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Investigation of the dimensionality of charge transport in organic field effect transistors
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Ever since the first experimental investigations of organic field effect transistors (OFETs) the dimensionality
of charge transport has alternately been described as two dimensional (2D) and three dimensional (3D). More
recently, researchers have turned to an analytical analysis of the temperature-dependent transfer characteristics
to classify the dimensionality as either 2D or 3D as well as to determine the disorder of the system, thereby
greatly simplifying dimensionality investigations. We applied said analytical analysis to the experimental results
of our OFETs comprising molecularly well-defined polymeric layers as the active material as well as to results
obtained from kinetic Monte Carlo simulations and found that it was not able to correctly distinguish between 2D
and 3D transports or give meaningful values for the disorder and should only be used for quasiquantitative and
comparative analysis. We conclude to show that the dimensionality of charge transport in OFETs is a function of
the interplay between transistor physics and morphology of the organic material.
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I. INTRODUCTION

Understanding the charge transport mechanisms of organic
field effect transistors (OFETs) is of great importance to
the development of efficient devices serving a range of
applications. Knowing where in a device charge transport
occurs is particularly important for the development of thin-
film transistors as it determines the thickness limit of such
devices, allowing to develop single monolayer devices that
potentially are flexible, printable, and cheap to produce. To
this end, the dimensionality of charge transport in OFETs has
become a subject of discussion in recent years with a multitude
of materials, such as quaterthiophene [1], sexithiophene (6T)
[2–4], poly(3-hexylthiophene) (P3HT) [5], and naphthalene-
bis(dicarboximide)-dithiophene [P(NDI2OD-T2)] [6] having
been subjected to studies. Typically, these studies of dimen-
sionality include investigations of microstructure, transfer
characteristics, and most notably the dependence of the
mobility or drain current on the layer thickness, the latter
usually being measured as the number of monolayers (MLs)
that has been deposited. An early in situ study of the spatial
carrier density distribution in pentacene and 6T showed an ex-
ponential decrease in the carrier density with distance from the
dielectric/semiconductor interface independent of the applied
gate field and an accumulation layer thickness of one to two and
three to four MLs, respectively [7]. In studying the more recent
literature a trend emerges where a saturation of the mobility
within the first one to three MLs occurs followed by a thickness
independence of the mobility at greater numbers of MLs if
the layer deposition method allows for the film to develop
a long-range ordered microstructure—often in the form of
edge-on conformational order with π -π stacking parallel to
the substrate [6,8]. Such conditions typically are found in
thermal evaporation at low rates as well as in solution-based
Langmuir-Schäfer (LS) deposition [8,9]. In some systems,
although not generally, thermal evaporation at high rates may
lead to an increase in island formation and an overall less
well-defined microstructure [9]. Spin coating generally does
not allow for obtaining molecularly well-defined layers so
that a study on the ML dependence is hampered [8]. Both

lead to a ML dependence of the mobility that saturates within
the first few (approximately three to six) MLs, depending on
the material and specific growth parameters. An exception is
presented in Ref. [10] where the asymmetric chain substitution
of spin-coated NDI(2OD)(4tBuPh)-DTYM2 is believed to
cause spontaneous long-range order of the microstructure
resulting in a ML-independent mobility. It should be noted
that thermal annealing of LS films results in the loss of
the well-defined long-range order and the appearance of a
ML dependence of the mobility [11]. The brief summary
of previously published work given above serves to show
that an experimental analysis of dimensionality is by no
means straightforward and heavily influenced by experimental
parameters, requiring not only electrical characterization, but
also investigation of the microstructure, leading to varying
interpretations of the dimensionality of the system in question.
Additionally, definitions of what constitutes a ML may vary,
and accurate control of the number of MLs is not always
possible. As a consequence, one therefore often has to rely
on indirect (analytical) methods to obtain the dimensionality
of transport, which come with their own set of limitations.
Furthermore, the question stands whether or not confinement
of carriers occurs due to inherent properties of organic
disordered semiconductors (ODSCs) or is the consequence
of the gate field effect.

Despite the relatively large experimental body of work,
the topic of dimensionality in OFETs has received very little
attention from a theoretical point of view. A numerical investi-
gation based on the Gaussian disorder model was successful in
confirming the results in Ref. [7], i.e., a gate field-independent
accumulation layer thickness that only spans across the first
few MLs; however the effect of the spatial confinement on
the carrier mobility in a thin film was not addressed [12].
A numerical analysis taking into account various thicknesses
concluded that, whereas carriers are in fact confined to the
first few MLs, charge transport in OFETs is generally a
three-dimensional (3D) process [13]. However, in both cases
an energetic disorder of the localized hopping states in the form
of a Gaussian distribution is assumed, whereas commonly an
exponential distribution is used in analyses of experiments.
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Early on, Vissenberg and Matters (VM) derived a general
analytical expression for the field effect mobility in OFETs
based on percolation theory and hopping in an exponential
density of states (DOS) [14]. The VM model assumes a
strong energy dependence of the occupation of available
states and therefore only is valid in the tail of the DOS,
i.e., at temperatures T � T0, where T0 is the characteristic
temperature of the exponential DOS. Various researchers
subsequently have employed the VM conductivity model to
derive relationships between drain current and gate voltage
(Vg) that account for the differences between two-dimensional
(2D) and 3D confinements. Like the original VM model,
these “extended” VM models predict a power-law relationship
between drain current and gate voltage ID ∝ (Vg − Vt )γ ,

where Vt is the threshold voltage. In the extended VM models
(eVMs), the exponent γ is different for 2D and 3D charge
transports. In the linear transport regime the exponents follow
to γ 2D = T0/T and γ 3D = 2T0/T − 1, respectively, where
T is the lattice temperature [15]. In the saturation regime
the corresponding exponents follow to γ 2D = T0/T + 1 and
γ 3D = 2T0/T for 2D and 3D transports, respectively [16].

The procedure to obtain the dimensionality of a system can,
in short, be described as follows. From power-law fits to the
transfer characteristics at different temperatures the exponent
γ is obtained and plotted against the inverse temperature.
The intersection at 1/T = 0 (the γ axis) obtained from a
linear fit to the γ data indicates the dimensionality of the
system and should only be one of two integer values to
be conclusive. To show that this procedure is accurate in
determining dimensionality, several material systems have
previously been analyzed within the eVM framework. FETs
operating in the linear regime with spin-coated layers of P3HT,
poly(2,5-thienylene vinylene), and Poly[2-methoxy-5-(3′,7′-
dimethyloctyloxy)-1,4-phenylenevinylene] of thicknesses far
exceeding the channel thickness expected from electrostatics
(several nanometers) were found to host 3D transport. Self-
assembled monolayer field effect transistors with a single ML
of dimethylsilane and FETs with an evaporated single ML of
T6—where the spatial extension of the conduction channel is
intrinsically limited to one ML—were found to be 2D in the
linear regime [15]. Interestingly, dimensionality investigations
according to the eVM of FETs operating in the saturation
regime with bulk spin-coated layers of various polymers with
thicknesses ranging from 60 to 100 nm showed 2D transport for
all systems [16]. It should be mentioned that in Refs. [15,16]
the linear fits of the temperature dependence of γ were forced
to fall on the best-matching integer value predicted by the eVM
model.

Here we investigate experimentally and numerically the
dimensionality of charge transport for organic systems com-
monly used in OFETs. On the basis of transfer characteristics
measured on top-gate OFETs with various numbers of MLs
of P(NDI2OD-T2) (also known as N2200) deposited in a
layer-by-layer LS technique we show that, although the
underlying physics of the VM model can be adapted to 2D
transport by changing the critical number of bonds necessary
for percolation, an analysis of dimensionality per the eVM
was in fact incapable of characterizing 2D transport. Rather,
we find that the analysis described above leads to a noninteger
dimensionality that cannot be categorized exclusively as 2D or

3D. We find a remarkably similar conclusion when performing
said dimensionality analysis on data obtained from kinetic
Monte Carlo (MC) simulations that only account for the most
basic physics of ODSCs. This numerical approach eliminates
most problems of material- or deposition-method-dependent
dimensionality and serves as a powerful tool to gain a more
universal insight into charge transport in OFETs. Several
realizations of the physical model representing a large group
of organic semiconductors are investigated and interpreted
leading to a clear picture in which the dimensionality of
the transport is a consequence of the interplay between
morphology and gate field. Furthermore, we show that an
analysis of dimensionality according to the eVM model may,
in some cases, lead to erroneous or unphysical conclusions
for both dimensionality and disorder. It may, however, be used
to identify qualitative differences. Additionally, we show that
a Gaussian DOS as used in previously published numerical
works cannot be used to describe the charge transport in OFETs
in our case as it leads to a virtual absence of a Vg dependence
of the mobility.

II. EXPERIMENTS

The experimental basis of our paper is formed by the
electrical characterization of top-gate OFETs with various
numbers of P(NDI2OD-T2) MLs. The fabrication and depo-
sition protocol of P(NDI2OD-T2) MLs has been described
in detail in a number of previous publications [6,8]. In
brief, P(NDI2OD-T2) is self-organized by means of LS in
molecularly well-defined ∼3-nm-thick layers. Each layer
is a close-packed monolayer having a precise out-of-plane
molecular order. The individual P(NDI2OD-T2) monolayers
are then deposited in a layer-by-layer fashion onto a glass
substrate with prepatterned source/drain electrodes. See the
Methods section for further details on the fabrication process.

In Fig. 1(a) the transfer characteristics at room temperature
of OFETs with one to three and five MLs are shown in the
form of the gate voltage dependence of the mobility calculated
from the measured drain currents that are shown in the inset
of Fig. 1(a). The data were obtained in the linear operation
regime at a drain-source voltage VDS = 5 V. Contrary to most
previously reported devices, one can see that throughout the
gate voltage range there is very little to no difference in
mobility between OFETs with channels of one to three MLs.
The small decrease in the mobility can be attributed to an
increasing loss of the well-defined LS microstructure by the
stacking of the individual layers. This effect continues with
every added LS layer and results in a somewhat stronger
decreased mobility of the five-ML device. Importantly, these
observations give direct evidence that there is no significant
gain in mobility by adding additional material to the channel. In
the saturation regime at VDS = 70 V the previously described
small decrease in mobility for thicker devices vanishes at
higher gate fields, whereas a clear hysteresis arises at lower
gate voltages as well as a ML-dependent threshold shift
(see Fig. S3 in the Supplemental Material [17]). For this
reason, we will focus this paper on the—also more physically
transparent—linear regime.

In order to analyze the dimensionality according to the
process described above, transfer characteristics for all devices
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(a)

(b)

FIG. 1. (a) Linear mobility of monolayer OFETs plotted as a function of gate voltage. The inset shows the gate field dependence of the
current from which the mobility has been calculated. (b) Schematic of the top-gate OFETs used in this paper.

were recorded at various temperatures. As an example, in
Fig. 2(a) the transfer characteristics for a two-ML OFET in
the linear regime are plotted on a double-logarithmic scale
parametric in temperature ranging from 180 to 300 K. The
transfer characteristics for other thicknesses are plotted in
Fig. S1 of the Supplemental Material [17]. The solid lines are
power-law fits to the linear part of the transfer curves (on the
double-logarithmic scale) found at high gate voltages. One can
clearly see that the power-law relation between drain current
and gate voltage necessary for the eVM analysis only holds at
high gate voltages (which also constitutes the operation regime
of a FET) with deviations at low voltages.

The γ values for all devices at each temperature are
extracted from the inclination of these fits and are shown
in Fig. 2(b) plotted against the inverse temperature 1/T. We
did not enforce an intersection with the γ axis at any of the
values predicted by the eVM model but rather applied unbiased
linear fitting to obtain the intersections. The data obtained that
way show no clear correlation between the thickness of the
channel and the dimensionality obtained from this analysis as
can be seen in the inset of Fig. 2(b). In fact, all intersections
would indicate a sub-2D transport regime indicating that the
experimental data cannot be described by the extended VM
model. We performed the same procedure of power-law fittings
at lower gate voltages and found that although γ remained
largely the same, the intersections shift down to approximately
one (with the exception of five MLs), i.e., still indicating
sub-2D transport. The corresponding plots can be found in
Figs. S2(a) and S2(b) of the Supplemental Material [17].

III. SIMULATIONS

To gain a deeper understanding of the physical processes
that determine the dimensionality in the active material of
OFETs we have performed MC simulations modeled on
the devices used in our experimental investigations. Our
numerical model consists of a gate contact, dielectric material,
semiconductor material, and a substrate, which are stacked on
top of each other along the z axis. A gate field is applied in
the −z direction populating the semiconductor with holes.
Perpendicular to the gate field a smaller field is applied

determining the direction of current flow. No source or drain
contacts are present. Details on the MC algorithm are described
in the Methods section below and in Ref. [18]. In short,
we consider a box containing localized sites distributed on
a simple cubic lattice in space and according to an exponential
or Gaussian distribution in energy. The unit cell of the
lattice was chosen to be rectangular with the dimensions
of 1 × 1 × 3 nm3, mimicking the structure of LS deposited
N2200 reported in Ref. [6]. For comparison we performed
the same set of simulations on a lattice with a cubic unit
cell of size 1 × 1 × 1 nm3. Charge transport of carriers occurs
via nearest-neighbor hopping (NNH) between these sites with
rates given by the Miller-Abrahams expression for hopping
transport. We justify the choice of NNH over variable range
hopping by the relatively high charge-carrier concentrations in
our simulated devices as well as the fact that the probability
for a hop in a strongly energy-dependent DOS, such as an
exponential or a Gaussian, is more sensitive to energy than to
distance. The hopping probabilities in the x, y, and z directions
scale exponentially with the lattice constant of the unit cell in
the respective direction as described in the Methods section.
Furthermore, our numerical simulations include Coulomb
interactions between all particles, their twin charges due to
periodic boundary conditions up to five box sizes away, as
well as all corresponding image charges in the case of a
dielectric contrast between semiconductor and substrate. All
input parameters for the simulation have been chosen to
physically be sound and close to what one would expect for
the common systems investigated experimentally here and in
previously published literature.

In the first step of the numerical investigation we made
sure that our simulations satisfyingly reproduce the transfer
characteristics described above. In Fig. 3(a) the experimental
data from Fig. 1(a) are compared to results of the MC
simulations of a rectangular lattice. As there is (by design) no
threshold voltage for the simulated devices, comparison with
the experimental data revealed that our N2200 OFETs have a
threshold voltage of Vt = 6 V. We therefore have corrected all
experimental data by plotting them as a function of Vg − Vt .
We found that a disorder of 50 meV best reproduces the gate
field dependence of the mobility observed in the experiments.
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(a) (b)

FIG. 2. (a) Transfer characteristics of a two-ML P(NDI2OD-T2) OFET at different temperatures on a double-logarithmic scale. The
symbols are experimentally obtained data points, and the solid lines are power-law fits to the high gate voltage range of these data. (b) γ values
obtained from the inclination of the power-law fits to the transfer characteristics (symbols) vs inverse temperature. The lines are linear fits
extrapolated to the γ axis. The intersections should indicate the dimensionality of the system. The inset shows said intersections as a function
of the number of MLs.

The MC simulations on a cubic lattice, shown in Fig. S4 of
the Supplemental Material [17], exhibited a different gate field
dependence and in general show much less agreement with the
experiments, especially at lower fields. The hopping attempt
frequency was set (at ∼1012 Hz) to match the magnitude of
the experimental mobility. As described above, the mobility
decreases slightly with increasing number of MLs in the
experiments due to morphological defects. However, in the
simulations no such effects exist, and instead we observe a
small increase in mobility with thicker layers. The increase in
mobility is due to the fact that with more MLs there are more
hopping sites available in the z direction for the charge carriers
to avoid difficult in-plane hops.

In our simulations, the charge transport in the energetically
disordered channel of OFETs is determined by three factors;
Coulomb interaction (i.e., scattering) between carriers, state-
filling, and (the degree of) confinement of the carriers to
the semiconductor/dielectric interface, i.e., the dimensionality.
The interplay between these factors has been discussed
extensively in Ref. [13] and will therefore, in the context of
the present paper, only shortly be addressed in the following.

In Fig. 3(b) we studied the disorder and gate field
dependence of the transfer characteristics with MC for a
rectangular system with various magnitudes of exponential
disorder, each with various numbers of MLs. Similar data for
a cubic lattice are shown in Fig. S5(a) of the Supplemental
Material [17]. As mentioned earlier, in previously published
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FIG. 3. (a) The solid lines are the calculated mobilities as a function of gate field for simulated devices with a rectangular lattice and
thicknesses ranging from one to five MLs, which are compared to experimental curves of P(NDI2OD-T2) OFETs from Fig. 1(a) (full symbols).
(b) Comparison of the mobilities calculated for a rectangular lattice with exponential energetic disorder for various numbers of MLs as indicated
by the color of the lines and disorders of 30, 50, 80, and 100 meV.
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(a) (b)

(c) (d)

FIG. 4. (a) Simulated transfer characteristics at different temperatures of OFETs with two MLs using a rectangular lattice for hopping
(dots). The solid lines are guides to the eye. (b)–(d) γ values plotted against inverse temperature (open circles) and linear fits extrapolated to
the γ axis (solid lines) for (b) a rectangular lattice at high fields, (c) a rectangular lattice at low fields, and (d) a cubic lattice for the whole field
range. The insets in (b)–(d) show the intercept with the γ axis as a function of the number of MLs. The dashed lines indicate intercepts for 2D
and 3D according to eVM.

numerical investigations of OFETs a Gaussian distribution was
assumed for the DOS [12,13]. Although this assumption might
be correct for ODSCs in general, it is not commonly used for
analyzing experimental investigations of OFETs [14–16,19].
In fact we found that regardless of the value for the width of the
DOS, a Gaussian distribution leads to a near-constant mobility
over the whole field range and, in fact, slightly decreases with
increasing gate field. The difference between an exponential
and a Gaussian DOS can clearly be seen in Fig. S5(b) of the
Supplemental Material [17]. This has been observed before
and attributed to an increased effect of state filling at higher
disorders [13]. However, a Gaussian DOS does not reproduce
our experimental findings and was therefore discarded for the
remainder of this paper.

Using an exponential DOS, we observe an increase in
gate field dependence with increasing disorder, which is
explained by the well-known effects of state filling that become
increasingly important at higher disorders. The changing
field dependence with the characteristic temperature T0 of
the exponential DOS allows us to estimate the disorder of

the material used in the experiments of this paper to be
around 50 meV. Additionally, upon close inspection of the
low-field regime of the simulated curves in Fig. 3(a) it can
be seen that the ML dependence of the mobility inverts and a
decrease (increase) in the mobility with increasing thickness
occurs for high (low) disorder. This confirms the finding in
Ref. [13] that confinement effects can have either a positive or a
negative effect on the mobility, depending on disorder. For high
disorder, the positive effects of state filling that are associated
with an increased confinement (thinner active layer or higher
gate field) dominate over the negative effects of enhanced
Coulomb scattering and a reduced number of pathways in the
z direction. At low disorder, state filling is less important, and
the effect of increased confinement inverts. This effect is more
pronounced in a cubic lattice where the charges spread out
more easily over multiple layers.

We continue by analyzing the MC data in Fig. 3(a)
according to the extended VM model in the same manner as the
experiments. The current scaled to its value at the highest gate
voltage is plotted against gate voltage in Fig. 4(a) on a double-
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(a) (b)

FIG. 5. (a) Intercepts with the γ axis for all cases discussed above as a function of the number of MLs. The dashed line corresponds to 2D
and 3D behaviors according to the eVM model. (b) Extracted width T0 of the exponential DOS. The dashed line indicates the input T0 of the
MC simulations.

logarithmic scale for a two-ML device on a rectangular lattice
at temperatures ranging from 200 to 450 K. The equivalent
plots for other thicknesses as well as those for devices with
a cubic lattice can be found in Figs. S7 and S6 of the
Supplemental Material [17], respectively. Fitting power laws to
the transfer curves obtained for a rectangular lattice presented
a problem in that they do not follow a power law over the full
gate voltage range considered—note that a similar problem
was encountered in the experimental data [Fig. 2(a)]. Rather,
there appear to be two power laws with different exponents.
Furthermore, at high fields all curves seem to fall on the same
line with the exception of the lowest two temperatures. This
indicates that thermal activation of carriers only plays a minor
role above a certain gate voltage range. The reason for this
can be found in the fact that at high gate fields the carriers
are already close to the transport energy and require only little
thermal activation for hopping. Continuing the next step of
the analysis, we extract γ values from power-law fits to the
high-field regime (second half of the gate voltage range) and
plot the data against the inverse temperature in Fig. 4(b). The
large scatter in the data points indicates that the extrapolated
interceptions should be considered as being merely indicative.
Nevertheless, the resulting intersections with the γ axis
[insets in Figs. 4(b) and 5(a)] would suggest sub-2D to 2D
transport depending on the number of MLs, in reasonable
agreement with the experiment in Fig. 2(b). Two-dimensional
transport is what one would intuitively expect for carriers that
are confined by both a rectangular lattice and a high gate
field.

The γ values extracted from the low-field regime (first
half of the gate voltage range) are plotted against the inverse
temperature in Fig. 4(c). As can be seen a reasonable
linearity is observed, and the obtained intersections range from
approximately 0 to −0.5 with smaller error bars, seeming
to indicate a 2D to 3D transition with the system getting
more 3D with an increasing number of MLs. In principle,
this observation would be consistent with a smaller gate field
leading to less confinement and a concomitant higher degree
of three dimensionality. Below we will show that this is merely
a spurious correlation.

The same analysis performed on MC data where hopping
occurs on a cubic lattice is more straightforward. The transfer
curves largely follow a power law, and the extracted γ data
are linear in temperature as can be seen in Fig. 4(d). The
fact that the currents are analyzable in the cubic case could
be ascribed to the more 3D-like nature of the cubic lattice,
bringing the system closer to the assumptions underlying the
VM transport model. However, similar to the experiments
and the rectangular lattice, the intersections obtained suggest
an unphysical sub-2D transport, especially for the one-ML
case.

According to the extended VM model the slopes of the
linear fits in Figs. 2(b) and 4 give the width T0 of the
exponential DOS, which is plotted in Fig. 5(b) for all cases
discussed above. For two or more MLs of the cubic lattice
and the rectangular lattice analyzed at low fields the input T0

of ∼600 K (50 meV) is recovered in the analysis. The values
obtained for the rectangular lattice analyzed at high fields are
around 400 K, whereas those extracted from the experiments
all fall below 300 K. It is important to note that the original
VM model is only valid at temperatures T < T0, meaning that
a posteriori the analysis of the experiments is largely invalid
by this criterion. Further analysis of MC data for a cubic lattice
with input disorders of 30 and 60 meV is plotted in Fig. 5(b)
and shows that, although the eVM analysis underestimates
T0 at low disorders, it increasingly overestimates T0 at higher
input disorders.

Summarizing our results so far, we have shown that
the eVM analysis with a free intercept of the experimental
system investigated in this paper results in nonphysical
dimensionalities (<2) and internally inconsistent T0 values.
Conclusions drawn from an analysis of MC simulation data
of a system where hopping occurs on a (realistic) rectangular
lattice, thus favoring 2D transport, depended on the field range.
If performed in the high-field regime as suggested in Ref. [15],
the linearity of γ in temperature is lost to a large degree, and
an analysis becomes cumbersome. Analysis of the rectangular
lattice in the low-field regime, however, is possible and seems
to point towards a 2D to 3D transition. However, simulations
on a cubic lattice on which a 2D to 3D transition is more likely
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FIG. 6. Percentage of carriers in the first ML as a function of gate voltage and total number of MLs in the device for (a) a rectangular lattice
and (b) a cubic lattice.

showed no indication of such a transition, despite the fact that
the cubic system could be better analyzed with the eVM model.
It is noteworthy that the eVM analysis did not point to a clear
2D behavior for transport in one ML for any of the MC systems
investigated here. Moreover, the disorder parameters extracted
from the eVM analysis can show significant deviations from
the true value.

Kinetic MC allows us to follow charge carriers over
time and determine their position in the device once con-
vergence of the simulation has been reached. This creates
the unique possibility to unambiguously determine whether
charges are distributed over the whole device or confined to a
single layer, i.e., whether the charge-carrier distribution is 2D
or 3D. To this end we plotted the percentage of carriers in the
first ML as a function of gate field and the number of MLs in
the device for a rectangular and a cubic lattice in Figs. 6(a)
and 6(b), respectively.

As can be seen, in the case of a rectangular lattice most
carriers are confined to the first ML already at low gate fields
and are fully confined to the first ML in the high gate field range
where the difference between the various devices becomes
negligible. Even for the ten-ML device, more than 60% of the
carriers are confined within the first ML already at the lowest
gate field, and the confinement steeply increases thereafter.
This suggests that transport in a rectangular lattice is largely
2D regardless of the number of MLs or gate field. Interestingly,
this conclusion is somewhat similar to the results of the eVM
analysis of the rectangular lattice in Fig. 5(a) if one is willing
to ignore the large error bars and the absence of linearity in
Fig. 4(a). In the case of a cubic lattice in Fig. 6(b) we see that at
the low gate field only around 20% of the carriers are confined
in the first ML for thicker devices and that the population
gradually increases until the gate field confines most carriers
to the first ML. This clearly indicates a transition from 3D to
2D with increasing gate field. However, the analysis in Fig. 5(a)
points to sub-2D transport for all thicknesses, which is in clear
contrast to the actual distribution of carriers in Fig. 6(b).

IV. CONCLUSION

In conclusion, we have investigated the transfer character-
istics of LS deposited N2200 OFETs and analyzed the dimen-

sionality of the charge transport by means of the extended
Vissenberg-Matters model. We found that this model cannot
be used to make absolute statements about the dimensionality
of charge transport and that enforcing an extrapolation of the
fitted power-law exponents γ through the nearest integer is
prone to lead to misleading identification of 2D transport.
For further analysis we performed MC simulations of OFETs
modeled on the N2200 devices using a rectangular or a
cubic lattice and exponential or Gaussian disorder. We find
that Gaussian disorder does not reproduce the gate field
dependence of the mobility from experiments, whereas an
exponential disorder does. Extended VM analysis of the MC
data results in the same conclusion as for the experiments,
namely, that this analysis cannot properly identify 2D or 3D
transport. This is further supported by an analysis of the spatial
charge distribution of the simulated OFETs. In addition, the
extended VM analysis was found to be ill suited for quantitative
determination of the disorder T0.

V. METHODS

A. Device fabrication and characterization

P(NDI2OD-T2) was purchased from Polyera Corp.
(ActivInk

TM
N2200) and used as received. Monolayers and

multilayers of P(NDI2OD-T2) were prepared by the LS
technique following the procedure described in Ref. [6]. A
0.2-mg/ml chloroform solution of P(NDI2OD-T2) was spread
onto the water subphase. After solvent evaporation, the floating
film was compressed in order to induce a compact packing
of the molecules at the air/water interface. The deposition
was then carried out at a surface pressure of about 25 mN/m
by approaching hexamethyldisilazane-treated glass substrates
horizontally to the water subphase. This surface pressure
allows for the self-assembly of well-ordered films with a
preferential edge-on molecular orientation with respect to the
substrate over a large area [6].

Ordered monolayers and multilayers of P(NDI2OD-T2)
were deposited on Corning glass substrates with photolitho-
graphically patterned source/drain electrodes (3-nm-thick Ti
and 12-nm-thick Au, L = 20 μm/W = 1000 μm). The films
were then annealed at 120 °C in vacuum overnight. Next,
polymethylmethacrylate (PMMA) (Mw = 120 kDa, Sigma-
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Aldrich) was dissolved in 2-butanone (MEK) at a concentra-
tion of 70 mg mL−1, spin coated on top of the semiconductor
thin layer, and annealed at 120 °C in vacuum for 3 h. Finally,
an 80-nm-thick Al gate electrode was thermally evaporated
on top of the dielectric layer. Electrical measurements were
performed in vacuum by using a cryogenic probe station
(Janis Research Company) connected to a Keithley 4200-SCS
semiconductor parameter analyzer.

B. Kinetic Monte Carlo simulation

The MC experiments were performed at different temper-
atures in a box containing 70 × 70 × N lattice sites in the
x, y, and z directions, respectively, where N is the number
of monolayers. As outlined above, the intersite distance of
the rectangular hopping lattice was chosen to be 1 × 1 × 3
and 1 × 1 × 1 nm3 for cubic lattices. The hopping probability
pd is modified with distance by pd ∝ e−2α(ad−a0), wherein
α = 2 × 109 m−1 is the inverse localization length, ad is the
lattice constant in the direction of the hop, and a0 is a reference
lattice constant. The number of particles in the box is set by Vg

and the areal capacitance of the gate and was between several
tens and several hundreds for the field range considered in
this paper. Every data point is obtained by averaging over

20 configurations where convergence of every simulation
was assured. Interactions of twin charges resulting from the
periodic boundary conditions in the x and y directions have
been included for all carriers up to five box sizes away at which
point these interactions become negligible. Image charges of
all charges and their twins in the z direction arise due to the
difference in dielectric constant between the semiconductor
ε1 = 3.6 and the substrate ε2 = 4.7 (the gate dielectric was set
to have the same dielectric constant as the semiconductor). The
electric potential in the semiconductor due to self-interaction
of a charge q was calculated according to Ref. [13] as qt

4πε0r
,

where ε0 is the vacuum permittivity, r is the distance between
the charge and its image in the substrate in the z direction, and
qt = q

ε1
( ε1−ε2
ε1+ε2

) is the total charge induced by a charge q in the
substrate.
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