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Quantum interference in a macroscopic van der Waals conductor

C. W. Rischau,1 S. Wiedmann,2 G. Seyfarth,3,4 D. LeBoeuf,4 K. Behnia,1 and B. Fauqué1,5
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Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed
in mesoscopic samples with a length shorter than or comparable to the phase coherence length. Here, we report
the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of
e2/h in macroscopic samples of highly oriented pyrolytic graphite (HOPG). The observed effect emerges when
all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can
be explained by invoking moiré superlattices with a discrete distribution in periodicity. According to our results,
when the magnetic length �B , the Fermi wavelength λF , and the length scale of fluctuations in local chemical
potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length
scales.
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I. INTRODUCTION

The Boltzmann equation provides a successful description
of the flow of electrons in macroscopic conductors in most
cases. In this semiclassical picture, wavelike electrons (with
a Fermi wave vector kF ) between two scattering events
separated by a typical distance �e (dubbed the mean free path),
follow the laws of classical mechanics. In this framework, the
magnetoconductivity σ is equal to [1]

σ = σ0

1 + μ2B2
, (1)

where σ0 = σ (B = 0) and μ, the mobility, can be expressed
in terms of these two length scales and the magnetic length
�B (=√

h̄/eB) as σ0 = e2

h
k2
F �e and μB = �e

kF �2
B

. Absent from
this semiclassical treatment are purely quantum effects, which
give rise to nonmonotonous magnetoconductivity. Landau
quantization leads to an oscillating component periodic in the
inverse of magnetic field [2]. A second category of purely
quantum corrections to Eq. (1) is produced by the coupling of
the vector potential to the phase of the electron wave function
in real space. Two prominent examples are universal con-
ductance fluctuations (UCFs) and the Aharanov-Bohm (AB)
effect, which lead to a nonmonotonous magneto-conductivity
periodic in magnetic field with an amplitude of the order of
the quantum of conductance e2/h [3]. They emerge whenever
the amplitude of the potential vector fluctuates over a length
scale shorter than the electron phase coherence length �φ ,
which is usually in the range of microns. The fate of these
quantum corrections when the distance between electrodes
exceeds �φ by far is an open question. In this paper, we
report on the observation of a purely quantum correction
to magnetoconductivity in centimetric samples of highly
oriented pyrolytic graphite (HOPG) samples. Oscillations
of magnetoconductance, periodic in magnetic field, were

detected below 2 K, when the magnetic field was strong
enough to make lB comparable to the Fermi wavelength λF .
We propose a moiré superlattice with a periodicity D as large
as 50 nm as the origin of the observed quantum interference.
Our result shows that it is indeed possible to detect quantum
interference phenomena in a three-dimensional macroscopic
matrix in the limit where lB < λF < D.

II. MAGNETORESISTANCE OSCILLATIONS PERIODIC
IN FIELD

A magnetic field of only a few teslas is large enough to
confine all the carriers in graphite to their lowest Landau levels,
a situation called the quantum limit. As illustrated in the inset
of Fig. 1, up to 7.5 T, the longitudinal magnetoresistance ρzz

shows oscillations periodic in the inverse of the magnetic field
as a result of successive passage of Landau levels through
the Fermi level. The Fermi surface of graphite is formed
by one electron and one hole pocket, elongated along the
(H -K-H ) and (H ′-K ′-H ′) valleys of the hexagonal Brillouin
zone [4,5], and has been confirmed in numerous studies of
quantum oscillations [6,7]. A sketch of the Fermi surface and
the Brillouin zone is given in the Supplemental Material [8].
Above 7.5 T, all the carriers are confined in the n = 0 spin-split
Landau level. In the simplest case, besides the depopulation
of the (0,+) LLs expected to occur at 37 T [9], no field scale
should be present. Yet, as can be seen in Fig. 1(a), several
additional features can be observed in ρzz.

First, above 30 T, we observe an increase in ρzz, which
shifts to higher magnetic fields with increasing temperature.
This increase is the onset of a field-induced state discovered
in the 1980s (see [10] for a review). Although there is
currently no consensus on the nature of this phase, it has
been attributed to the formation of a density-wave state in
the Landau levels (0,±) mediated by the electron-electron
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FIG. 1. (a) Longitudinal c-axis magnetoresistivity ρzz for a
HOPG sample (sample E) as a function of magnetic field B up to
37 T. The inset shows the low-field quantum oscillations as a function
of B−1. Above 7.5 T, both holes and electrons are confined in the
lowest Landau levels (n = 0). (b) Longitudinal resistance Rzz in the
magnetic field range of 10–30 T. Above 10 T, unexpected additional
resistance oscillations are observed, which become more visible after
a smooth background subtraction as shown in (c). While the low-field
quantum oscillations are only weakly temperature dependent, these
oscillations quickly fade out with temperature.

interactions. Recent experiments extended up to 80 T have
revealed that two successive field-induced instabilities occur
[11] (instead of just one as believed previously [10]). The
second feature visible in Fig. 1, and the main subject of this
paper, is the emergence of additional anomalies between 10
and 30 T. Subtracting a smooth background [labeled R(0)

zz (B)],
we resolve an oscillating contribution δRzz = Rzz − R(0)

zz to
the total magnetoresistance, which becomes more pronounced
with decreasing temperature [see Fig. 1(c)].

The robustness of these oscillations is illustrated in
Fig. 2(a), which plots the oscillating part of the conductance
δGxx,zz = 1/Rxx,zz − 1/R(0)

xx,zz in units of e2/h for four differ-
ent HOPG samples of different grades and different directions
of the electrical current (Rxx and Rzz correspond to the
transverse and longitudinal resistance, respectively). We note
that for graphite, where ρxy � ρxx , Gxx,zz ≈ R−1

xx,zz. While the
oscillation pattern slightly changes from one sample to another,
all samples show oscillations of the magnetoconductance with
an amplitude of the order of e2/h. Figure 2(b) plots the fast
Fourier transform (FFT) spectra of δG for the same samples.
All spectra exhibit characteristic periods (labeled P0,...,4) of
about 1–3 T. From the FFT spectra we find that in the case
of the transverse geometry Rxx all periods contribute with
roughly the same amplitude, while they differ from one sample
to another in the case of the longitudinal (Rzz) geometry.

FIG. 2. (a) Oscillating part δG of the conductance in units of
e2/h as a function of magnetic field measured on different HOPG
samples at T = 0.4 K in both transverse (sample A) and longitudinal
(samples B, D, and E) configurations. The curves are shifted for
clarity. (b) Fast Fourier transform (FFT) spectra of δG for the same
samples. Despite differences in the oscillation patterns, all spectra
display the same characteristic frequencies that differ only in their
FFT amplitude from one sample to another.

While quantum oscillations are periodic in the inverse of
the magnetic field, these oscillations are periodic in magnetic
field, a direct signature of quantum interference in real space.
If we extract the characteristic area of these four periods using
Piπr2

i = h/e as in an AB ring geometry, we find a typical
radius of the order of 25 nm (see Supplemental Material,
Sec. C, for the radius values of each period). We assume
here that h

e
oscillations prevail. These lengths are longer

than the two length scales already introduced above, i.e.,
�B(B = 10 T) = 8 nm and the in-plane Fermi wavelength λF

(≈14 nm).

III. SAMPLE SIZE AND TEMPERATURE DEPENDENCE
OF THE AMPLITUDE OF THE OSCILLATIONS

The oscillations are robust to thermal cycling, insensitive
to the polarity of the magnetic field, and independent of
the position of the voltage or current contact leads (see
Supplemental Material, Sec. C). However, they scale with
the distance between voltage leads, labeled Lv . Figure 3(a)
presents the trace of the oscillations measured on the same
sample for different Lv , showing that the amplitude of
the oscillations increases as Lv increases. The comparison
between the resistance at a given field and the amplitude
of the oscillations reported in Fig. 3(b) shows a linear
correlation, demonstrating that both quantities follow Ohm’s
law. A similar conclusion can be drawn from the study of the
thickness dependence of the oscillation amplitude reported in
the Supplemental Material (Sec. C). Therefore, the amplitude
of these oscillations is not universal.

Further insights into the electronic states responsible for
these oscillations can be obtained by looking at the temperature
dependence of the oscillation peaks in and out of the field-
induced state, as illustrated in Figs. 4(a) and 4(b). For
magnetic fields below 30 T (i.e., out of the field-induced
state), the amplitude of the peaks continuously grows below
2 K and saturates at 350 mK. In mesoscopic physics, the
temperature onset of the oscillations is generally attributed to
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FIG. 3. Size dependence of the magnetoresistance oscillations
δRxx : (a) Comparison of the resistance oscillations δRxx measured
on a sample with a voltage lead contact length ranging from 1.4 to
12.3 mm at T = 150 mK. (b) Oscillation amplitude δRxx as a function
of the resistance Rxx at two different magnetic fields (B = 9.8 and
13.6 T) deduced from (a).

the competition between the thermal and the Thouless energies
(the energy scale on which electrons remain coherent over the
sample). In other words, it corresponds to the cutoff of �φ

by the thermal length LT = √
hDc/kBT , where Dc is the

diffusion constant (see Supplemental Material, Sec. B, for an
estimation of Dc). With a temperature onset of 2 K, we estimate
�φ ≈ 1 μm. The temperature dependence of the oscillations is
different in the field-induced state at B = 34 T: the amplitude
of the oscillations increases only from 4 to 2 K and decreases
below 2 K. We note that the amplitude of the oscillations
also collapses in the field-induced state in the longitudinal
configuration [see sample A in Fig. 2(a)]. At B = 34 T, the
temperature onset of the field-induced state is estimated to lie
slightly above 4 K [see Fig. 1(b)]. It has recently been found
that a gap opens up along the c axis when this electronic state is
induced by magnetic field [11]. Therefore, the reduction in the
amplitude of the oscillations observed below 34 T suggests
that the quantum interference phenomenon observed here is
also destroyed by the opening of the gap in the electronic
spectrum.

FIG. 4. (a) Temperature dependence of the magnetoconductance
oscillations δGzz as a function of magnetic field for temperatures from
0.35 to 4.3 K. (b) Temperature dependence of δGzz at B = 26, 29,
and 34 T. In the field-induced state (B = 34 T) we observe that the
amplitude of the peak does not change considerably, while it strongly
increases with decreasing temperature below the field-induced state
(B = 26 and 29 T).

Our observations put interesting perspectives on recent
unexplained observations in low-density conductors. First, in
the case of graphite, recent oscillatory phenomena, such as
magnetoresistance oscillations with a period of 0.8 T below
9 T and additional peaks in ρxx above 10 T (concomitant with
plateaulike structures in ρxy) [12,13], have been reported. In
the framework of our study, they can now be attributed to the
AB-type oscillations discussed above. As reported in Fig. 3(a),
we also find that the low-field part of δRxx is dominated
by small periods formed by a linear combination of the
main periods P0,..,P4. Based on the temperature dependence
reported in Fig. 4(a), we attribute the high magnetic field peaks
(observed at T = 1.5 K and interpreted as a fingerprint of a
fractional quantum Hall effect in Refs. [12,13]) to the precursor
of the AB-type oscillations seen in this work. Second, AB
resistance magneto-oscillations with similar periods have been
reported in thin natural graphite samples after swift-heavy ion
irradiation [14] and in samples containing a single nanohole
[15]. We show that they are indeed an intrinsic property
of HOPG samples. Third, our results are reminiscent of
the magnetoconductance oscillations observed in nonmetallic
samples of the doped topological insulator Cax Bi2−x Se3

[16] exhibiting the same oscillation amplitude and period.
Interestingly, both systems share a layered structure with
the same bulk carrier density (n = 5 × 1018 cm−3) and the
same in-plane magnetoresistance [ρxx(20 T) ≈ 20 m	 cm].
We thus conclude that such magnetoconductance oscillations
are a universal property of low-carrier-density van der Waals
conductors in the regime of the quantum limit.

IV. DISCUSSION

The main result of this study is the observation of AB oscil-
lations in macroscopic graphite samples in the absence of any
intentional attempt to introduce an array of rings. Two ques-
tions emerge from these unexpected findings. First, what is the
nature of the defect which plays the role of the ring in the clas-
sic AB geometry? Second, what is the origin of the discrete size
distribution of the defects as deduced from our FFT spectrum?

In order to answer the first question, it is helpful to
compare our result with the case of a two-dimensional electron
gas (2DEG). In the quantum Hall effect regime, AB-type
oscillations are suppressed due to the absence of backscattering
[17]. However, resistance fluctuations or oscillations have been
observed in the quantum Hall regime for nanowires [18–20]
or in antidot arrays [21] over a macroscopic length scale [22].
According to the Jain-Kivelson theory [23], these fluctuations
or oscillations arise because of a tunneling process between
opposite edge states mediated by bound states encircling a
defect potential. These bound states form as a result of the
Bohr-Sommerfeld quantization if an integral number of flux
quanta h

e
penetrate the defect potential area. In the case of

layered low-density conductors such as graphite or Bi2 Se3,
we can think of two types of long-range potential fluctuations
where the flux can also be quantized.

In the presence of a local defect such as a vacancy or
antisite defect electrons tend to screen the electrical field on
the Thomas-Fermi length scale set by the Fermi wavelength
λF . In the case of low-carrier systems where λF ≈ 10 nm,
the screening occurs on a length scale much larger than
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the actual size of the defects. In the case of doped Bi2 Se3,
charged inhomogeneities (or puddles) with a typical length
scale of 20 nm have been observed in scanning tunneling
microscopy (STM) [24]. Also in the case of graphene, large
potential fluctuations have been seen in STM measurements
but were attributed to the effect of the substrate [25]. The
puddle scenario is appealing but can hardly answer the second
question: in the simplest picture, one expects a continuous
distribution of length scales of the puddles, and thus, any
oscillating pattern would smear out.

Alternatively, we can think of another kind of lattice
defect which forms at the boundary between two crystalline
regions with different orientations. At this interface, where two
hexagonal lattices overlap and are misoriented by an angle
θ , a superlattice or so-called moiré pattern is formed. The
periodicity D of the hexagonal superlattice is given by

D = d

2 sin(θ/2)
, (2)

where d = √
3al and al = 1.42 Å is the distance between

carbon atoms. These superlattices have been studied for more
than three decades in HOPG graphite [26] and have also
been recently observed in Bi2 Se3 [27]. Their contribution in
the electronic transport properties have only been recently
considered [28]. The typical periodicity observed in STM
measurements is of the order of a few nanometers, but
periodicities up to 44 nm, close to the diameter length scale
deduced from our measurement, have also been reported for
HOPG samples [29]. In addition the coherence length deduced
from the temperature dependence of the oscillations is in good
agreement with this scenario: according to STM measurements
[26] the moiré pattern can span several microns.

For a periodicity of D = 50 nm, the angle of misorientation
is as low as θ = 0.3◦. According to recent experimental and
theoretical works, when the misalignment angle is as small,
the optimal structures differ significantly from those expected
for large misalignment angles [30,31] where the strain induced
by the moiré lattice is equally distributed in the layer. For low
angles (θ < 1◦), when the two lattices are commensurate, the
strain is concentrated on hot spots separated by flat regions
with no strain [31]. In order to answer the second question,
i.e., the origin of the discrete size distribution of the defects, we
propose that Eq. (2) breaks down in the commensurate phase.
In this regime, when θ increases, the strain is accumulated
on hot spots, and the periodicity stays constant up to a
threshold where it becomes more favorable to the system to
increase the density of hot spots. As a result the periodicity
abruptly decreases and stays constant up to the next threshold.
The periodicity follows a stairlike distribution as a function
of θ . For larger angles (in the incommensurate phase), the
continuum of periodicity cancels out the oscillation pattern,
which explains why only small periodicities are observed.

Finally, we comment on the amplitude of the oscillations.
With a coherence length of about 1 μm and a periodicity of
about 50 nm, the number of loops in the phase-coherent region
can be as high as 20. For such a large number of loops, the
amplitude of the AB oscillations for a 2D metallic network (in
the limit where �B � λF ) is reduced by decoherence processes
and is of the order of 10−2 e2/h [32,33], which is two orders of
magnitude smaller than what we observe. However, our result
differs from the case of the 2D metallic network in at least two
points. First, the oscillations are observed in the quantum limit
regime where �B < λF . Interestingly, in the case of a 2DEG it
has been demonstrated that in this limit, the phase coherence
plays no significant role in the pattern of the resistance
fluctuations [34]. Second, we show that the electronic degree
of freedom along the direction of the magnetic field (i.e.,
the third dimension) is of crucial importance. Alternatively,
the system can be described as a network of independent
resistances connected in series and in parallel. If each subunit
has the same oscillating pattern of amplitude δg0 ≈ e2/h, the
total amplitude of the oscillations �G will be equal to �G =
M

1
2 N− 3

2 δg0, where M and N are the numbers of subsystems
in series and parallel, respectively [35]. In the case where
M ≈ N3, we can resolve magnetoconductance oscillations of
an amplitude e2/h over a macroscopic distance. Further work
using microscopic probes should help clarify the density of the
subunits and quantify the value of M and N in HOPG samples.

In conclusion, we find experimental evidence for quantum
interference phenomenon detected in macroscopic samples
of HOPG graphite when all the carriers are confined in the
lowest Landau levels. We argue that they can be explained
by invoking the presence of moiré superlattices with large
periodicity (D ≈ 50 nm) characterized by a discrete size
distribution. Interestingly, these oscillations, which have also
been observed in another van der Waals system (Bi2 Se3),
appeared in the limit where lB < λF < D, the same limit
where Hofstadter’s butterfly spectrum has recently been
reported in bilayer graphene [36,37]. These results offer a
new avenue to explore quantum interference processes in the
quantum limit of three-dimensional conductors which, to our
knowledge, have never been explored theoretically.
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