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Enhancing chaotic behavior at room temperature in GaAs/(Al,Ga)As superlattices
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Previous theoretical and experimental work has put forward 50-period semiconductor superlattices as fast,
true random number generators at room temperature. Their randomness stems from feedback between nonlinear
electronic dynamics and stochastic processes that are intrinsic to quantum transitions. This paper theoretically
demonstrates that shorter superlattices with higher potential barriers contain fully chaotic dynamics over several
intervals of the applied bias voltage compared to the 50-period device which presented a much weaker chaotic
behavior. The chaos arises from deterministic dynamics, hence it persists even in the absence of additional
stochastic processes. Moreover, the frequency of the chaotic current oscillations is higher for shorter superlattices.
These features should allow for faster and more robust generation of true random numbers.
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I. INTRODUCTION

Fast random number generators (RNGs) are relied upon
for many applications including, inter alia, data encryption
systems, stochastic modeling, and secure communication
[1–3]. In many cases, the RNG is substituted by a numerical
algorithm that produces a seemingly unpredictable sequence
of numbers when a short random “seed” is entered as input
[4]. While this approach is convenient and inexpensive, the
resulting number sequences are only pseudorandom, i.e., the
algorithm will produce identical number sequences given
identical seeds. To eliminate this vulnerability, it is necessary
to find fast and reliable physical sources of entropy that
produce true random number sequences. Recently, chaotic
semiconductor lasers [5–9] and superlattices [10] have been
used for fast generation of truly random numbers at a rate
of tens or hundreds of gigabits per second. In both cases,
quantum fluctuations are coupled with chaotic dynamics to
produce a macroscopic fluctuating signal that is detectable
using conventional electronics. However, while semiconductor
lasers require a mixture of optical and electronic components,
semiconductor superlattices (SSLs) are entirely electronic
submicron devices that are more readily integrated into
complex circuits (see Fig. 1). Hence SSLs could be vastly
useful, as the security of digital computers and networks relies
on fast generation of truly random numbers.

Two different time scales are involved in the dynamics
of SSLs. The intersite tunneling and inter-sub-band relaxation
processes occur on much shorter time scales than the dielectric
relaxation processes [11,12]. Therefore, the long time-scale
dynamics of semiconductor lasers [9] and superlattices [13,14]
are typically modeled using semiclassical equations, while the
short time-scale processes are treated stochastically. Chaotic
dynamics via period-doubling cascades have been theoreti-
cally predicted in optically driven asymmetric quantum-well
systems [15,16] and in 100-period SSLs [17]. Until recently,
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experimental observation of chaos in SSLs required ultralow
temperatures [13]. Huang et al. argued [18] that phonon-
assisted transport though the X valley of AlAs allowed a
thermal distribution of carriers to diffuse through the SSL,
eliminating self-sustained oscillations and spontaneous chaos
at higher temperatures. Therefore an aluminum concentration
of 45% was chosen for the GaAs/AlGaAs SSL in order to
maximize the lowest band-gap energy (making the X and �

band gaps equal to one another). They subsequently observed
current self-oscillations and spontaneous chaos in dc-biased
50-period SSLs at room temperature for the first time [18,19].
Weak noise-enhanced chaos has been found in simulations
for 50-period SSLs [14], which opened the way to new
perspectives that could optimize the chaotic behavior in SSLs.

In this paper, we investigate the behavior of the sequential
resonant tunneling (SRT) model for shorter SSLs at room
temperature. We consider two different barrier heights cor-
responding to an aluminum content of 45% (as in recent
experiments [18,19]) and a different concentration of 70%
to study the possible effect of increasing the barrier height
on the dynamical behavior. We observe a period-doubling
cascade to chaos on wide voltage intervals for a ten-period
SSL. Moreover, the chaotic self-oscillations occur at much
higher frequencies for these shorter superlattices, increasing
the rate of random number generation. The outline of the
paper is as follows. In Sec. II, we describe the SRT model
of nonlinear electronic transport in SSLs. The results of our
numerical simulations are reported in Sec. III, and a discussion
of our results is contained in Sec. IV.

II. MODEL

Many phenomena are captured by means of a quasi-one-
dimensional resonant sequential tunneling model of nonlinear
charge transport in SSLs [13,20,21]. Consider a weakly
coupled superlattice having N identical periods of length l

and total length L = Nl subject to a dc bias voltage V . The
evolution of Fi , the average electric field at the SSL period
i, and the total current density J (t) is described by Ampere’s
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FIG. 1. Simplified image of a semiconductor superlattice. An
external voltage is applied between the contacts at the top and bottom
of the device, which consists of N periods of GaAs/AlxGa1−xAs.
The 7-nm GaAs wells are divided into three zones to prevent doping
diffusion.

law,

J (t) = ε
dFi

dt
+ Ji→i+1, (1)

and the voltage bias condition:

N∑
i=1

Fi = V

l
. (2)

Fluctuations of Fi away from its average value Favg = eV/L

arise from the intersite tunneling current Ji→i+1, which appears
in Eq. (1). A microscopic derivation of Ji→i+1 produces the
result [12,20]

Ji→i+1 = eni

l
v(f )(Fi) − J−

i→i+1(Fi,ni+1,T ), (3)

in which ni is the electron sheet density at site i, −e < 0 is
the electron charge, and T is the lattice temperature. Here the
forward velocity, v(f )(Fi), is peaked at resonant values of Fi

for which one or more energy levels at site i are aligned with
the levels at site i + 1, and

J−
i→i+1(Fi,ni+1,T ) = em∗kBT

πh̄2l
v(f )(Fi)

× ln[1 + e
− eFi l

kB T (e
πh̄2ni+1
m∗kB T − 1)], (4)

where the reference value of the effective electron mass
in AlxGa1−xAs is m∗ = (0.063 + 0.083x)me, and kB is the
Boltzmann constant. The ni are determined self-consistently
from the discrete Poisson equation:

ni = ND + ε

e
(Fi − Fi−1), (5)

where ND is the doping sheet density and ε is the average
permittivity. The field variables Fi are constrained by boundary
conditions at i = 0 and i = N that represent Ohmic contacts
with the electrical leads:

J0→1 = σ0F0, JN→N+1 = σ0
nN

ND

FN, (6)

TABLE I. Top: The design parameters of the superlattice.
Bottom: Values of the potential barrier and energy levels for
GaAs/Al0.7Ga0.3As and GaAs/Al0.45Ga0.55As superlattices, first and
second row, respectively.

T (K) ND (cm−2) lb (nm) lw (nm) s (μm)

295 6 × 1010 4 7 60

Vbarr (meV) E1 (meV) E2 (meV) E3 (meV)
600 53 207 440
388 45 173 346

where σ0 is the contact conductivity. Shot and thermal noise
can be added as indicated in [14,22].

Table I gives the numerical values of the parameters used in
the simulations. The GaAs/Al0.45Ga0.55As configuration corre-
sponds with the configuration used in experiments [10,18,23].
The rest of the parameters are as follows: lb and lw, with
l = lb + lw, are the barrier and well lengths, respectively,
and A = s2 is the transversal area of the superlattice. The
contact conductivity is a linear approximation of the behavior
of J0→1, which depends on the structure of the emitter; the
value has been taken to reproduce the experimental results with
N = 50: σ0 = 0.783 A/V m for Vbarr = 388 meV (x = 0.45)
and σ0 = 0.06 A/V m for Vbarr = 600 meV (x = 0.7), where
Vbarr is the height of the barrier [14,18].

III. RESULTS

We analyze the SRT model of ten-period
GaAs/Al0.7Ga0.3As and GaAs/Al0.45Ga0.55As SSLs with
the material parameters indicated in Table I. Equations (1)–(6)
are evolved in time for tf = 200 ns using the forward Euler
method. We remove the transient behavior due to the initial
conditions by discarding first ti = 100 ns of evolution at each
bias voltage. Bifurcations are detected via the Poincaré map,
which is depicted in Figs. 3 and 4. First, the time evolution is
projected onto a two-dimensional slice through phase space;
in this case, the F4-F6 plane was used. When F4(t) passes
through its center value and, in order to sample the trajectory
only once per cycle, Ḟ4(t∗) < 0, the time t∗ and the values of
F6(t∗) and Ḟ6(t∗) are stored. These sets of values form PF6

and PḞ6.
The Poincaré map transforms the continuous time evolu-

tion in the 2N + 1-dimensional phase space (electric fields,
electron densities, and total current density) into a discrete
map from a one-dimensional interval into itself [24]. Both
a stationary state and a periodic orbit will appear as a fixed
point of the Poincaré map. A period-doubling bifurcation is
identified where the number of points in the Poincaré map
increases by a factor of 2. Chaotic regions are identified where
a proliferation of period-doubling bifurcations yields fractal
structure in the bifurcation diagram.

We support our analysis of the Poincaré map by comparing
our conclusions against the power spectrum:

P [J ](f ) =
∣∣∣∣
∫ tf

ti

dt e−i2πf tJ (t)

∣∣∣∣
2

, (7)
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FIG. 2. Power spectrum and bifurcation diagram for a ten-period
GaAs/Al0.45Ga0.55As SSL, in a voltage region where chaotic behavior
is present. Top row: The power spectrum of J (t) plotted against
the bias voltage. Bottom row: The bifurcation diagram, plotting the
Poincaré map against the bias voltage.

where f is the frequency. As in the Poincaré map, different
spectra are associated with different dynamical structures: (a)
periodic orbits correspond to a series of peaks with widths
of the same order as the frequency bin size, falling at integer
multiples of the fundamental frequency; (b) period-doubling

bifurcations are recognized when the number of peaks in the
spectrum changes by a factor of 2, and a new peak appears in
the power spectrum at half the fundamental frequency; and (c)
strange attractors have broadband spectra. These spectra may
contain both sharp and broad peaks.

Figure 2 shows a voltage region where deterministic chaotic
behavior is present in the simulations for the ten-period
GaAs/Al0.45Ga0.55As SSL (see Table I). In contrast with the
N = 50 case for the same aluminum content, there are ob-
servable windows of strong chaotic behavior, whereas chaotic
dynamics for N = 50 appeared within very narrow voltage
windows and were so weak that they became observable only
by the addition of stochastic terms to the evolution equations
that enhanced chaos [14]. Moreover, the simulations show that
the lowest harmonic can reach frequencies up to 25 GHz, at
least one order of magnitude higher than those observed in the
50-period SSLs.

The bifurcation diagram for the ten-period
GaAs/Al0.7Ga0.3As SSL, see Table I, is presented in
Fig. 3, and several phase portraits are presented in Fig. 4.
Voltage windows where chaotic behavior is present are one
order of magnitude wider than in the previous case, Fig. 2.
Combining the bifurcation diagram, power spectra, and phase
portraits of Figs. 3 and 4, we characterize the dynamical
instabilities of the SRT model for N = 10. At low voltages,
J (t) approaches a steady state. We observe the following
bifurcations:

(a) Supercritical Hopf bifurcation. In the leftmost column of
Fig. 3, we observe a transition from stationary state to periodic
orbit. Subsequently, we observe a circle in the phase portrait
at the top row of Fig. 4, and the power spectrum contains
peaks falling at integer multiples of a fundamental oscillation
frequency.

(b) Period-doubling bifurcation. In the second column of
Fig. 3 and the second row of Fig. 4, we observe that the number
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FIG. 3. Power spectrum vs voltage and bifurcation diagrams for a ten-period GaAs/Al0.7Ga0.3As SSL and different voltage regions. Top
row: Power spectrum of J (t) vs voltage. Bottom row: Bifurcation diagram of the Poincaré map vs voltage. The Hopf bifurcation from the
steady state is shown in the first column. A period-doubling “bubble” is shown in the second column. A period-doubling cascade is shown in
the third column.
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FIG. 4. Representative phase portraits for the ten-period GaAs/Al0.7Ga0.3As SSL. The first column shows the average current J plotted
against time t . The second column shows the phase portrait F6(t) plotted against F4(t). The third column shows the Poincaré map PḞ6(t∗)
plotted against PF6(t∗). The last column shows the power spectrum of J (t). A periodic oscillation is shown in the first row. The period-doubling
cascade to a chaotic attractor is shown in the bottom four rows.

of points in the Poincaré map has doubled, and a new peak in
the power spectrum appears at half of the former fundamental
frequency.

(c) Period-doubling cascade. The period doubling of the pe-
riodic orbit continues into a period-doubling cascade, resulting
in a strange attractor. In particular, we have determined the first
Feigenbaum constant with less than 1% error. The rightmost
column of Fig. 3 and the bottom three rows of Fig. 4 illustrate
the period-doubling cascade. Based upon the emergence of a
broad peak between the two strongest harmonics, we conclude
that the invariant manifold is a strange attractor.

IV. DISCUSSION

This paper predicts that ten-period SSLs, in contrast with
the 50-period SSLs typically used in experiments, exhibit
a more robust intrinsic deterministic chaotic behavior with
faster self-sustained current oscillations. In the same direction,
to increase the voltage barrier height (through increasing
the aluminum content) also enhances the chaotic behavior.

The deterministic chaos found in simulations of the SRT
model is characterized as a Feigenbaum period-doubling
cascade to chaos. These results open the possibility to
create faster random number generators using these shorter
superlattices.

We associate the bifurcations described in Sec. III with
several potential applications. First, the Hopf bifurcation leads
to nonlinear oscillations involving superharmonic frequencies
reaching several tens of gigahertz. Hence these SSLs could
be used as solid-state sources of electromagnetic radiation.
Second, the half frequency found at the period-doubling
“bubble”, see the middle column of Fig. 3, could be used
to compress information into a desirable frequency range or to
squeeze out of it undesirable noise [25].

The SRT model has proven to robustly describe the essential
behavior of SSLs over a wide parameter range, hence we
put forward that the dynamical instabilities described in this
paper are the main mechanism triggering the experimentally
observed chaos in SSLs. In addition, it is important to note that
intrinsic quantum entropy sources are not taken into account
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in this paper. In the real system, these quantum fluctuations
are amplified by the deterministic dynamics, enabling the
construction of true RNG [6,22].
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