
PHYSICAL REVIEW B 95, 085207 (2017)

Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initio study
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Thermal transport in most carbon allotropes is determined by phonons. The properties of the atomic bonds
will influence the phonon transport process directly. In this paper we studied two novel carbon allotropes
as examples, one novel allotrope phase is topological semimetal in an sp2 bonding network with a 16-atom
body-centered orthorhombic unit cell (BCO-C16) [Phys. Rev. Lett. 116, 195501 (2016)] and the other novel
allotrope is derived by substituting each atom in diamond with a carbon tetrahedron (T-carbon) [Phys. Rev. Lett.
106, 155703 (2011)], which possesses an sp3 bonding network. Graphene and diamond with standard sp2 and
sp3 hybridization, respectively, are also examined for comparison. We explored the related properties of the
atomic bonds of these allotropes with the density functional theory, i.e., the atomic orbital hybridization, effective
spring constants of atomic bonds, the anharmonicity of atomic bonds, etc. By comparing the results, we unveiled
the veil behind different lattice thermal conductivities of these allotropes at atomic bond levels (BCO-C16 vs
graphene and T-carbon vs diamond), despite their similar hybridization. In addition, within the framework of a
phonon Boltzmann transport equation, the mode level phonon transport properties of the four carbon allotropes
are also studied in detail, which are well consistent with the information from atomic bonds. We expect that
the method of analyzing the strength and anharmonicity of atomic bonds here will be helpful for studying the
thermal transport in crystalline materials in the future.
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I. INTRODUCTION

Thermal transport, mainly lattice thermal conductivity (κ),
is crucial for enormous practical implications, such as heat dis-
sipation in electronics and heat hindering in thermoelectrics.
Phonon anharmonicity is a critical factor to determine κ . In
principle, phonon anharmonicity is determined by the phonon
scattering, which is further related to three-phonon and higher-
order phonon interactions. For most crystals the higher-order
phonon interactions can be ignored in determining κ . In this
framework, the anharmonic lattice dynamics (ALD) method
coupled with the phonon Boltzmann transport equation (BTE)
is one of the most featured methods to obtain κ . With the help of
the ALD/BTE method, understanding of phonon anharmonic-
ity is extended to the anharmonic interatomic force constants,
mainly the so-called third-order derivatives of potential energy
with respect to atomic displacement, along with the mode level
phonon behaviors such as phonon lifetime, scattering channel,
etc. Considering all the interatomic interactions should be
intrinsically related to the form of atomic orbitals and orbital
hybridization, which are determined by the atomic structure,
it is interesting to look at how the atomic orbitals influence the
phonon transport at the level of atomic bonds.

Carbon-based materials play a very important role in mod-
ern science and technology. Especially some pure allotropes
of carbon own very unique properties. For example, the charge
carriers in two-dimensional (2D) graphene mimic relativistic
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particles with zero rest mass and have an amazing speed
c∗ ≈ 106 m/s [1]. Diamond is the hardest known natural
material [2]. The high density of strong carbon-carbon bonds
in diamond and the three-dimensional arrangement of such
bonds account for the hardness of diamond [2]. With the
development of synthesis technology, various pure forms of
carbon allotropes are successfully synthesized, i.e., fullerenes
[3], nanotubes [4], and graphene [5]. These synthesized
allotropes give rise to enormous impacts in science of
chemistry, physics, and materials, and lead to the revolution
of nanotechnology and nanodevices. Meanwhile, with the
improvement of density functional theory (DFT), scientists
have the opportunity to predict novel carbon allotropes and
study the related fascinating physical and chemical properties.

In this paper, resorting to first-principles calculations, we
study the thermal transport in two novel three-dimensional
(3D) carbon allotropes. The first phase is a full sp2 carbon
allotrope with Imma symmetry proposed recently [6]. This
phase has a 16-atom body-centered orthorhombic unit cell,
termed “BCO-C16”, which can be regarded as 3D modification
of graphite, consisting of benzene linear chains connected
by ethene-type planar π conjugation. The previous study
shows that BCO-C16 belongs to a new class of topological
node-line semimetals, which exhibits novel electronic and
transport properties [6]. The other phase is a full sp3 carbon
allotrope in the same symmetry of Fd3̄m as diamond [7].
This phase can be obtained by substituting each atom in
diamond by a carbon tetrahedron, termed “T-carbon”. It was
shown that T-carbon has a low density of 1.50 g/cm3 and is a
semiconductor with a direct band gap of about 3.0 eV, which
could be potentially used for hydrogen storage, adsorption,
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FIG. 1. (Left panels) The models and the primitive cells of
(a) graphene, (b) BCO-C16, (c) diamond, and (d) T-carbon. (Right
panels) The corresponding hybrid orbitals plotted on the primitive
cells. The bond index are shown for BCO-C16 and T-carbon in
(b) and (d), respectively.

and aerospace materials [7]. For comparison we also study
the thermal transport in graphene and diamond. The study on
heat transfer properties of these carbon allotropes can help
us understand the thermodynamic mechanism of the carbon
based materials from an atomic orbital perspective, which is
significant to the field of nanodevice design. The remainder of
the paper is organized as follows. In Sec. II a brief description
about our first-principle calculation is given. In Sec. III we
present our main results. First, we use the tight-binding model
to investigate the energy of bonds in each model. Second,
with the ab initio calculations, we analyze the strengths and
anharmonicity of the different hybrid bonds in detail. Then
we present the key parameters of the phonon transport to
establish the relationship between the hybrid bonding style
and the thermal conductivity. Finally, our concluding remarks
are summarized in Sec. IV.

II. COMPUTATIONAL MODELS AND METHOD

The optimized structures of four allotropes, namely
graphene, BCO-C16, diamond, and T-carbon, are shown in
the left panel of Fig. 1. The hybrid atomic orbital of a carbon
atom in each allotrope is also plotted in the right panel of
Fig. 1. The optimized lattice constants of each allotrope unit
cell are also presented in Fig. 1. The hybrid atomic orbitals
here are calculated from maximally localized Wannier function
(MLWF) orbitals [8,9] with the software package Wannier90

[10] and the Vienna ab initio simulation package (VASP)
[11,12]. From the geometrical structures and symmetry, we can
learn that graphene and diamond only own one nonequivalent
type of atoms and one unique type of atomic bond, BCO-C16

has two nonequivalent types of atoms and three types of atomic
bond, and T-carbon owns one nonequivalent type of atoms and
two types of atomic bond. The different types of atomic bond
of BCO-C16 and T-carbon are indexed in Figs. 1(b) and 1(d).

Most of the calculations were performed with the density
functional theory (DFT) as implemented within VASP [11,12]
with the projector augmented wave (PAW) method [13,14].
The generalized gradient approximation (GGA) was adopted
for the exchange-correlation potentials [15] and 2s22p2 or-
bitals are treated as the valence electrons. The plane-wave
cutoff energy is 1000 eV. The Monkhorst-Pack scheme was
used for sampling the Brillouin zone (BZ). For 3D allotropes
BCO-C16, T-carbon, and diamond, the k points sampling
meshes are adopted as 8 × 8 × 8, and a mesh of 10 × 10 × 1
is used for 2D graphene. The geometries structures of all
allotropes were optimized with the Hellmann-Feynman force
tolerance 0.01 eV/Å on ions.

III. RESULTS AND DISCUSSION

A. Thermodynamic stability of carbon allotropes

To identify the thermodynamic stability of these carbon
allotropes, we implemented the software package PHONOPY

[16] combining with the VASP to calculate the phonon
dispersion and phonon density of states (DOS). The results are
presented in Fig. 2. The results of phonon dispersions show
that there is no imaginary frequency in the entire BZ for all
allotropes, confirming the kinetic stability of these structures.
From Figs. 2(a) and 2(b) we know that the highest phonon
frequency of BCO-C16 is located at the X point with the value
of ∼47.51 THz, which is slightly lower than that of graphene
(∼47.94 THz). Meanwhile, from Figs. 2(c) and 2(d), we can
see that the highest phonon frequency of T-carbon is located
at the � point with the value of ∼54.18 THz, which is higher
than that of diamond (∼39.29 THz). It is worth to notice
that there exists a large gap (10.13 THz) in T-carbon between
high frequency optical phonons and middle and low frequency
optical phonons (in the range of 22.41–32.54 THz). All of the
above results here are consistent with previous studies [6,7].

B. Orbital hybridization

The valence electron configuration of a carbon atom is
described as 2s22p2, which shows that the carbon atom shares
more electrons to achieve the stable noble gas configuration
than any other nonmetal atom. The sp2 and sp3 hybrid
orbitals are the representative hybridizations in pure carbon
allotrope. Based on the geometry structures shown in Fig. 1,
we formulate the analytical expression of the hybrid orbitals of
four allotropes (see the Supplemental Material [17]). We also
constructed the atomistic tight-binding (TB) Hamiltonian in
maximally localized Wannier function (MLWF) orbitals [8,9],
with one s orbital and three p orbitals centered for each carbon
atom. We implemented the software package Wannier90 [10]
and VASP [11,12] to calculate the interatomic matrix elements
between the atomic orbitals m and l on adjacent atoms of the
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FIG. 2. Phonon dispersion and phonon density of states (DOS)
of (a) BCO-C16, (b) graphene, (c) T-carbon, and (d) diamond. The
corresponding first Brillouin zones are also shown.

allotropes [10]:

γm,l(Rn) = −
∫

φ∗
m(r)�U (r)φl(r − Rn)d3r,

which is also called the bond energy or two center integral and
is the most important element in the tight-binding model. Here
φ∗

m(r) and φl(r − Rn) are the conjugate of atomic orbital and
atomic orbital at position Rn, respectively, and �U (r) is the
atomic potential. We can use the interatomic matrix element to
indicate the composite interacting energy between the carbon
atoms, then further analyze the interactions among the atoms
in different carbon allotropes. We consider the adjacent two
center approximations (Rn = 1) to indicate the bond energy in
different models (see the labels of bonds in Fig. 1).

In Table I we present the two center integral γm,l(Rn) in
the tight-binding models. The sign before the matrix elements
in Table I is just related with direction for the integration in
space (i.e., from atom-1 to atom-2 or opposite direction). Thus

we can see the matrix elements in Table I are symmetrical
along the diagonal, and only the magnitude is significant here.
From the matrix of sp2 in Table I, we can learn that for BCO-
C16 the two center integrals (also known as overlap integrals)
are different from the values of the regular sp2 present in
graphene. This is, because of that, the adjacent four carbon
atoms are not exactly in one plane, which leads to the overlap
integrals deviating from the standard sp2 hybridization, as is
the case for graphene. This simulating result is different from
the mathematical expression of the standard hybrid orbitals
(see Supplemental Materials [17]). Because of the inexact
plane of carbon atoms in BCO-C16, the orbital hybridization
are not pure sp2. For example, in the hybridization of the
bond-2 in BCO-C16, all the px , py , and pz participate in
the orbital hybridization. In Table I we can also learn that
the bond-1 (intertetrahedron) in T-carbon owns the similar
overlap integration of standard sp3 orbitals as in diamond
[the diagonal elements beside the s(m)s(l) are almost zero in
both T-carbon bond-1 and diamond]. However, the overlap
integration of bond-2 (intratetrahedron) in T-carbon are much
different from the standard sp3. This result is consistent with
the fact that the T-carbon phase is obtained by substituting
each atom in diamond by a carbon tetrahedron.

Then we calculated the summation of the absolute value
of the two center integrals in Table I to demonstrate the
bonding energy of hybrid orbitals. As the matrix elements
are symmetric, we only need to consider the elements of
the upper triangular matrix for each allotrope. Because the
summation should follow sp2 or sp3 hybridizing rules, from
the data in Table I, we calculated all possible hybridizations
of each bond. For example, for graphene we consider s, px ,
and py orbitals; for bond-1 in BCO-C16, the s, pz, and px

orbitals most likely participate in the sp2 hybridization; for
bond-3 in BCO-C16, there exist two possible forms for the
sp2 hybridization: one is the hybridization from s, pz, and px

orbitals and the other is the s, px , and py orbital hybridization.
For bond-2 in BCO-C16, all overlap integrals among s and
p orbitals are not zero, thus we only need to calculate three
possible ways for sp2 hybridization. For the sp3 hybridizations
in Table I, the situation becomes simple: because all the orbitals
(s, pz, px , and py) participate in the sp3 hybridization, it
is sufficient to consider the elements of the upper triangular
matrix in Table I. All possible summations for each bond are
presented in Table II, from which we can get the information
of the bonding strength of the atomic orbitals for each atomic
bond. First, we may see that for sp2 bonds, all the three bonds
of BCO-C16 are weaker than those of graphene, especially for
the bond-2 in BCO-C16. From the matrix elements in Table I,
we find that the BCO-C16 bond-2 is the most different from the
standard sp2 hybridization in graphene. Second, for sp3 bonds
the two bonds of T-carbon own the bonding strength of orbitals
weaker than diamond. Similar to the results of sp2 situation,
the bond-2 in T-carbon is weaker than bond-1, because the
bond-2 is more different from the standard sp3 hybridization
in diamond. It is worth noting that in Table II the standard
sp2 and sp3 own almost the same largest bonding strength of
atomic orbitals.

In addition, the heat transfer process depends on the atomic
bonds, which are also intrinsically determined by the atomic
orbitals. Generally speaking, the overlap integral can reflect
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TABLE I. The interatomic matrix element between the atomic orbitals m and l on the adjacent atoms of the allotropes corresponding to
sp2 and sp3 bonds in Fig. 5. The unit of the interatomic matrix element is eV.

sp2 bonds Orbital m s(l) pz(l) px(l) py(l) sp3 bonds Orbital m s(l) pz(l) px(l) py(l)

BCO-C16 s(m) −4.0918 −3.7117 −5.4323 −0.0003 T-carbon s(m) −1.6387 2.9013 −2.9012 −2.9014
pz(m) 3.7115 0.2571 4.5552 0.0001 pz(m) −2.9001 0.5683 −3.1188 −3.1189

Bond-1 px(m) 5.4319 4.5553 3.6385 0.0004 Bond-1 px(m) 2.9000 −3.1188 0.5680 3.1187
py(m) 0.0001 −0.0003 −0.0002 −3.3870 py(m) 2.9002 −3.1188 3.1187 0.5680

BCO-C16 s(m) −3.2812 1.7130 −2.9370 4.9117 T-carbon s(m) −1.9693 2.9496 −0.7587 −2.9497
pz(m) −1.7030 −1.8315 −1.1717 2.2510 pz(m) −2.9499 2.3065 0.1260 −4.2473

Bond-2 px(m) 2.8035 −1.2111 −0.7579 −3.6735 Bond-2 px(m) −0.7590 −0.1252 −2.7194 0.1252
py(m) −4.8021 2.0823 −3.7236 3.6599 py(m) 2.9497 −4.2471 −0.1258 2.3063

BCO-C16 s(m) −4.5989 0.0001 6.7080 0.0002 Diamond s(m) −3.6094 3.1377 3.1380 3.1376
pz(m) 0 −2.9628 0 −0.1479 pz(m) −3.1377 0.3871 2.7730 2.7684

Bond-3 px(m) −6.7079 0.0002 6.6074 0.0002 px(m) −3.1380 2.7730 0.3891 2.7704
py(m) 0 −0.1481 0 −3.4112 py(m) −3.1376 2.7684 2.7704 0.3905

Graphene s(m) −4.9527 0 3.1171 5.4752
pz(m) 0 −2.6968 0 0
px(m) −3.1498 0 −0.6354 4.1469
py(m) −5.5434 0 4.1868 4.1849

the bonding strength of the covalent bonds. The two center
overlap integrals between adjacent atomic orbitals as shown
in Table I may determine the main interactions between the
carbon atoms, which further influence the properties of lattice
thermal transport. In the rest part of this paper, we will
discuss the related properties such as the bond strength and
anharmonicity in atomic bonds to verify this point.

To confirm our TB calculations, we also calculate the
electronic band structures of each allotrope, which are shown
in Fig. 3. The electronic band structures are projected onto
the atomic orbitals s, px , py , and pz. From Fig. 3(a) we can
clearly see the double Dirac-cone structure in BCO-C16, which
indicates that BCO-C16 is a novel topological semimetal [6].
Meanwhile, from Fig. 3(a), we know that the electronic bands

near the Fermi surface are mostly from the pz orbitals of
carbon atoms. Next, from Fig. 3(b), we observe the typical
electronic band structure with a single Dirac cone of graphene
[1]. Similar to BCO-C16 the band of a single Dirac cone is
mostly from the pz electrons. From Figs. 3(a) and 3(b) we
can find that for carbon allotropes with sp2 hybridization, the
conducting electrons mostly belong to the hybrid π bond from
atomic orbital pz, and the force interactions among the carbon
atoms mostly originate from the σ bonds. Analogously, from
Figs. 3(c) and 3(d), we know that the direct energy gaps of
T-carbon and diamond are 2.244 and 5.719 eV at the � point,
respectively, which are consistent with the previous results of
2.25 eV for T-carbon [7] and experimental measurement of
5.45 eV for diamond [18].

TABLE II. The summation of the absolute value of interatomic matrix elements for each kind of bond in Table I following the sp2 and
sp3 hybridizing rules. The possible ways of summations are presented. Because the interatomic matrix elements are symmetrical along the
diagonal in Table I, we consider the elements of the upper triangular matrix for each atomic bond of allotropes.

sp2 bonds Sum forms for the absolute values of interatomic matrix elements of sp2 in Table I Value (eV)

BCO-C16 Bond-1 |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |pz(m)pz(l)| + |pz(m)px(l)| + |px(m)px(l)| 21.6866

BCO-C16 Bond-2 |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |pz(m)pz(l)| + |pz(m)px(l)| + |px(m)px(l)| 11.6923
|s(m)s(l)| + |s(m)pz(l)| + |s(m)py(l)| + |pz(m)pz(l)| + |pz(m)py(l)| + |py(m)py(l)| 17.6483
|s(m)s(l)| + |s(m)px(l)| + |s(m)py(l)| + |px(m)px(l)| + |px(m)py(l)| + |py(m)py(l)| 19.2212

BCO-C16 Bond-3 |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |pz(m)pz(l)| + |pz(m)px(l)| + |px(m)px(l)| 20.8772
|s(m)s(l)| + |s(m)px(l)| + |s(m)py(l)| + |px(m)px(l)| + |px(m)py(l)| + |py(m)py(l)| 21.3259

Graphene |s(m)s(l)| + |s(m)px(l)| + |s(m)py(l)| + |px(m)px(l)| + |px(m)py(l)| + |py(m)py(l)| 22.5122

sp3 bonds Sum forms for the absolute values of interatomic matrix elements of sp3 in Table I Value (eV)

T-carbon Bond-1 |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |s(m)py(l)| 21.4032
+|pz(m)pz(l)| + |pz(m)px(l)| + |pz(m)py(l)| + |px(m)py(l)| + |py(m)py(l)|

T-carbon Bond-2 |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |s(m)py(l)| 20.4579
+|pz(m)pz(l)| + |pz(m)px(l)| + |pz(m)py(l)| + |px(m)py(l)| + |py(m)py(l)|

Diamond |s(m)s(l)| + |s(m)pz(l)| + |s(m)px(l)| + |s(m)py(l)| 22.5012
+|pz(m)pz(l)| + |pz(m)px(l)| + |pz(m)py(l)| + |px(m)py(l)| + |py(m)py(l)|
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FIG. 3. Electronic band structures of (a) BCO-C16, (b) graphene,
(c) T-carbon, and (d) diamond. The size of the orange, blue, green,
and red circles represents the proportions of the orbital s, px , py , and
pz, respectively. The black solid lines are the band structures from ab
initio tight-binding calculations by applying Wannier90.

C. Thermal conductivity

1. Results from BTE

We shall invoke the phonon Boltzmann transport equation
(BTE) to study the thermal transport properties of the systems
under investigation. The lattice thermal conductivity tensor (κ)
can be expressed as [19]

κ =
∑

p

∑
q

Cphvg(p,q)2τ (p,q), (1)

where p and q denote the phonon branch and wave vector,
respectively, vg = dω/dk is the phonon group velocity, τ is
the phonon lifetime, and Cph is the specific heat capacity of
phonons [19,20]. The harmonic (second order) interatomic
force constants (IFCs) were obtained within the linear response
framework by employing the density functional perturbation
theory (DFPT) as implemented in the VASP package [11,12].
Then we obtained the phonon dispersion using the PHONOPY

package [16] based on the harmonic IFCs, as shown in Fig. 2.
From phonon dispersions we can obtain Cph and vg . For
the calculation of κ , anharmonic (third order) IFCs are also
required. The same supercell and k mesh were used to get
the third order IFCs, and the interactions between atoms were
taken into account up to sixth nearest neighbors. With the
third order IFCs, we solved the phonon BTE with iterative
method as implemented in ShengBTE package [21]. We also
calculated the scattering rate of each phonon mode 1/τ (p,q).
The phonon-isotope scattering process is included in all our
BTE calculations. The grid convergence in k space and the
force cutoff distance of all cases were examined and all the κ

reported here are the final converged values. In addition, the
thickness of 2D graphene is taken as 3.4 Å.

In Fig. 4(a) we present the temperature dependent κ of four
carbon allotropes. The κ at 300 K are compared in Fig. 4(b),
from which we see that the thermal conductivity of BCO-C16

has strong anisotropy. This feature is significant to the design
of devices in terms of thermal management. The κ of BCO-C16

along three directions of the vectors of the primitive cell are

FIG. 4. (a) Temperature dependent lattice thermal conductivity
of the four carbon allotropes. The orange, blue, purple, red, green,
and black line represents the results for BCO-C16(�a,�b,�c), graphene,
T-carbon, and diamond, respectively. (b) Comparison of the lattice
thermal conductivity between BCO-C16(�a,�b,�c), graphene, T-carbon,
and diamond at 300 K.

κ(�a) = 452.47 W/mK, κ(�b) = 777.68 W/mK, and κ(�c) =
190.18 W/mK, respectively. The highest value is about four
times larger than the lowest one. However, all of the three κ

values are much lower than that for graphene (3151.53 W/mK,
which is comparable to the previous work [20]). Despite
the same sp3 hybridization, T-carbon possesses the lowest κ

(33.06 W/mK) among the four carbon allotropes, which is al-
most two orders of magnitude lower than that for diamond (κ =
2388.69 W/mK, which is in good agreement with the experi-
mental value of natural diamond (about 2200 W/mK) [22]).

2. Bond strength

To analyze the thermal conductivity behavior of the four
allotropes with sp2 and sp3 hybrid, we calculated the atomic
potential energy with respect to bond length for each allotrope.
In the unit cell of each allotrope, only one single bond
changes, while keeping all other bonds unchanged. From the
geometrical symmetry we can learn that there only exist two
kinds of atomic bonds in T-carbon and three kinds of atomic
bonds in BCO-C16, which are labeled in Fig. 5. The results
are shown in Fig. 5. To identify the bond strength, we applied
the second order polynomial (parabolic) fitting to the potential
energy versus the bond length. Then the coefficients of the
second order fitting (spring constant) can indicate the bond
strength. The data are collected in Table III. From Fig. 5 and
Table III we can see that (1) the spring constants of three
kinds of bonds in BOC-C16 are almost the same, (2) the bond
spring constant of graphene is about four times larger than
that of BCO-C16 bonds, (3) for T-carbon the spring constant
of bond-1 is about ∼1.34 times of that for bond-2, and (4)
the bond strength of diamond is about 1.9–2.6 times of the
bond strength in T-carbon. These results are consistent with
the atomic orbital bonding in Table II.

From Fig. 5 and Table III we can also clearly see that
graphene with the regular sp2 hybridization owns a lower
potential energy than BCO-C16 with irregular sp2 hybridiza-
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FIG. 5. (a) Atomic potential energy with respect to the relative
change of the sp2 bond length. The red open squares, blue open
invert triangles, green open triangles, and black open circles represent
three kinds of bonds in BCO-C16 and the unique bond in graphene,
respectively. (b) Atomic potential energy with respect to the relative
change of the sp3 bond length. The red solid squares, blue solid invert
triangles, and green solid triangles represent two kinds of bonds in
T-carbon and the unique bond in diamond, respectively. The solid
lines are the second order polynomial fitting to each energy curve.

tion. Meanwhile, diamond with regular sp3 hybridization has
a lower potential energy than T-carbon with irregular sp3

hybridization. These results imply that graphene is more stable
than BCO-C16 and diamond is more stable than T-carbon,
which follows the common sense. From the information of
bond spring constants we can also learn that although both
BCO-C16 and graphene possess sp2 hybridization, the bond
strength considerably differs from each other. Analogously,
diamond and T-carbon which possess the sp3 hybridization
also exhibit significantly different bond spring constants. In
addition, from the κ results in Fig. 4, we can infer that the bond
spring constant is a partial factor to determine the κ . The larger
bond spring constant, meaning stiffer bonds, corresponds to
a higher ability of thermal transport of phonons (larger κ).
In addition, the effective spring constants are not simply
correlated with the distance between atoms (bond length). As

TABLE III. The coefficients of the second order polynomial
fitting to the atomic potential energy of sp2 and sp3 bonds presented
in Fig. 5.

Hybridization Bond Bond Second order
style identity length (Å) coefficient (eV/Å2)

sp2 BCO-C16 Bond-1 1.3960 3.8021
BCO-C16 Bond-2 1.4590 3.5114
BCO-C16 Bond-3 1.3830 3.7452

Graphene 1.4240 14.5226
sp3 T-carbon Bond-1 1.4640 4.8080

T-carbon Bond-2 1.4640 3.5788
Diamond 1.5440 9.2569

shown in Table III, the bond strength (the effective spring
constant) is also related to the form of the hybridization. This
is why in T-carbon the two kinds of the C-C bonds have the
same bond length, however, their effective spring constants are
different. This can be further confirmed later in Fig. 7(a).

FIG. 6. (a) Electron local function (ELF) of BCO-C16. The
specific 2D-slice projections are chosen to show the different three
bonds in BCO-C16. (b) ELF of graphene. The color bar indicates
the density intensity of the local electrons. The values of 0.5 and
1.0 represent fully delocalized (homogeneous electron gas) and fully
localized electrons, respectively, while the value of 0.0 refers to very
low charge density.
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FIG. 7. (a) ELF of T-carbon. The specific 2D-slice projections
are chosen to show the two different types of bonds in T-carbon.
(b) ELF of diamond.

3. Electronic structure and anharmonicity of bonds

From Eq. (1) we know that another important factor to
determine κ is phonon lifetime (τ ), which corresponds to the
phonon scattering process and is related to the anharmonicity
of the interactions among the atoms. To characterize the
anharmonicity of bonds, first we calculate the electron local
function (ELF) [23] of each allotrope to present the electronic
structure of the sp2 and sp3 bonds, which is based on
the jellium electron gas model and its value is normalized
between 0.0 and 1.0. The value of 0.5 and 1.0 represents fully
delocalized (homogeneous electron gas) and fully localized
electrons, respectively, while the value of 0.0 refers to very
low charge density. The ELF results are shown in Figs. 6
and 7. From Fig. 6 the covalent bonds of the sp2 hybrid
are clearly seen. Although the ELF of these sp2 bonds looks
the same, from the contour lines we can still see that the
bond-2 in BCO-C16 is a little bit different from the other
two bonds (bond-1 and bond-3) in the same structure, and is
also different from the bond in graphene. The ELF of bond-2
is not axisymmetric along the bond direction. The result is
consistent with the TB calculations in Table I. From Fig. 7 it is
clearly observed that the bond-1 in T-carbon is similar with the
bond of diamond. However, the bond-2 shows very different
distribution as compared to the normal sp3 bond in diamond.
This result is also consistent with the data in Table I. The ELF
in Figs. 6 and 7 reflect the different bonding styles determined
by the structures of each allotrope.

To further study the anharmonicity of the sp2 and sp3 bonds
in these carbon allotropes, we use a method named the regular
residual analysis we proposed recently [24]. First, we calculate
the atomic potential energy curve with respect to bond length
of each allotrope and then perform the second polynomial
fittings which are presented in Fig. 5. It is worth pointing out
that for the fitting process we adopt the least-squares algorithm
in common sense, as implemented in the graph software
OriginPro 9.0.0. We take the same quadratic fitting procedure
for all curves. The fittings show robustness and the fixed fitting
procedure will not affect the residual behavior. Here the regular
residual ri is defined as the difference between the observed
values and the predicted values of the second polynomial

FIG. 8. Atomic potential energy with respect to the bond length
of sp2 bonds of (a) BCO-C16 and (c) graphene, respectively. The
solid color lines represent the second polynomial fittings. (b) and (d)
Regular residuals from the second polynomial fittings to (a) and (c),
respectively, and the solid lines are the third polynomial fittings.

fittings. Then, the ri can describe the anharmonicity of
the potential energy curves. To determine the value of the
perturbations, we first run equilibrium ab initio molecular
dynamics (EAIMD) simulations of each allotrope with NVT
(constant particles, volume, and temperature) ensemble at
300 K with 10 ps, during which we record the amplitude
of the vibration of each atom and then take the average value
as the effective amplitude of the atomic vibrations. We then
use this value as the maximum displacement in analyzing the
residuals. The related regular residuals for sp2 and sp3 bonds
are presented in Figs. 8 and 9. From Figs. 8(b) and 8(d) we
can learn that all the residuals for the sp2 bonds show the third
polynomial function behavior very well, as all the residuals are
in the level of “meV”. In Figs. 9(c) and 9(e) we can see that the
residuals of the bond-2 (intratetrahedron) in T-carbon and the
bond in diamond also show well the third polynomial function
behavior, however, the residuals for bond-1 (intertetrahedron)
in T-carbon shows the fourth polynomial function behavior
in Fig. 9(b), which means the fourth order anharmonicity is
strong in T-carbon compared with the third anharmonicity term
and cannot be ignored.

To compare the anharmonicity of the sp2 and sp3 bonds,
here we calculated the relative regular residuals through di-
viding the residuals by the corresponding potential-well depth
values. It is natural to find that a larger potential well can own
the relative larger residuals. The phonon scattering rate from
anharmonicity depends on both harmonic and anharmonic
IFCs [25]. It makes no sense by only characterizing the
amplitude of the anharmonic IFCs to estimate the degree
of anharmonicity in materials [25]. In order to estimate the
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FIG. 9. Atomic potential energy with respect to the bond length
of sp3 bonds of (a) T-carbon and (d) diamond, respectively. The
solid lines represent the second polynomial fittings. (b), (c), and (e)
Regular residuals from the second polynomial fittings in (a) and (d),
respectively. In (b), the solid red line is the fourth polynomial fitting
and in (c) and (e) the blue and green solid lines represent the third
polynomial fittings.

anharmonicity of the atomic bonds more objectively, we
adopt the relative regular residuals here. The results are
presented in Fig. 10. The relative residuals can indicate the
anharmonicity of the related bonds intuitively. From Fig. 10(a)
we can learn that the anharmonicity along the sp2 bonds is
almost the same for graphene and BCO-C16. In particular,
the graphene and bond-2 in BCO-C16 possess relatively the
smallest anharmonicity. In Fig. 10(b) we see that in the
direction along the sp3 bonds, the bond-2 in T-carbon has an
anharmonicity similar to diamond. Although the residual of
bond-1 in T-carbon shows the strong fourth order polynomial
behavior, the relative residual value is smaller than those of
other sp3 bonds, which corresponds to small anharmonicity
in bond-1 along the bond direction. In addition, the relative
residuals of bond-1 and bond-2 of T-carbon are around 3%
and 1/3 of the diamond, respectively.

It is worth pointing out that all the phonon interactions
are carried by the atomic bonds, and all the complex dis-
placement of phonons in space can be projected on the two
directions: along and perpendicular to the atomic bonds. By
performing the similar calculations above, we also calculated
the atomic potential energy curves versus the displacement

FIG. 10. The relative regular residuals of the second polynomial
fittings to the potential energy with respect to the bonds length of sp2

graphene (a) and sp3 diamond (b).

perpendicular to the sp2 and sp3 bonds, which are presented in
Figs. 11(a)–11(d). In BCO-C16 there are two nonequivalent
kinds of atoms, and for the other three allotropes there is
only one unique kind of atom. The direction of displacement
perpendicular to the sp2 and sp3 bonds are illustrated in
Figs. 11(a)–11(d). The relative regular residuals corresponding
to each second polynomial fitting are also calculated and
presented in Figs. 11(e) and 11(f), from which we observe that
in the direction perpendicular to the sp2 bonds, the relative
residuals of atom-1 and atom-2 in BCO-C16 are similar and
much larger than the relative residuals of graphene. For the
displacement perpendicular to the sp3 bonds, the relative
residual in T-carbon is much larger than diamond. The above
results imply that when the displacement is perpendicular to
the sp2 and sp3 bonds, graphene and diamond have smaller an-
harmonicity than BCO-C16 and T-carbon. Thus, we might infer
the anharmonicity of atomic bonds by combining with the in-
formation in Fig. 10. From Figs. 10(a) and 11(e) it is easily seen
that graphene owns smaller anharmonicity of atomic bonds
than BCO-C16. In Fig. 11(f) the relative residuals of diamond
are only 1% of T-carbon for the displacement perpendicular to
the bond direction. Although in Fig. 10(b) the relative residuals
of bond-1 and bond-2 in T-carbon are around 3% and 1/3 of the
diamond, respectively, we can still infer that the diamond pos-
sesses anharmonicity of atomic bonds smaller than T-carbon.

Now, by combining with the information in Table I, we find
that the standard sp2 and sp3 hybridizations possess relatively
smaller anharmonicity in atomic bonds. From electron local
function in space shown in Figs. 6 and 7, we observe that the
standard sp2 and sp3 hybridizations have the most symmetrical
charge distribution in space. Since the charge distribution also
determines the interatomic interactions (e.g., force constants),
we infer that this may be the reason that leads to different
anharmonicities in atomic bonds. From Tables II and III we
notice that the standard sp2 and sp3 hybridizations correspond
to stronger atomic bonding strength than that in novel sp2 and
sp3 hybridizations. All these analyses are consistent with the
results of κ in Fig. 4.
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FIG. 11. Atomic potential energy with respect to the displacement perpendicular to the sp2 and sp3 bonds. The red solid triangle, blue solid
invert triangles, and black solid circles represent the two nonequivalent kinds of atoms in BCO-C16 (a) and a unique kind of atom in graphene
(b). The green open squares and black open circles represent the unique kind of atom in (c) T-carbon and (d) diamond. The corresponding
color solid lines in (a)–(d) are the second order polynomial fitting of each energy curve. All the directions of the displacements are illustrated
in (a)–(d). (e) and (f) The relative regular residuals of the second polynomial fittings for the potential energy with respect to the displacement
perpendicular to the sp2 and sp3 bonds.

4. Phonon anharmonicity

From Eq. (1) we know that κ relies on the phonon heat
capacity Cph, the phonon group velocity vg , and the phonon
scattering lifetime τ . From the phonon BTE calculations
with ShengBTE package [21,26,27] based on ab initio, we

obtained the three key parameters Cph, vg , and τ of each
allotrope. The details of the Cph, vg , and τ can be found in the
Supplemental Material [17]. In addition, through the analysis
of these three key parameters, we can learn that (1) the Cph of
four allotropes are approximately the same; (2) the anisotropy
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FIG. 12. Frequency dependence of three-phonon scattering phase
space at 300 K for all three-phonon processes of carbon allotropes
with sp2 (a) and sp3 (b) hybrid.

of the vg along the three lattice vectors of BCO-C16 leads to
the different κ in three directions; (3) although there exist the
difference among the group velocity of the carbon allotropes,
the amplitudes of vg from these allotropes are in the same level;
and (4) τ is the dominant parameter determining κ in the three
components.

To investigate the phonon scattering mechanism more
deeply, we calculate the allowed phase space for three-phonon
processes P3 [21,28]. At 300 K, where three-phonon processes
are dominant, the total phase space for three-phonon processes
is defined by

P3 = 2

3�

⎛
⎝∑

j

∫
D

(+)
j (q)dq + 1

2

∑
j

∫
D

(−)
j (q)dq

⎞
⎠,

where � is a normalization factor, j index the phonon
branches, q is the wave vector, and

D
(±)
j (q) =

∑
j ′,j ′′

∫
δ[ωj (q) ± ωj ′ (q ′) − ωj ′′ (q ± q ′′ − G)]dq ′,

where D
(+)
j (q) corresponds to absorption processes, i.e.,

ωj (q) + ωj ′(q ′) = ωj ′′ (q + q ′′ − G), whereas D
(−)
j (q) corre-

sponds to emission processes, i.e., ωj (q) = ωj ′(q ′) + ωj ′′ (q −
q ′′ − G). P3 contains a large amount of scattering events that
satisfy the conservation conditions and can be used to assess
quantitatively the number of scattering channels available for
each phonon mode. Less restricted phase space for three-
phonon processes implies a larger number of available scat-
tering channels. Consequently, there is an inverse relationship
between P3 and the intrinsic lattice thermal conductivity of
a material [28,29]. From Figs. 12(a) and 12(b) we can find
that graphene owns smaller P3 phase values than BCO-C16

and the P3 values of diamond is smaller than T-carbon. The
result is consistent with the κ and anharmonicity properties
we discuss above. In addition, we also calculate the Grüneisen
parameter γj (q) with γj (q) = − a0

ωj (q)
∂ωj (q)

∂a
, where a0 is the

FIG. 13. Accumulative lattice thermal conductivity of (a) BCO-
C16 and (b) T-carbon as a function of phonon mean free path at 300 K.
The solid lines are fitting to the results.

equilibrium lattice constant, j is phonon branch index, and q

is wave vector. The Grüneisen parameter of each allotrope and
related analysis can be found in the Supplemental Material
[17].

Since the phonon thermal conductivity can be modulated
through nanostructuring in practical design of nanodevices,
we investigate the size dependence of κ for the novel carbon
allotropes at 300 K by calculating the accumulative thermal
conductivity with respect to the maximum mean-free path
(MFP) allowed. The accumulative κ are plotted in Fig. 13. The
accumulated κ increases with MFP increasing, until it reaches
the limit above a length which represents the longest MFP of
the heat carriers. In order to characterize the critical MFP, we
can fit the accumulative κ with a uniparametric function [21]

κ(l � lmax) = κmax

1 + l0
lmax

,

where κmax is the ultimate accumulative thermal conductivity,
lmax is the maximal MFP concerned, and l0 is the parameter to
be evaluated. The fitted curves at 300 K are plotted in Fig. 13.
The yielded parameters l0 of BCO-C16 along the three lattice
vectors are 417.50, 395.40, and 532.51 nm, respectively, which
again shows the strong anisotropy. There is an interesting
and abnormal phenomenon in Fig. 13(a) that the smaller κ

corresponds to a larger critical MFP l0. Normally the larger κ

corresponds to the longer l0. The l0 of T-carbon is 30.09 nm.
The effective MFP in Fig. 13 is significant to the nanodevice
design when involving these carbon allotropes.

IV. CONCLUSION

In summary, from the perspective of orbital hybridization,
interatomic covalent bonds, and phonons, we systematically
studied the thermal transport properties of two novel carbon
allotropes with sp2 (BCO-C16) and sp3 (T-carbon) hybridiza-
tion, respectively. For comparison, graphene and diamond
with standard sp2 and sp3 hybridization, respectively, are also
studied. We first calculate the hybrid orbitals with the tight-
binding method to pinpoint the difference in the covalent bonds
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between the sp2 BCO-C16 and the standard sp2 graphene, and
between the sp3 T-carbon and diamond. Next, we implement
the phonon Boltzmann transport equation to evaluate the
lattice thermal conductivity of each allotrope. The lattice ther-
mal conductivity exhibits large diversity, despite the similar
bonding nature. To explore the underlying mechanism, we
calculate the bond spring constant to investigate the strength
of the related covalent bonds, with the electron local functions
showing the forms of the covalent bonds. We also implement
our newly developed residual analysis method to qualitatively
characterize the anharmonicity of the covalent bonds. We
found that the allotropes with standard sp2 (graphene) and
sp3 (diamond) atomic orbital hybridization own stronger
atomic bonding strength and smaller anharmonicity than the
allotropes with novel sp2 (BCO-C16) and sp3 (T-carbon)
hybridization. Such a conclusion is further confirmed by the
mode level analysis of heat capacity, group velocity, and
phonon lifetime for each allotrope within the framework of
the phonon Boltzmann transport equation. We expect that
the method of analyzing phonon anharmonicity from orbital

hybridization could pave the way for better understanding the
thermal transport process in crystalline materials.
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