conductance with electron-phonon coupling is given
by

GQ =
√

Gepκp

1 +
√

Gepκp

Gpp

, (28)

where Gep is the effective electron-phonon coupling effi-
cient in the metal, κp is the lattice thermal conductivity of
the metal, and Gpp is the phonon interfacial conductance.
The electron-phonon coupling coefficient in bulk CoSi2 is
3.1 × 1017 W m−3 K−1 [see Fig. 6(a)], κp = 4.9 W m−1 K−1,
and Gpp = 5.2 × 108 W m−2 K−1 [see Fig. 5(b)]. Substituting
these values in Eq. (28), we obtain GQ = 365 MW m−2 K−1,
which is close to the value from the simulation in Fig. 8(a).

Although the temperature profiles presented so far in Figs. 5
and 8 involve conditions near room temperature, similar
simulations were also performed at temperatures of 100, 150,
200, and 250 K to obtain the temperature dependence of
interface conductance. At each temperature, the Büttiker probe
scattering rate in Si was changed to match the bulk thermal
conductivity corresponding to that temperature (see Ref. [39]).
Figure 9 shows a comparison of simulation predictions with
experimental measurements using the time-domain thermore-
flectance (TDTR) technique [24].

The simulation predictions using the various models are
presented to provide a quantitative understanding of the
contributions from each heat transfer mechanism to the
thermal interface conductance. Ballistic AGF simulations
with only coherent interface scattering (black solid curve
denoted by “A” in Fig. 9) underpredict the thermal interface
conductance for all temperatures with a 33% difference at
room temperature. Also, an elastic transport model does
not capture the temperature dependence of the interface
conductance. Experimental data suggests that the thermal
interface conductance increases by 37% from 150 K to room
temperature; however, the AGF simulation predicts a modest
15% increase in interface conductance for the same change in
temperature. The stronger dependence of the experimental data
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FIG. 8. (a) Electron and lattice temperature profile across Si-CoSi2 interface with electron-phonon coupling inside the metal region only.
(b) Electron and lattice temperature profile across Si-CoSi2 interface with electron-phonon coupling inside the metal region and in two unit
cells of Si closest to the interface. In both (a) and (b), the red line corresponds to a linear fit of the lattice temperature profile in Si and the
green line corresponds to a linear fit of the electron temperature profile in CoSi2 away from the interface region. (c) Heat flux distribution
in the Büttiker probes across the Si-CoSi2 interface corresponding to the temperature profiles in (a) and (b). For the simulation with direct
electron-phonon coupling, the first Büttiker probe in Si closest to the interface has a nonzero energy flux.

on temperature suggests the importance of inelastic scattering
processes in cross-interface energy transport. The inclusion
of inelastic phonon scattering (magenta curve with circles
denoted by “B” in Fig. 9) in the AGF simulations increases
the interface conductance by about 80% at room temperature,
and the simulation predictions are closer to experimental data.
However, if electrons in metal are also considered in the
simulation with electron-phonon coupling limited to the metal
region only (red curve with hexagrams denoted by “C” in
Fig. 9), the thermal interface conductance decreases by about
30% at room temperature, and the simulation under-predicts
the experimental data. We note that this simulation considers
the contributions from both anharmonic phonon scattering and
electron-phonon coupling within the metal.

The DFPT calculations of electron-phonon coupling pre-
sented in the previous section do not consider anharmonicity
of phonon modes in the interface supercell. In a single Si-CoSi2
interface with semi-infinite Si and CoSi2 slabs on either side,
the interface phonon modes will be localized around the
interface. The spatial extent of these modes will depend on
the anharmonic interaction strength with bulk Si and bulk
CoSi2 modes. The local electron-phonon coupling coefficient
Gep is expected to equal the bulk values for Si and CoSi2

beyond the spatial extent of these interface modes. Different
approximations for the extent of joint or interface phonon
modes have been proposed in the literature. Huberman and
Overhauser [9] proposed that the joint modes extend to a
distance equal to the bulk mean free path of the materials
forming the interface. For Si, the average phonon mean
free path is of the order of 40 nm and the use of this
length predicts a large contribution to thermal transport from
cross-interface electron-phonon coupling [52]. Results from
application of the analytical model developed by Huberman
and Overhauser to the present Si-CoSi2 interface is discussed
in the Ref. [39]. More recently, Lu et al. [54] argued that the
extent of interfacial phonon modes should equal the distance
over which the temperature profile obtained in molecular
dynamics simulations is nonlinear. This length is typically
of the order of 1–2 nm, and this model predicts a much smaller
contribution of cross-interface electron-phonon coupling to
interface conductance. In the present work, we obtain an
approximate estimate of this length by fitting the simulation
predictions to experimental data.

With the assumption that cross-interface electron-phonon
coupling is responsible for the difference between experimen-
tal data and the simulation results represented by the red curve
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FIG. 9. Comparison of simulation predictions with experimental
data (blue squares with error bars). A (black solid curve): phonon-
only simulation with elastic interface scattering. B (magenta circles):
phonon-only simulation with anharmonic phonon scattering in both
Si and CoSi2. C (red hexagrams): electrons and phonons considered in
the simulation with electron-phonon energy transfer inside the metal
region only. D (green diamonds): electrons and phonons considered
in the simulation with electron-phonon energy transfer included in
two (1.9 nm) unit cells of Si closest to the interface.

in Fig. 9, we use the coupling coefficient on the Si side of
the interface [see Fig. 6(a)] to model energy transfer between
electrons in metal and the semiconductor lattice. Curve “D” in
Fig. 9 represents the thermal interface conductance obtained by
coupling electrons in metal with two unit cells of Si closest to
the interface along the transport direction. Direct coupling with
two unit cells of Si, which represents a length of approximately
1.9 nm, is found to be sufficient to obtain a close match with
experimental data at various temperatures. The close match
to experimental data suggests that the extent of joint interface
modes in Si is much smaller than the bulk mean free path
of Si. The small spatial extent of joint modes is likely due
to the increased anharmonicity of interfacial phonon modes
as compared to the bulk phonon modes. Similar conclusions
regarding increased anharmonicity of the interfacial region
are discussed in Ref. [55] by computing the anharmonic
contribution to the potential energy of interfacial atoms in
Si/Ge interfaces. The temperature profile corresponding to
the simulation with direct electron-phonon coupling [see
Fig. 8(b)] is similar to that obtained from the simulation
with electron-phonon coupling only in the metal region [see
Fig. 8(a)]. However, the nonzero energy flux in the Büttiker
probe closest to the interface in Si [see Fig. 8(c)] is indicative
of direct electron-phonon energy transfer, and this effect con-
tributes to the enhancement in thermal interface conductance.

VI. CONCLUSIONS

This work reports first-principles calculations of phonons
and electron-phonon coupling at a Si-CoSi2 interface and
compares simulation predictions of thermal interface con-
ductance to experimental measurements using the TDTR
technique. TEM imaging of the Si-CoSi2 interface confirms
the epitaxial nature of the interface and thus enables a
quantitative comparison between simulation and experiment.
From a methodology standpoint, important contributions from
the present work include the development of computationally
efficient methods to include inelastic phonon scattering in a
Green’s function transport simulation and the incorporation of
results from first-principles calculations of electron-phonon
coupling into the AGF framework. We also evaluate the
validity of the “mixing rule”, a heuristic approximation to
interfacial bonding at heterojunctions, using comparisons to
results obtained from rigorous first-principles calculations
of interfacial bonding, and find that simple averaging of
interfacial force constants can result in errors of approximately
100% in thermal interface conductance at room temperature.

Elastic scattering of phonons at an interface is the most
widely used framework to understand and predict the ther-
mal interface conductance of heterojunctions, but the need
to include inelastic phonon and coupled electron-phonon
processes has become apparent, largely due to the lack of
agreement between models and experiments. The present
work provides a rigorous evaluation of the contributions
from various transport processes for a Si-CoSi2 interface.
Importantly, the experimental results, performed across a
wide temperature range, only agree well with predictions
that include all transport processes: elastic and inelastic
phonon scattering, electron-phonon coupling only in the metal,
and electron-phonon coupling across interface. The relative
contributions of the various transport mechanisms would
however be specific to the metal-semiconductor interface.
For example, the extent of joint phonon modes is expected
to be strongly sensitive to the strength of bonding at the
interface (e.g., van der Waals versus covalent bonding). Also,
the polarity of interfacial bonds could have a significant
impact on the strength of direct electron-phonon coupling.
An interesting possibility for future work would involve a
systematic study of the effect of interfacial bonding parameters
on the relative contributions from the various cross-interface
thermal transport mechanisms.
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