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Comparative investigation of electronic transport across three-dimensional nanojunctions
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We show the thickness-dependent transition from metallic conduction to tunneling in three-dimensional (3D)
Ag/Si/Ag nanojunctions through layer-by-layer electronic structure and quantum transport calculations. The
transmission coefficients are calculated quantum mechanically within the framework of density functional theory
in conjunction with nonequilibrium Green’s function techniques. Thin junctions show nearly metallic character
with no energy gap opening in Si layers due to the metal-induced interface states, and the transmission is
independent of the stacking order of Si layers. An energy gap reemerges for Si layers deeply buried within
thick junction, and the decay rate of transmission in this insulating region depends on the stacking order.
Complex band analysis indicates that the decay of transmission is not determined by a single exponential
constant but also depends on the available number of evanescent states. Calculating the electric resistance from
the transmission coefficient requires a 3D generalization of the Landauer formula, which is not unique. We
examine two approaches, the Landauer-Büttiker formula, with and without subtraction of the Sharvin resistance,
and a semiclassical Boltzmann equation with boundary conditions defined by the transmission coefficients at the
junction. We identify an empirical upper limit of ∼0.05 per channel in the transmission coefficient, below which
the Landauer-Büttiker formula without the Sharvin resistance correction remains a good approximation. In the
high transmission limit, the Landauer-Büttiker formula with Sharvin correction and the semiclassical Boltzmann
method reach fair agreement.
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I. INTRODUCTION

Currently there is growing interest in multilayer silicene
[1–7]. Simple silicene is a single atomic layer of Si atoms
arranged in a two-dimensional buckled honeycomb lattice.
Although it was predicted decades ago that free-standing
silicene would exhibit a massless relativistic behavior near
the Fermi energy [8–11], it was not until very recently
that silicene was synthesized on the surfaces of a few
metallic substrates [12–15]. Linear electronic dispersions were
observed in the silicene/Ag(111) system and were attributed
as the signature of Dirac fermions in silicene [12,13], but
subsequent experimental and theoretical studies revealed the
absence of Dirac fermions near the Fermi energy. Instead, the
electronic structure changes substantially, and the observed
linear electronic dispersions are sp bands of Ag or hybrid
interface states [16–21]. The atomic structure of multilayer
silicene has not yet been identified experimentally. The
surface morphology of multilayer silicene on Ag(111) has
been examined using scanning tunneling microscopy (STM)
and scanning electron microscopy (SEM). Growth of the
first silicene layer on an Ag(111) substrate forms a 4 × 4
supercell with respect to the Ag(111) surface and 3 × 3
with respect to free-standing silicene. For multilayer silicene,
a (

√
3 × √

3 )R30◦ reconstruction with respect to the free-
standing silicene has been observed [1–7]. The reconstruction
in multilayer silicene/Ag(111) was reproduced theoretically,
and it was predicted that only the surface silicene layer
reconstructs [6].

The current-in-plane (CIP) configuration would seem a
natural choice to measure the resistance of silicenes, but
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the current tends to pass through the highly conducting
Ag(111) substrates, which makes measurements of the CIP
resistance difficult [2]. Moreover, multilayer silicene grows
in the so-called Stranski-Krastanov mode (also known as the
layer-plus-island mode), in which [1,2] the first silicene layer
forms a continuous film on Ag(111), while subsequent Si
atoms form islands of multilayer silicene. As a result, it is
difficult to directly associate the measured CIP resistance with
the thickness of a multilayer silicene. It is much easier to
perform a current-perpendicular-to-plane (CPP) measurement
by placing a conducting probe on top of a multilayer-silicene
island and measuring the resistance between the probe and the
Ag substrate.

CPP transport in stacked heterostructures is an important
research subject in its own right. Stacked heterostructures
constructed from dissimilar two-dimensional (2D) materials
exhibit atomic-scale sharp interfaces due to the weak van der
Waals interlayer interactions. The sharp interfaces along the
out-of-plane direction allow band structure engineering of CPP
transport properties; for instance, Ref. [22] reports a Dirac
semimetal-based transistor with a vertical heterostructure.
Electronic and optoelectric devices utilizing CPP transport
benefit from the ultrashort conducting channels; the length
of conducting channels is on the order of layer thickness of
2D materials. Examples of CPP devices include graphene-
based vertical transistors [23,24] and photodetectors [25,26],
interlayer tunneling transistors [27], and p-n vertical junctions
[28].

A previous work [29] showed that the nearly metallic
transport properties of ultrathin (one and two atomic layers
thick) silicene-based junctions are the result of the metal-
induced interface states in the Si spacer, similar to the
metal-induced gap states in thick semiconductor junctions
[30,31]. The calculated junction resistance is on the same

2469-9950/2017/95(8)/085303(11) 085303-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.085303


WANG, ZHANG, FRY, AND CHENG PHYSICAL REVIEW B 95, 085303 (2017)

order of magnitude as those of grain boundaries in noble
metals [32]. As the Si layer becomes thicker, one expects
that the electronic transport will turn into quantum tunneling
as these midgap metallic states become evanescent. The
question remains whether such a transition from metallic to
insulating behavior occurs over atomic distances, or whether
it requires the formation of a Schottky barrier, which is usually
macroscopic in spatial extent.

Another question raised in the previous work [29] that was
not fully addressed is that of the contact resistance in the
Landauer-Büttiker formula, which must be corrected for junc-
tions with thin barriers. For three-dimensional (3D) systems
the correction for the contact resistance is not unique [33–37].
One of the acceptable solutions is to use the semiclassical
Boltzmann theory to subtract this contact resistance. For
junctions with thick barriers, when the transmission is below a
critical value, the contact resistance is negligible with respect
to junction resistance and the Landauer-Büttiker formula does
not need any correction. This critical transmission value has
not been investigated in the past.

The aim of this work is threefold. First, we calculate the
transport properties and the electric resistance of Ag/Si/Ag 3D
nanojunctions with one to eight atomic layers of Si. Second,
we compare two recipes for calculating the electric resistance
of 3D nanojunctions, the Landauer-Büttiker formula with
Sharvin correction and a multiscale semiclassical-quantum
approach following the semiclassical Boltzmann equation in
the relaxation-time approximation. We will find a threshold
value for the transmission below which the multichannel
Landauer-Büttiker formula does not need a correction. Third,
we present a numerical method for solving the semiclassical
Boltzmann equation, which has not received much attention
since its introduction in Refs. [38,39]. We also investigate the
Ni/hexagonal boron nitride (h-BN)/Ni junction to provide a
comparison between a semiconductor and a strong insulator.
Although not the focus of this study, h-BN is itself interesting
as a standalone system because of its layered structure.

The rest of the paper is organized as follows: Computa-
tional details are presented in Sec. II. The calculated results
for Ag(111)/multilayer-silicene/Ag junctions are shown in
Sec. III, including details of transmission probabilities and
resistances. Complementary calculations on multilayer h-
BN-based junctions are presented in Sec. IV. Section V
contains a final summary. A numerical method for solving the
semiclassical Boltzmann equation appears as an Appendix.

II. COMPUTATIONAL METHOD

The atomic model for Ag(111)/multilayer-silicene/Ag(111)
junctions was built following the first-principles simulations
of bilayer-silicene/Ag(111) interfaces presented in Ref. [6]
without considering atomic reconstructions at the interfaces.
Structures of junctions with two to eight silicene layers
were optimized using the projector-augmented wave [40,41]
(PAW)–based density functional theory (DFT) as implemented
in the Vienna ab initio simulation package VASP [42,43].
In this work we employed the generalized gradient ap-
proximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)
parametrization [44]. The lattice constant of free-standing
monolayer-silicene is approximately 4/3 times of the Ag(111)

FIG. 1. Schematics of a system that consists of two metallic leads
separated by one junction in the current-perpendicular-to-plane (CPP)
configuration. The electrical current flows in the z direction, and the
system is homogeneous in the x-y plane.

surface, and a supercell consisting of 4 × 4 Ag(111) layers
and 3 × 3 multilayer-silicene primitive unit cells in the x-y
plane was used to simulate these junctions [19,29]. The lattice
constant in the x-y plane was fixed to that of Ag(111),
calculated using the PBE functional to be 2.952 Å; and the
lattice constant of multilayer-silicene was 2.952 Å × 4/3 =
3.936 Å. The supercells used in the structural optimization
consist of the multilayer silicene and five Ag(111) atomic
layers with Ag atoms in the central atomic layer fixed in their
bulk positions. During structure optimization, the height of
the supercell (along the z direction) and the coordinates of
atoms were fully relaxed, until the forces on unfixed atoms
were smaller than 0.01 eV/Å.

The electrode for h-BN junctions is chosen to be face-
centered cubic (fcc)–Ni because of the small lattice mismatch,
2.504 Å for h-BN versus 2.492 Å for the (111) surface of Ni.
The in-plane lattice constant of h-BN is squeezed slightly to
match that of Ni(111), in order to simulate a commensurate
h-BN/Ni(111) interface. The distance between h-BN layers
is set to the interlayer distance in bulk h-BN, 3.33 Å. At the
h-BN/Ni(111) interface, N atoms sit on the top of surface Ni
atoms, and the distance between h-BN and Ni(111) surfaces
is 2.1 Å [45].

The DFT-based nonequilibrium Green’s function [46–48]
(NEGF) method was then used to compute the Green’s
function and the total transmission of these junctions. NEGF
calculations were performed using the TRANSIESTA code [49].
Numerical atomic orbitals were used to expand the Hamilto-
nian and the Green’s function. Single-ζ plus polarization (SZP)
and double-ζ plus polarization (DZP) orbital basis sets for Ag
and Si respectively were generated using the default param-
eters in SIESTA [50]. Norm-conserving pseudopotentials [51]
were used to describe interactions between valence electrons
(3s23p2 for Si and 4d105s1 for Ag) and the corresponding
core electrons. The direction of transport was taken to be
the z direction. Translational symmetry in the x-y plane was
exploited by using a 15 × 15 k-point mesh for calculating the
charge density and 55 × 55 for the Green’s function.

The configuration used for calculating transport properties
is schematically shown in Fig. 1. The direction of current
density was taken as the z-direction. The group velocities of
Bloch waves in the leads and the transmission and reflection
coefficients extracted from first-principles calculations were
used as parameters for the Boltzmann equation. The group
velocity of the Bloch states within the Ag(111) leads along the
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z direction is [29]

vj
z (k‖) = az

h̄
[uj (k‖)]†�leaduj (k‖), (1)

where az is the length of the unit cell of the Ag lead; uj (k‖) is
the periodic part of the Bloch waves; k‖ are the components of
the wave vector in the x-y plane; j is the index for Bloch waves
at the same k‖; and �lead = i(�r − �a), where �r and �a are
the retarded and advanced self-energies of a Ag unit cell due
to coupling with semi-infinite Ag leads. The imaginary part of
the self-energy, �lead, is equal to the difference in the inverse
of the retarded and advanced Green’s functions of an isolated
Ag unit cell and am Ag unit cell embedded in the bulk. The
transmission t and reflection r coefficients corresponding to
the Bloch waves in the left and right leads are [29]

t
M,N
j,j ′ = i

h̄

√∣∣vM,j
z,<

∣∣ ∣∣vN,j ′
z,>

∣∣ (uN,j ′
> )† �lead

N Gr
NM�lead

M (uM,j
< ), (2)

r
M,M
j,j ′ = 1

h̄

√∣∣vM,j
z,<

∣∣ ∣∣vM,j ′
z,>

∣∣
[
i(uM,j ′

> )† �lead
M Gr

MM�lead
M (uM,j

< )

− (uM,j ′
> )†�lead

M (uM,j
< )

]
, (3)

where the dependence on k‖ is omitted. The labels M and N

denote one of the Ag leads (left or right); the subscripts >

and < denote Bloch waves propagating against and towards
the junction, respectively; and Gr

MN is the submatrix of the
retarded Green’s function of the junctions.

In the Boltzmann equation it is convenient to introduce
an auxiliary quantity h to characterize the change of the
distribution function f from its equilibrium f0 with energy,

f j (z,k‖,E) = f0(E) − hj (z,k‖)
∂f0

∂E
. (4)

The Boltzmann equation for the CPP configuration [38,39]
is then[

vj
z (k‖)

∂

∂z
+ 1

τ

]
hj (z,k‖) − μ(z)

τ
= −evj

z (k‖)Ez, (5)

where τ is a fictitious relaxation time in the Ag leads
(see discussion below) and μ(z) and Ez denote the applied
electric field and the chemical potential along the z direction,
respectively. A note about the relaxation time τ within the
Boltzmann model is in order. Although in a real sample the
actual electron relaxation time (whose value we do not know)
is always finite in the leads, in our model (and all theoretical
considerations of a junction using the Landauer formula) it
is assumed that the relaxation time is infinite and the only
source of the resistance is the tunnel barrier. On the other
hand, the Boltzmann theory can only be applied when there
is a finite relaxation time. In practice, we found that for any
reasonable value of τ , the calculated four-probe resistance
is independent of τ , as one would expect. Therefore the
calculation is accurate even with a finite value of τ . We also
note that the fictitious lifetime τ does not contribute to the
imaginary part of the self-energy, �lead, which arises entirely
from the coupling between the junction and the leads. The
method to solve the Boltzmann equation Eq. (5) numerically
is given in the Appendix.

FIG. 2. Atomic structures of bulk AA-Si and ABC-Si. The unit
cell boundary is denoted by blue lines.

The current density along the z direction is

J = − e

2πh̄A

∑
k‖,j

sgn
[
vj

z (k‖)
]
hj (z,k‖) ≡

∑
k‖

Jk‖ (z), (6)

with A being the cross section of the unit cell of junction
perpendicular to the z direction. The total current density J

is a constant due to the conservation of charge, although each
of its components Jk‖(z) is not necessarily a constant. The
expression for the local chemical potential (see Appendix B) is
μ(z) = 〈hj (z,k‖)〉

j,k‖ , and the voltage drop across the junction
located at z = z0 is equal to �V = μ(z0 + 0+) − μ(z0 − 0−);
thus the four-probe resistance of the junction is calculated as
�V/J .

III. MULTILAYER SILICENE JUNCTIONS

A. Structure and electronic structure

We considered two different stacking orders for the multi-
layer silicenes [5]. In the first stacking order, two inequivalent
silicene layers are stacked in an AA manner (denoted as
AA-Si), and each Si atom can find another in its neighboring
layers with the same in-plane position. The second stacking
order, denoted as ABC-Si, corresponds to the stacking along
the (111) direction of diamond-structured silicon. We note
that both of these stacking configurations lead to a tetragonal
arrangement of Si atoms, as shown in Fig. 2.

The total energies of bulk AA- and ABC-Si were calculated
as a function of the interlayer distance. The interlayer distance
is one half (third) of the lattice constant of bulk AA-Si
(ABC-Si) along the z direction. Bulk AA-Si has a higher total
energy than bulk ABC-Si by 14 meV per Si atom, as shown in
Fig. 3(a).

We also calculated the total energies of multilayer-silicene-
based junctions. The total energies of AA-Si-based junctions
are always higher than the corresponding ABC-Si junctions,
and the total energy difference per Si atom is shown in
Fig. 3(b). The energy difference between bulk AA-Si and
ABC-Si is denoted as the dashed line in Fig. 3(b). The
deviations from the dashed line in Fig. 3(b) are due to interface
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FIG. 3. Energetics of (a) bulk AA-Si and ABC-Si and (b) the
energy difference per Si atom between Ag(111)/AA-Si/Ag and
Ag(111)/ABC-Si/Ag junctions, as a function of the number of Si
layers. The dashed line in panel (b) shows the difference in the bulk.

effects. We have also tried another method to obtain the
atomic structures of junctions, in which the junction with
(n + 1) silicene layers was constructed and optimized from
the junction with n silicene layers by inserting a flat Si
layer between the nth layer of silicene and the Ag(111) lead.
The resulting multilayer silicene structures are different from
both AA-Si or ABC-Si, but are similar to the body-centered
tetragonal C4 allotrope of carbon [52]. Results for these
structures are not shown due to their much higher energies.

The projected density of states (PDOS) onto each atomic
layer of Ag leads and Si barrier is plotted in Fig. 4 for AA-Si
and Fig. 5 for ABC-Si junctions respectively, where the PDOS
for Ag is scaled by 1/15 relative to that of Si for better visibility.
The PDOS near the Fermi energy for Ag/Si/Ag junctions with
two and eight Si layers is plotted in Fig. 6. The PDOS on Ag is
dominated by d bands between −3 and −6 eV, whereas the sp

bands contribute PDOS above −3 eV. The PDOS on Si below
the band gap is characterized by three broad peaks centered at
−3, −7, and −10 eV, the same as diamond-structure bulk
silicon. Deeply buried Si layers in thick-barrier junctions
reproduce the density of states of bulk Si. However, the Si
layers adjacent to Ag leads exhibit different features from bulk
Si: (i) additional broad peaks emerge between −4 and −6 eV
due to orbital hybridization with Ag leads and (ii) these Si
layers show no energy gaps at the Fermi energy because of
the metal-induced gap states, as shown in Figs. 6(a) and 6(c).
These metal-induced distortions in PDOS are most severe in
the first Si atomic layer adjacent to Ag leads and are also visible
in the second Si layer. The PDOS points to a transition from
nearly metallic transport to tunneling in Ag/Si/Ag junctions as
the thickness of Si barrier increases.

B. Transmission

The transmission probabilities of Ag(111)/multilayer-
silicene/Ag(111) junctions at the Fermi energy were calculated
using the DFT-NEGF method, averaged over k‖ points in the
first Brillouin zone,

T = 1

Nk‖

∑
k‖

T (k‖). (7)

FIG. 4. The projected density of states on each atomic layer in
Ag/AA-Si/Ag junctions with the thickness of Si barrier (from top to
bottom panel) from 2 to 8 atomic layers. Note that the scale of PDOS
on Ag is 15 times larger than Si.

Because there is more than one transverse mode for each k⊥
due to the band structure folding, the averaged transmission
T could be larger than unity. The transmission as a function
of Si barrier thickness is shown in Fig. 7 for AA- and ABC-Si
junctions. For thinner junctions, those with less than four Si
layers, the transmissions of AA-Si junctions are very close to
those of ABC-Si junctions.

Next we discuss the different transmission decay rates
in junctions with thick Si barriers. The tunneling through
metal|semiconductor|metal junctions can be understood in
terms of the complex band structure of the semiconductor
barrier [53]. The tunneling current is carried out by evanescent
states near the metal|semiconductor interfaces on the semi-
conductor side. The energy dispersions of the evanescent and
propagating states are called the complex band structure. The
junction is assumed to be periodic in the x-y plane, so the
in-plane components of the vector k‖ = (kx,ky) are always
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FIG. 5. The projected density of states on each atomic layer in
Ag/ABC-Si/Ag junctions with the thickness of Si barrier (from top to
bottom panel) from 2 to 8 atomic layers. Note that the scale of PDOS
on Ag is 15 times larger than Si.

FIG. 6. The projected density of states on each atomic layer near
the Fermi energy: Ag/AA-Si/Ag junctions with (a) two and (b) eight
Si layers, and Ag/ABC-Si/Ag junctions with (c) two and (d) eight Si
layers. The PDOS of Ag is on the same scale with that of Si.
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FIG. 7. The averaged transmission over k‖ for Ag/AA-Si/Ag and
Ag/ABC-Si/Ag junctions as a function of the number of Si layers.

real, while the component along the z direction kz is allowed
to be complex. The Fermi energy of the junction lies in the
band gap region of the semiconductor barrier, so the imaginary
part of kz is always nonzero. Although there are infinitely
many kz for each k‖, we only considered the one with the
smallest imaginary part (denoted as κ hereafter), since the
corresponding evanescent state has the slowest decay rate.

We calculated κ for each k‖, where all of the k‖’s form
a uniform mesh in the two-dimensional first Brillouin zone.
Following Ref. [53], the density of κ is defined as n(κ ′) =∑

k‖ δ[κ(k‖) − κ ′]. In practice the δ function is replaced by
a Gaussian function. The calculated densities of κ for AA-Si
and for ABC-Si are plotted in Figs. 8(a) and 8(b), respectively.
The density of κ in the high-κ region (κ > 0.15/Å) is much
larger than that in the low-κ region (κ < 0.15/Å).

Not all of the κ’s are important for the tunneling. The
relative importance of each evanescent state can be described
by a function I (κ), defined as [53]

I (κ) = n(κ)e−κd

n(κmin)e−κmind
, (8)

where d is the thickness of the semiconductor barrier excluding
the two interface Si layers which are gapless. In the calculation,
the values of d were chosen to correspond to 2, 4, and 6
Si layers for actual Si thicknesses of 4, 6, and 8 layers.
The results are plotted in Figs. 8(c) and 8(d). The values of
important κ’s of AA-Si, i.e., those with a significant I (κ), are
larger than those of ABC-Si. This explains the faster decay
of the transmission in AA-Si based junctions. For very large
d the relative importance of all κ except κmin is zero, since
I (κ) ∝ e−2(κ−κmin)d , and the tunneling is contributed only by
the evanescent state corresponding to κmin. But for thin barriers,
κ’s larger than κmin can also be important.

C. Resistance

It is well known that the resistance from Landauer-Büttiker
formula corresponds to a two-probe measurement [54] with
a quantum contact resistance, sometimes equated with the
Sharvin resistance, in series with the junction resistance.
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FIG. 8. The density of κ , denoted as n(κ), for (a) AA-Si and (b) ABC-Si respectively, where κ is defined as κ(k‖) = mink‖ Im(kz); and the
relative importance I (κ) = n(κ)e−κd/[n(κmin)e−κmind ] for (c) AA-Si and (d) ABC-Si respectively, with d = 2 (dashed, red lines), d = 4 (dotted,
blue lines), and d = 6 (dash-dot, black lines) times of the Si interlayer distance 3.15 Å.

Experiments employ four-probe measurements where all
the contact resistances including the Sharvin resistance are
excluded.

There are two widely employed recipes in the literature
for calculating the resistance of 3D nanojunctions. The first
recipe [55–57] is to directly subtract the semiclassical Sharvin
resistance RSharvin from the result of the Landauer-Büttiker
formula. Hereafter, this method is referred to as the Sharvin
correction method. It is assumed that (1) the geometric
contact resistance is equal to the Sharvin resistance and
that (2) the geometric contact resistance is in series with
the junction resistance. (The second assumption is question-
able since Ohm’s law is usually violated by interference
effects due to phase-coherence.) Controversy also remains
for how to calculate the junction resistance arising from
elastic scattering [58]. Different assumptions [33–37] on the
distribution of current over conducting channels have been
proposed, leading to different expressions for the resistance,
but there is consensus on three limits. The first is the case
of a single conducting channel, where the distribution of
current over channels becomes trivial and the resistance is
given by the Landauer’s formula: RLandauer = R0(1 − T )/T .
The second is the small-transmission limit, in which the
distinction between different models becomes unimportant;
specifically, the spurious contact resistance contained in the
Landauer-Büttiker formula becomes negligibly small relative
to the junction resistance. The third limit is the obstacle-free
limit at zero temperature, in which the resistance caused
by elastic scattering is zero, and the geometric contact
resistance contained in the Landauer-Büttiker formula reduces
to the semiclassical Sharvin resistance. Away from these
limiting cases, for 3D nanojunctions with a large transmission
probability (on the order of or larger than 0.1) such as grain
boundaries in metals [55–57] and the junctions studied in
this work, the resistance is severely overestimated by the
Landauer-Büttiker formula.

The second recipe [38,39] is to replace the Landauer-
Büttiker formula by a hybridized semiclassical-quantum ap-
proach. In this approach the transport of electrons inside the
metal leads follows the semiclassical Boltzmann equation in
the relaxation-time approximation. The transport across the
tunnel barrier is assumed to be phase coherent and is described
using a quantum mechanical theory such as a scattering theory

or Green’s function method. The voltage drop across the
junction is calculated from the local chemical potential in
the leads, and the resistance is extracted from the voltage.
This method is referred to as the semiclassical Boltzmann
(SCB) method; the idea behind this method can be traced
to Ref. [58]. The method involves the group velocities of
electrons, a feature also shared by other theories [33–37,58] but
not by the Landauer-Büttiker/Sharvin recipe in the preceding
paragraph.

Both methods yield the expected results in the three limiting
cases. Both of the recipes lack a rigorous foundation, so
their accuracies can only be ascertained by comparison with
experimental results. To our best knowledge, the �3 twin
boundaries in copper provide the only system studied by both
methods and by experiments. Compared with the experimental
resistance [32], the first recipe [55–57] underestimates the
resistance by 7–13%, while the second recipe [29,59,60]
overestimates it by 19–22%. More work is needed comparing
these two methods with each other and with experiments.

Using the Landauer-Büttiker formula, the resistance-area
products (ρ) of these junctions is

ρ = 1

T
2πh̄

2e2
A, (9)

where T is the averaged transmission defined in Eq. (7),
2πh̄/2e2 = 12.9 k� is the quantum resistance, and A is the
cross section of the junction unit cell in the x-y plane.
The values of resistance-area product calculated using the
Landauer-Büttiker formula and using the SCB method as
presented in Sec. II are compared in Fig. 9 as a function of the
number of Si layers.

We also plot in Fig. 10 the calculated resistance-area
product’s of AA-Si and ABC-Si junctions using the SCB
method and using the Landauer-Büttiker formula with and
without Sharvin correction [55–57] as a function of trans-
mission per channel. The SCB results are reproduced by the
Landauer-Büttiker formula without Sharvin correction in the
small transmission region, but difference between the two
methods emerge when transmission per channel is larger than
0.05. Although the Sharvin correction to the Landauer-Büttiker
formula improves the agreement with the SCB results in the
large transmission region, there is still visible difference in the
plot. For example, the resistance of the ABC-Si junction with
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FIG. 9. Resistance-area products of (a) Ag/AA-Si/Ag and (b)
Ag/ABC-Si/Ag junctions as a function of the number of Si layers
calculated using the SCB equation (black squares) and using the
Bütikker formula (red dots). Curves for different methods converge
for thicker junctions.

two Si layers (the rightmost circle in Fig. 10) is overestimated
by 100% using the Landauer-Büttiker formula with Sharvin
correction. This is in contrast with the case of �3 twin bound-
aries in copper, where the resistance calculated using the SCB
method is higher than that using the Landauer-Büttiker formula
with Sharvin correction. The Landauer-Büttiker formula gives
almost the same resistance-area product as the SCB theory
for junctions with more than five layers of silicene, where the
averaged transmission per channel is about 0.05. In this small
transmission limit, the spurious contact resistance implicitly
included in the Landauer-Büttiker formula is negligibly small
compared to the tunneling resistance. This is the first time
that the SCB theory has been applied down to the small
transmission region. In this small transmission region, the
Boltzmann equation becomes numerically difficult to solve;

FIG. 10. The resistance-area products as a function of transmis-
sion per channel. Curves show resistance-area product calculated
using the Landauer-Büttiker formula (red solid line) and using the
Landauer-Büttiker formula with Sharvin correction (black dotted
line). Results using semiclassical Boltzmann equation are shown as
symbols: � for Ag/AA-Si/Ag and © for Ag/ABC-Si/Ag junctions.

as a result, it is more convenient to use the Landauer-Büttiker
formula instead.

The ABC-Si junction with two Si atomic layers has a
resistance-area product 50% smaller than that of the cor-
responding AA-Si junction, indicating that the calculated
resistance using the SCB theory is not entirely determined by
the averaged transmission. The existing various multichannel
extensions [37,58] of the four-probe Landauer formula have
the common feature that the group velocities of Bloch states
in the leads play a role. The factors determining the SCB
resistance are, however, rather difficult to analyze, due to the
self-consistent nature of the Boltzmann equation. The most
important observation from Figs. 9 and 10 is that the upper
limit of the transmission per channel for the applicability of
the Landauer formula is equal to 0.05. In the next section, we
studied h-BN-based junctions to explore whether this value
(0.05) is universal.

IV. MULTILAYER HEXAGONAL BORON
NITRIDE JUNCTIONS

In this section, for comparison and for the interest in layered
materials in general we turn to junctions based on the wide-gap
insulator hexagonal boron nitride (h-BN). Hexagonal boron
nitride (h-BN), generally recognized as a good insulator
because of its large energy band gap, is known to form a nearly
perfect interface with nickel (111) direction [61–66] and has
attracted much of current interest because of its ideal interface
with graphene [67–69]. However, first-principles calculations
in the literature [70,71] showed that the transmission of
monolayer h-BN-based junctions is on the order of unity.
According to the preceding results on multilayer silicene
junctions, the Landauer formula is no longer reliable, but
instead SCB theory is needed to calculate the resistivity of
monolayer h-BN junctions.

The transmissions of mono-, bi-, and trilayer h-BN-
based junctions are calculated using the same method as
for Ag/silicene/Ag junctions, except that spin-polarized cal-
culations were carried out; the magnetic moments in the
two Ni(111) leads are set to be parallel to each other. In

FIG. 11. Resistance-area products of Ni(111)|h-BN|Ni junctions
with different numbers of h-BN layers calculated using the Landauer-
Büttiker formula (black squares) and using the SCB theory (red dots).
The averaged transmission is denoted by blue circles.
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Fig. 11 the calculated transmission decays exponentially as
a function of number of h-BN layers, in accord with previous
calculations [71]. No spin flip is considered in calculating
the resistance, and the two spin channels are considered to
be independent. The resistance-area product of monolayer
h-BN-based junctions calculated using the Landauer formula
Eq. (9) is about two times larger than that using the SCB
theory, as seen in Fig. 11. The difference in resistance-area
product between the Landauer-Büttiker formula and the SCB
theory becomes very small for junctions with more than one
h-BN layer. The junction with bilayer h-BN, the threshold
for which the Landauer formula is applicable, again has a
transmission of about 0.06, very close to the value 0.05 of the
critical transmission for multilayer-silicene junctions.

Different from silicon, h-BN is a typical insulator with a
large band gap (6.0 eV from experiments [72] and 4.77 eV
using DFT [73]). The junction with a monolayer h-BN
barrier has a surprisingly large transmission and the Landauer-
Büttiker formula significantly overestimates its resistance.

V. SUMMARY

In this work we studied the transition from nearly metallic
transport to tunneling in Ag/Si/Ag junctions by examining
their electronic structure and the transmission probability. In
junctions with thin Si barriers, the projected density of states
shows no energy gap for Si layers adjacent to Ag leads, and
the transmission is independent of the stacking order of the
Si layers. For thick junctions, band gap opens for Si layers
deeply buried inside thick Si barriers, and the decay rate of the
transmission depends on the stacking order of the Si layers.

We calculated the junction resistance using the semiclassi-
cal Boltzmann equation method and compared the results to the
more often used Sharvin correction method for the Ag/Si/Ag
junctions. These calculations show that the Landauer-Büttiker
formula works well for transmission values below a critical
value of ∼0.05. This critical value is affirmed by calculations
of Ni/h-BN/Ni junctions. The fact that these two distinct
junctions share the same value of critical transmission (∼0.05
per channel) proves the universality of this value. This critical
value can be employed as a criterion for choosing methods to
calculate junction resistance. The Landauer-Büttiker formula
is the best choice when the calculated transmission is smaller
than this critical value. The SCB theory or the Sharvin
correction approach should be used for junctions with larger
transmission.
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APPENDIX A: NUMERICAL SOLUTION FOR
THE BOLTZMANN EQUATION

In this Appendix the numerical method for solving the
Boltzmann equation is presented. The Boltzmann equation

in each metallic lead in the CPP geometry is

[
vj

z (k‖)
∂

∂z
+ 1

τ

]
hj (z,k‖) − μ(z)

τ
= −evj

z (k‖)Ez. (A1)

The solution of Eq. (A1) can be written as the sum hj =
uj + wj . The first term uj satisfies Eq. (A1) for μ(z) = 0,

[
vj

z (k‖)
∂

∂z
+ 1

τ

]
uj (z,k‖) = −evj

z (k‖)Ez, (A2)

for which we can write an analytical solution for uj ,

uj (z,k‖) = −evj
z (k‖)Ezτ + Aj (k‖) exp

[
− z

v
j
z (k‖)τ

]
, (A3)

where the Aj are parameters to be determined by the boundary
conditions. Then, wj obeys

vj
z (k‖)

∂wj (z,k‖)

∂z
+ wj (z,k‖) − μ(z)

τ
= 0. (A4)

Approximating the z dependence of μ(z) in each metallic lead
to second order,

μ(z) = μ0 + μ1z + 1
2μ2z

2, (A5)

we find the solution for wj is

wj (z + �z,k‖) = wj (z,k‖) exp

[
− �z

v
j
z (k‖)τ

]

− b0μ0 − b1μ1�z − 1

2
b2μ2�z2, (A6)

with

b0 = exp

[
− �z

v
j
z (k‖)τ

]
− 1, (A7)

b1 = −v
j
z (k‖)τ

�z
b0 − 1, (A8)

b2 = −2
v

j
z (k‖)τ

�z
b1 − 1. (A9)

The z axis is uniformly discretized in practical calculations.
The value of wj on a grid point can be derived from the value
on one of its neighbors, since Eq. (A6) is a recursive type
equation.

The boundary conditions for the distribution functions
in leads are determined by the transmission and reflection
coefficients of the junctions between leads. Here we only
considered systems consisting of a single junction sandwiched
by two leads; the extension to multiple leads and junctions
is straightforward. Suppose the junction between the leads
is located at z = z0. The leads above (z > z0) and below
(z < z0) the junction are denoted as the right (R) and the
left (L) leads, respectively. The boundary conditions for the
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distribution function are

hR,j
> (z+

0 ) =
NR∑
j ′

∣∣rRR
j,j ′

∣∣2
hR,j ′

< (z+
0 ) +

NL∑
j ′

∣∣tLR
j,j ′

∣∣2
hL,j ′

< (z−
0 ),

(A10)

hL,j
> (z−

0 ) =
NL∑
j ′

∣∣rLL
j,j ′

∣∣2
hL,j ′

< (z−
0 ) +

NR∑
j ′

∣∣tRL
j,j ′

∣∣2
hR,j ′

< (z+
0 ).

(A11)

The k‖ dependence of the distribution function h and the
transmission and reflection coefficients (t and r) are omitted
in Eqs. (A10) and (A11). The total number of channels in the
left and the right leads are 2NL and 2NR respectively, half of
them propagating towards (<) the junction and the other half
against (>) the junction.

There is freedom to choose the boundary conditions for vj

and wj , and in our implementation both vj and wj satisfy the
boundary conditions Eqs. (A10) and (A11). Note that since
the uj in Eq. (A3) are decoupled for different k‖’s, so are
the boundary conditions in Eqs. (A10) and (A11). At each
k‖, there are 2NL and 2NR unknowns Aj ’s in the left and
right leads respectively, so the total number of unknowns Aj is
2NL + 2NR . The boundary conditions in Eqs. (A10) and (A11)
provide (NL + NR) equations, which is less than the number of
unknowns by (NL + NR). In fact, we considered that the leads
have finite lengths; i.e., the left lead extends down to z = zL

and the right lead up to z = zR (zR > z0 > zL). The boundaries
at z = zL and zR provide boundary conditions similar to
Eqs. (A10) and (A11) but without the transmission part; thus
they provide another NL + NR equations for determining the
unknowns Aj . The reflection coefficients of the boundaries
at z = zL and zR are arbitrary and they do not change the
resistance of the junction if the length of both leads are long
enough.

The wj in Eq. (A4) are no longer decoupled for different k‖,
because the chemical potential μ contains a summation over all
the k‖’s. As a result, Eq. (A4) for wj is a self-consistent field
equation, which can be solved using an iterative algorithm:
Given an initial guess for the chemical potential μin(z), wj

can be solved using the same method to solve uj . After
solving for wj (z), a new chemical potential μout(z) can be built
and used for the next iteration step. The iteration stops when
μin(z) agrees with μout(z) within some predefined numerical
accuracy. Efficient mixing algorithms such as given in Ref. [74]
can be used to accelerate the convergence. The typical number

of iteration steps required for current-density conservation is
several hundreds.

APPENDIX B: THE EXPRESSION FOR THE LOCAL
CHEMICAL POTENTIAL

We derive in this Appendix the expression for the local
chemical potential μ(z). The number of electrons at position
z with energy E is

∑
j,k‖ f j (z,k‖,E). The electrons at z are in

local equilibrium with a local chemical potential μ(r); i.e., the
occupation number of each mode is equal to 1/(eβ[E−μ(z)] + 1),
where β = 1/kBT , so we have

∑
j,k‖

f j (z,k‖,E) =
∑
j,k‖

1

eβ[E−μ(z)] + 1
, (B1)

or, averaged over j and k‖,

〈f j (z,k‖,E)〉j,k‖ = 1

eβ[E−μ(z)] + 1
≡ F[E − μ(z)]. (B2)

The equilibrium distribution function f0 denotes electrons that
are in global equilibrium with a global chemical potential μ0,

f0(E) = F(E − μ0). (B3)

From Eqs. ((B2), (B3)) in Eq. (4), we have

−〈hj (z,k‖)〉j,k‖
df0(E)

dE
= F[E − μ(z)] −F(E − μ0). (B4)

In the linear-response regime, the value of μ(z) remains close
to μ0, and

F[E − μ(z)] − F[E − μ0] = −[μ(z) − μ0]
dF(x)

dx

∣∣∣∣
x=E−μ0

.

(B5)

At low temperatures, we have −df0(E)/dE =
−dF(x)/dx|x=E−μ0

= δ(E − μ0). As a result, the expression
for the local chemical potential is

μ(z) = 〈hj (z,k‖)〉j,k‖ + μ0. (B6)

Suppose that hj (z,k‖) is the solution of the Boltzmann
equation with μ(z). If the local chemical potential μ(z) is
shifted by a constant C, the corresponding solution of the
Boltzmann equation becomes hj (z,k‖) + C. Both the voltage
drop and the current density are independent of the constant C

according to their definitions. So, we drop the term μ0 in the
expression of μ(z) and obtain finally

μ(z) = 〈hj (z,k‖)〉j,k‖ . (B7)
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