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Exact electromagnetic response of Landau level electrons
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We present a simple method that allows us to calculate the electromagnetic response of noninteracting electrons
in a strong magnetic field to arbitrary order in the gradients of external electric and magnetic fields. We illustrate
the method on both nonrelativistic and massless Dirac electrons filling N Landau levels. First, we derive an exact
relation between the electromagnetic response of the nonrelativistic and Dirac electrons in the lowest Landau
level. Next, we obtain a closed form expression for the polarization operator in the large-N (or weak magnetic
field) limit. We explicitly show that in the large-N limit the random phase approximation (RPA) computation of
the polarization tensor agrees—in leading and subleading order in N—with a Fermi liquid computation to all
orders in the gradient expansion and for arbitrary value of the g factor. Finally, we show that in the large-N limit
the nonrelativistic polarization tensor agrees with Dirac’s in the leading and subleading orders in N , provided
that the Berry phase of the Dirac cone is taken into account via replacement N −→ N + 1/2.
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I. INTRODUCTION

A. Electrons in magnetic field

Two-dimensional noninteracting electrons subject to the
strong external magnetic field organize into N highly de-
generate Landau levels. Such many-body states are gapped
when the chemical potential lies anywhere between the Landau
levels and exhibit the same qualitative behavior when electrons
have either Dirac or nonrelativistic nature. While qualitative
features such as quantized Hall conductance and absence of
the ground-state degeneracy on a torus are identical, there is a
quantitative difference in the local linear response functions.
Detailed investigation of these fine distinctions as well as
certain universalities in the behavior of both lowest Landau
level and large-N limit of the linear response functions is the
objective of the present paper. Additionally, our results should
be useful in the analysis of interacting FQH states using the
composite fermion [1] and boson [2] approaches.

We will study the electromagnetic response of Landau level
electrons in great detail. To start, we present a straightforward
method that allows us to calculate linear response functions
in the form of the generating functional for both relativistic
and nonrelativistic electrons filling an arbitrary number of
Landau levels. In the nonrelativistic case, some of the results
are available [1,3,4], however, we present a simpler method
of derivation as well as provide a number of new results. This
method was first used by one of us in Ref. [5], but only a
few results were presented. We will explain in detail how to
calculate the linear response to arbitrary order in the expansion
in momentum and frequency and give a compact expression
for the polarization tensor in both nonrelativistic and Dirac
cases. In addition to the general expressions, we present
the leading-order corrections in momentum and frequency
expansion for all linear response functions in explicit form.

With the exact expressions at hand we will investigate the
linear response of the lowest Landau level (LLL) in the limit
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when the mixing between the Landau levels is neglected. It
turns out that the linear response of the Dirac electrons can
be extracted from the linear response of the nonrelativistic
electrons via a simple relation (109), which is valid to all
orders in the gradient expansion. We check this relation via
an explicit computation as well as using the well-known
relation between momentum-dependent Hall conductivity and
the static structure factor.

Next, we will meticulously investigate the validity of the
semiclassical approximation in the large-N limit. Our results
on the large-N limit are summarized in Fig. 1. In this limit,
the electrons form a Fermi sphere and experience a weak
magnetic field. The linear response can be calculated either
using Landau’s Fermi liquid (FL) theory or by directly taking
the large-N limit of the exact expressions. We will explain
how to include a finite g factor into the Fermi liquid theory
and evaluate the polarization tensor exactly. We will find that
in the nonrelativistic case the Fermi liquid and direct large-N
limit agree in the leading and subleading order in N to all
orders in the gradient expansion and for arbitrary value of the
g factor (provided the latter was correctly accounted for in the
FL theory, which we explain how to do). The large-N limit of
polarization operator of Dirac electrons agrees in leading and
subleading order in N with the FL theory and nonrelativistic
results after the Berry phase of the Dirac cone is taken into
account for the value of the g factor g = 0 (this may come
as a surprise since Dirac electrons in vacuum correspond to
g = 2). The FL computation is done using the novel approach
of Ref. [6] where the Boltzmann equation is phrased in terms
of the (bosonic) fluctuations of the shape of the Fermi surface.
This formulation allows to effortlessly obtain the large-N
polarization tensor to all orders in momentum and frequency
in a closed form. We also explain how to include the effects of
the short-range interactions.

B. Generalities

Now we will introduce the main objects of interest, mainly
to fix the notations. Given an action S[ψ,ψ†; Aμ] describ-
ing the (relativistic or nonrelativistic, bosonic or fermionic)
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FIG. 1. In the large-N limit, the electromagnetic linear response
of nonrelativistic electrons agrees with the response of the Fermi
liquid to all orders in gradient expansion and arbitrary g factor. The
electromagnetic response of Dirac electrons (in the large-N limit) can
be extracted from either the nonrelativistic or the Fermi liquid result
upon setting g = 0 and replacing N −→ N + 1/2. The replacement
is needed to account for the contribution of the π Berry phase of the
Dirac cone.

charged matter fields ψ , coupled to an external electromagnetic
field Aμ = Āμ + δAμ, we define the generating functional as
follows:

W [δAμ] = −i ln
∫

DψDψ†eiS[ψ,ψ†;Āμ+δAμ], (1)

where Āμ is the background value of the vector potential
chosen to fix the chemical potential Ā0 = μ and background
magnetic field εij ∂iĀj = B̄ = �−2, where we have chosen
the natural units h̄ = c = e = 1. These units will be used
throughout the paper.

The generating functional is a compact way to encode the
multipoint correlation functions via〈

n∏
i=1

Jμ(xi)

〉
=

n∏
i=1

δ

δδAμ(xi)
W [δAμ]. (2)

The correlation functions obtained this way are always time-
ordered.

In the present paper, we will be interested in the linear
response functions, i.e., the two-point functions with pertur-
bations of the external fields turned off. For example, the
polarization tensor encodes the linear response of electric
current to the electric field and is given by

�μν(x1,x2) =
(

δ

δδAμ(x1)

δ

δδAν(x2)
W [δAμ]

)∣∣∣∣
δAμ=0

. (3)

Assuming that S[ψ,ψ†; Āμ] describes a physical system with
a spectral gap and the perturbations δAμ are weak and slowly
varying on the spatial scale of magnetic length � and the
time scale set by the gap, we can expand the generating
functional W [δAμ] in powers of external fields and in the
gradients of external fields δAμ. If we also assume translational
invariance, then the gradient expansion can be converted into
the expansion in momentum k and frequency 
. To study
the linear response functions, we need to keep only the terms
quadratic in δAμ, but to arbitrary order in momentum and

frequency. The most general expansion of this form is

W [δAμ] =
∫

d
d2k
(2π )3

[
ρ̄δA0

+ 1

2
δAμ(k,
)�μν(k,
)δAν(−k,−
)

]
, (4)

where the matrix �μν(k,
) is known as the polarization
operator or polarization tensor. Each entry of this 3 × 3 matrix
is an infinite double expansion in momentum and frequency.
We have also implicitly assumed in Eq. (4) that the expectation
value of the electric current vanishes in the unperturbed ground
state. Gauge invariance implies a Ward identity


�0μ(k,
) + ki�
iμ(k,
) = 0. (5)

It is easy to see that conductivity tensor is expressed in terms
of the polarization tensor as

σ ij (k,
) = 1

i

�ij (k,
). (6)

The plan of the paper is as follows. We will calculate the
polarization tensor �μν(k,
) for nonrelativistic electrons
filling N Landau levels in Sec. II. The main result of Sec. II
is the exact expression for the polarization tensor (64). In
Sec. III, we will calculate the polarization tensor for massless
Dirac electrons filling N Landau levels and compare it with
the nonrelativistic one in the large-N limit. In Sec. IV,
we investigate the electromagnetic response of the lowest
Landau level and find an exact relation between the linear
response functions for nonrelativistic and Dirac electrons.
In Sec. V, we will obtain a closed form expression for the
large-N polarization tensor for nonrelativistic electrons using
the exact result (64) and using the FL theory. We find that both
approaches agree exactly and differ from the Dirac electrons
by the contribution of the Berry phase of the Dirac cone. For
reader’s convenience in every section, we present an explicit
form of the polarization tensor in the leading and subleading
orders in momentum and frequency that can be understood and
used without reading the rest of the paper. Various appendices
are devoted to (often tedious) technical details.

II. NONRELATIVISTIC ELECTRONS

In this section, we will explain the method for calculation
of the polarization operator for the nonrelativistic electrons
filling N Landau levels.

A. Model

Our starting point is the system of two-dimensional nonin-
teracting nonrelativistic fermions in external electromagnetic
field described by a U(1) vector potential Aμ. The action has
a form

Snr =
∫

d2xdt

[
iψ†D0ψ − 1

2m
|Diψ |2

]
. (7)

We assume that the fermions are spin polarized and, conse-
quently, ψ(x,t) is a complex Grassmann scalar. The covariant
derivative

Dμ = ∂μ − i(Āμ + δAμ) (8)
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includes both a background vector potential and a weak
perturbation. We will omit the chemical potential from the
equations, but it will be implicitly assumed that the first N

Landau levels are completely filled in the ground state and the
chemical potential lies anywhere in the gap.

B. Computation of the generating functional

We will compute the generating functional as a gradient
expansion in the external fields. Throughout the computation
we will only keep the terms quadratic in the external fields,
but to arbitrary order in the gradients. This expansion is well-
defined because there is a cyclotron gap in the energy spectrum.
The gradient expansion can be viewed as the expansion in the
inverse gap and magnetic length �, which is small compared
to any other spatial scale in the problem.

We start with rewriting the action as a differential operator
sandwiched between the fermionic fields

Snr =
∫

d2xdt ψ†G−1ψ, (9)

where G−1 is the differential operator obtained by integrating
by parts the derivatives acting on ψ†. Since we assume that the
perturbations of external fields are small we can write

G−1 = G−1
0 + V, (10)

where G−1
0 is the “bare” Green’s function given by

G−1
0 = i∂0 − 1

2m
|D̄i |2, (11)

where D̄μ = ∂μ − iĀμ and V encodes the terms at least linear
in the perturbations of the external fields,

V = δA0 + 1

2m
{δAi,∂i} − 1

2m
δAiδAi. (12)

Since the functional integral is quadratic in the external fields,
it can be formally written as a determinant of the perturbed
(differential) operator G−1. The generating functional of
(connected) correlation functions is

Wnr[δAμ]= 1

i
ln
∫

Dψ̄Dψ eiSnr[ψ,δAμ] = 1

i
ln det[G−1]

=−1

i
ln G0+ 1

i
Tr (G0V )− 1

2

1

i
Tr (G0V G0V )+· · · ,

(13)

where in the last line we kept only the terms that contribute to
the linear response. We can also disregard the (diverging) first
term in the last line since it will not contribute to the linear
response because it does not depend on the perturbations of
the external fields by construction. To summarize, the object
we are interested in is given by

Wnr = W (1)
nr + W (2)

nr + W (2)
c,nr + · · · , (14)

where W (1)
nr and W (2)

nr are the terms linear and quadratic in
external fields correspondingly, while W (2)

c,nr contains the so-
called contact terms (see Fig. 2).

FIG. 2. The generating functional to quadratic order in external
fields is given by the sum of three diagrams. The first diagram, W (1),
is linear in the perturbations of electromagnetic field and describes
the constant background density of electrons. The second diagram
W (2) contains the main contribution to the generating functional,
including the Chern-Simons term. Finally, the third diagram W (2)

c

contains the contact terms. Note that the last diagram vanishes for the
Dirac electrons.

C. Fock Representation

The Hilbert space of a particle in a magnetic field can be
mapped onto the Hilbert space of two decoupled harmonic
oscillators. To make this manifest, we will use the Fock
representation for the basis states instead of the coordinate
representation. The advantage of this approach is that we do not
need to fix the gauge, thus our results will be manifestly gauge
invariant. We will work in complex coordinates z = x + iy.

We define the creation and annihilation operators

a = i√
2
�D̄z̄ = i√

2
�(D̄1 + iD̄2), (15)

a† = i√
2
�D̄z = i√

2
�(D̄1 − iD̄2). (16)

The inverse relations are

D̄z = −i
1√
2�

a†, D̄z̄ = −i
1√
2�

a. (17)

It can be easily verified that

[a,a†] = 1. (18)

In terms of these operators, the inverse Green’s function takes
the form

G−1
0 = ih̄∂0 − ωc

(
a†a + 1

2

) = i∂0 − H0, (19)

where H0 = ωc(a†a + 1
2 ) is the Hamiltonian for the particle in

magnetic field.
We also define one more oscillator via

b† = −a + i√
2�

z, b = −a† − i√
2�

z̄. (20)

It can be verified that [b,b†] = 1 and all a’s commute with all
b’s.

Operators a†,b† generate the entire Hilbert space of the
single-particle problem. From this point of view, the coordi-
nates themselves must be understood as operators acting on
the Hilbert space according to

z = −
√

2�i(b† + a), z̄ =
√

2�i(a† + b). (21)

The basis in the Hilbert space is given by

|nm〉 = |n〉 ⊗ |m〉 = (a†)n√
n!

(b†)m√
m!

|0〉 ⊗ |0〉. (22)

The a operators induce the transitions between the Landau
levels, whereas b operators generate the states of different
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angular momentum within each Landau level since

[H0,b] = [H0,b
†] = 0. (23)

The bare Green’s function is then given by

G0 =
∫

d


2π

∑
nm

e−i
t |nm〉〈nm|

 − En

, (24)

where

En = (
n + 1

2

)
ωc (25)

is the spectrum of the unperturbed Hamiltonian H0.
It is easy to check that

G−1
0 G0 = [i∂0 − H0]G0 = δ(t) ·

∑
m,n

|nm〉〈nm| = 1. (26)

The trace of a local operator O over the Hilbert space and time
is defined as follows:

Tr (O) ≡
∑
n,l,t

〈nlt |O|nlt〉 =
∫

dt
∑
n,l

〈nl|O(t)|nl〉. (27)

D. Setting up the “Feynman rules”

In this section, we will derive the differential operators that
will appear in the vertices of the diagrams in Fig. 2. First,
we expand the classical action to the second order in external
electromagnetic field

Snr = S(0)
nr + S(1)

nr + S(2)
nr . (28)

The unperturbed action is given by

S(0)
nr =

∫
d2xdt ψ†

[
i∂0 − ωc

(
a†a + 1

2

)]
ψ

=
∫

d2xdt �†G−1
0 �. (29)

The part of the action linear in external fields is given by

S(1)
nr =

∫
d2xdt ψ†

[
δA0 − 1

2
√

2m�
({a†,δAz̄} + {a,δAz})

]
ψ

=
∫

d2xdt ψ†V (1)ψ, (30)

where {a,δAz} is the anticommutator (recall that a is a
differential operator that we understand as acting to the right).

The part of the action quadratic in external fields is given
by

S(2)
nr = −

∫
d2xdt ψ†

[
1

2m
|δA|2

]
ψ =

∫
d2xdt ψ†V (2)ψ.

(31)
The full “vertex operator” consists of the terms linear and
quadratic in external fields

V (x,t) = V (1)(x,t) + V (2)(x,t). (32)

Using (21), we interpret V as an operator on the Fock space.
We rewrite all the vertices in Fourier space and introduce a

vector V (1)
μ (k,
) according to

V (1) = V (1)
μ (k,
)δAμ(k,
), (33)

which is always possible because V (1) is linear in the external
fields by definition. Consider the terms in V linear in, say, δAz̄:

V (x,t)|δAz̄
= 1

2
√

2m�
{a†,δAz̄}. (34)

In momentum space, this takes the form

V (k,
)|δAz̄
= e−i
t 1

2
√

2m�
{a†,eik·x}δAz̄(k,
). (35)

Then, using (21)

ei�k�x = e
i
2 kz̄e

i
2 k̄z = e

− k�√
2
a†

e
k̄�√

2
a
e
− k�√

2
b
e

k̄�√
2
b†

, (36)

where we introduced the complex momentum k = k1 + ik2.
Finally, using that a’s and b’s commute with each other we get
an expression for

V (1)
z (k,
) = 1

2
√

2m�
e−i
t e

− k�√
2
b
e

k̄�√
2
b†{

a†,e
− k�√

2
a†

e
k̄�√

2
a}

.

(37)
Expressions for the other vertices can be derived in the same
way:

V (1)
0 = e−i
t e

− k�√
2
b
e

k̄�√
2
b†

e
− k�√

2
a†

e
k̄�√

2
a
, (38)

V (1)
z̄ = −1

2
√

2m�
e−i
t e

− k�√
2
b
e

k̄�√
2
b†{

a†,e
− k�√

2
a†

e
k̄�√

2
a}

. (39)

Notice that the part of the vertices that depends on both time
and b’s has completely factorized and is the same for all
vertices. We will be able to use this fact to integrate over
time and to trace over the Fock space generated by b† before
tracing over the Fock space generated by a†. It is the trace over
a where all of the complexity is concentrated. For this reason,
it will be convenient to introduce a separate notation for the
part of the “vertex operators” that acts only in the Fock space
generated by a†. Thus we define

V (1)
μ = e−i
t e

− k�√
2
b
e

k̄�√
2
b†

Ṽμ, (40)

where

Ṽ0 = e
− k�√

2
a†

e
k̄�√

2
a
, (41)

Ṽz̄ = − 1

2
√

2m�

{
a†,e

− k�√
2
a†

e
k̄�√

2
a}

, (42)

Ṽz = − 1

2
√

2m�

{
a,e

− k�√
2
a†

e
k̄�√

2
a}

. (43)

E. Generating functional to the second order

In this section, we will perform an exact computation of
the entire quadratic generating functional to all orders in the
gradient expansion. Before diving into details, we briefly pause
to mention a few relations that will be heavily used in the
sequel:

[b,f (b†)] = f ′(b†), (44)

eQbf (b†) = f (b† + Q)eQb. (45)
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Using these relations and elementary properties of the oscilla-
tor algebra, we can evaluate the following expectation values:

〈n|e− k�√
2
a†

e
k̄�√

2
a|m〉 =

√
n!

m!

(
k̄�√

2

)m−n

Lm−n
n

(|k�|2
2

)
(46)

for m � n, and

〈n|e− k�√
2
a†

e
k̄�√

2
a|m〉 =

√
m!

n!

(−k�√
2

)n−m

Ln−m
m

(|k�|2
2

)
. (47)

for m � n. Similar equations can be found in Ref. [7].
There will be two major contributions to the generating

functional in quadratic order. One contribution comes from
the contact terms. These are obtained by plugging V (2) into

−iTr G0V. (48)

These contributions are always evaluated at zero momentum
and zero frequency. In fact, the contact terms can be restored
simply via analyzing the Ward identities for electric charge
conservation. We will denote the contribution of the contact
terms to the polarization operator via �

μν
c,nr.

The main contribution comes from

i

2
Tr G0V

(1)G0V
(1). (49)

First, we will trace over the Fock space generated by b,b†,
then over frequency, and in the end we will be left with
an irreducible expression for the trace over the Fock space
generated by a,a†. The details of the steps outlined above can
be found in Appendix B.

We find

Tr G0V
(1)G0V

(1) =
∑
n,l,t

〈tnl|G0V
(1)G0V

(1)|tnl〉

= m

2π

∫
d2kd


(2π )3
e− |k�|2

2

∑
n′<N,n�N

〈n|Ṽ (1)
μ (k)|n′〉〈n′|Ṽ (1)

ν (−k)|n〉 + 〈n′|Ṽ (1)
ν (k)|n〉〈n|Ṽ (1)

μ (−k)|n′〉
En − En′ − 


δAμ(k)δAν(−k).

(50)

In the remainder of the section, we will simplify this expression.
We introduce the following notation:

�
μ

nn′ (k,
) = 〈n|Ṽ (1)
μ (k)|n′〉, (51)

then (using the dimensionless frequency ω = 
/ωc)

�μν
nr (k,ω) = 1

(2π�2)

1

ωc

e− |k�|2
2

∑
n′<N,n�N

�
μ

nn′(k)�ν
n′n(−k) + �ν

nn′(k)�μ

n′n(−k)

n − n′ − ω
+ �μν

c,nr. (52)

This is the main result of the section. In the following, we will show that all of the components of the polarization tensor can be
reconstructed from a single generating function.

F. The generating function

While (52) is indeed the final expression that cannot be reduced further, it is not convenient to work with since one has to use
complicated expressions for �

μ

nn′ . We will introduce a trick that will allow to express all of the components of the polarization
operator in terms of derivatives of a single function.

We define the generating function G(k,k′; N ):

G(k,k′; N ) =
∑

n�N,n′<N

(
�0

nn′ (k)�0
n′n(k′)

n − n′ − ω
+ �0

nn′ (k′)�0
n′n(k)

n − n′ + ω

)
(53)

=
∑

n�N,n′<N

(
−�2

2

)n−n′
n′!
n!

(
(kk̄′)n−n′

n − n′ − ω
+ (k̄k′)n−n′

n − n′ + ω

)
Ln−n′

n′

( |k�|2
2

)
Ln−n′

n′

( |k′�|2
2

)
. (54)

First, we notice [with the help of (46)] that

�00
nr = m

2π
e− |k�|2

2 G(k, − k; N ). (55)

Other components of �
μν
nr can be expressed as derivatives of

G(k,k′; N ) with respect to momenta. To see this, we use the
identities

e−ka†
ek̄aa† = (−∂k + k̄)e−ka†

ek̄a, (56)

ae−ka†
ek̄a = (∂k̄ − k)e−ka†

ek̄a. (57)

These identities allow us to rewrite the vertex insertions (41)–
(43) in terms of derivatives with respect to momentum as
follows:

Ṽ0(k) = e
− k�√

2
a†

e
k̄�√

2
a
, (58)

Ṽz̄(k) = − 1

2
√

2�m

(
−2

√
2

�
∂k + �√

2
k̄

)
e
− k�√

2
a†

e
k̄�√

2
a
, (59)

Ṽz(k) = − 1

2
√

2�m

(
2
√

2

�
∂k̄ − �√

2
k

)
e
− k�√

2
a†

e
k̄�√

2
a
. (60)
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Next, we introduce a separate notation for the differential

operators acting on e
− k�√

2
a†

e
k̄�√

2
a in Eqs. (58)–(60) as follows:

P̂0
nr(k) = 1, (61)

P̂z
nr(k) = − 1

2
√

2�m

(
− 2

√
2

�
∂k + �√

2
k̄

)
, (62)

P̂ z̄
nr(k) = − 1

2
√

2�m

(
2
√

2

�
∂k̄ − �√

2
k

)
. (63)

Then an arbitrary element of the polarization operator is
given by

�μν
nr (ω,k) = m

4π
e− |k�|2

2 lim
k′→−k

P̂μ
nr(k)P̂ν

nr(k
′)G(k,k′; N ) + �μν

c,nr.

(64)

This expression is the one we will use for practical computa-
tions and is the first main result of the present manuscript.

The contact terms are obtained from Tr G0V
(2). The only

contact term is the well-known diamagnetic term given by

W (2)
c,nr = −iTr G0V

(2) = N
ωc

4π

∫
d2k

(2π )2
δAz(k)δAz̄(−k).

This term is evaluated at zero frequency ω = 0. The contribu-
tion to momentum space polarization tensor is

�zz̄
c,nr = N

ωc

16π
δzz̄. (65)

It can be checked explicitly that this term restores the Ward
identity (5). Direct application of Eqs. (64) and (65) to N filled
Landau levels allows us to write the generating functional in
the leading orders in the gradient expansion:

W [Aμ] = N

4π

∫
d2xdt

[
AdA

+ 1

ωc

|δ �E|2 − N

m
δB2 − 3N

2
�2δB(∂iδEi) + · · ·

]
,

(66)

where δEi and δB are made from the perturbations of the
electromagnetic field δAμ. We have also absorbed the linear
term ρ̄δA0 into the Chern-Simons term by including the
background Āμ. Higher order terms can also be easily obtained
from (64). Finally, note that |δ �E|2 and B2 terms do not combine
into δFμνδFμν due to apparent absence of Lorentz invariance.
We have also checked that Ward identities of the Galilean
symmetry studied in Ref. [8] are satisfied.

G. Including the g factor

For the future applications we also need to include the
effects of finite g factor of the electron, g, by adding an extra
“Zeeman” term to the matter action

δSnr[ψ,ψ†] = g

4m

∫
Bψ†ψ. (67)

This results in the redefinition of the number current

J i(g) = J i(0) + g

4m
εij ∂jρ (68)

as well as the vertices

P̂z
nr(k; g) = − 1

2
√

2�m

(
−2

√
2

�
∂k +

(
1 − g

2

)
�√
2
k̄

)
, (69)

P̂ z̄
nr(k; g) = − 1

2
√

2�m

(
2
√

2

�
∂k̄ −

(
1 − g

2

)
�√
2
k

)
. (70)

Note that the generating functional for finite g can be expressed
in terms of the generating functional at g = 0 as follows:

Wnr[δA0,δAi ; g] = Wnr

[
δA0 + g

4m
δB,δAi ; g = 0

]
. (71)

In particular, Eq. (71) implies the following relations between
the components of the polarization tensor:

�00
nr (k,
; g) = �00

nr (k,
; 0), (72)

�0i
nr(k,
; g) = �0i

nr + i
g

4m
εij kj�

00
nr (k,
; 0), (73)

�ij
nr(k,
; g) = �ij

nr(k,
; 0)

+ i
g

4m
kl

(
εlj�0i

nr(k,
; 0) − εli�j0
nr (k,
; 0)

)
+ g2

16m2
(|k|2δij − kikj )�00

nr (k,
; 0). (74)

The g factor will be used in Sec. IV to take the LLL projection
and as an extra control parameter in Sec. V where we will
compare the large-N limit of the nonrelativistic polarization
operator with a semiclassical computation.

III. DIRAC ELECTRONS

A. Model and the “Feynman rules”

In this Section we will calculate the polarization tensor for
Dirac1 fermions in strong magnetic field, filling N Landau
levels. The action is given by

SD =
∫

d3x�̄/D�, (75)

where � is a two-component spinor, �̄ = �†γ 0 and /D =
γ 0D0 + vF γ iDi , where the covariant derivative Dμ is given
by (8) and includes both constant magnetic field and its
perturbations, vF is the Fermi velocity. To emphasize Lorentz
invariance, we will use the notation d3x = dtd2x.

The Hamiltonian is
H = −ivF γ 0γ iDi − A0, (76)

where vF is the Fermi velocity. We choose the γ matrices as
follows:

γ 0 = σ 3, γ 1 = iσ 2, γ 2 = −iσ 1, (77)

where σ i are the Pauli’s matrices.
As in the nonrelativistic case, the Hilbert space maps on

two copies of the Fock space generated by a† and b† defined in

1The Dirac nature of the fermions does not have to come from
spacetime symmetries. It can be also internal SU(2) symmetry as it
happens in graphene.
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Eqs. (15)–(21). The unperturbed Hamiltonian can be explicitly
written as

H0 =
(

−μ −vF

√
2B̄a†

−vF

√
2B̄a −μ

)
, (78)

where μ is the chemical potential. There are three types of
eigenstates of H0:

(i) zero energy, |�0,m〉 = (|0,m〉
0 ), ED

0 + μ = 0,

(ii) positive energy, |�+
n,m〉 = 1√

2
( |n,m〉
−|n − 1,m〉), ED+

n + μ =
+vF

√
2B̄n.

(iii) negative energy, |�−
n,m〉 = 1√

2
( |n,m〉
+|n − 1,m〉), ED−

n + μ =
−vF

√
2B̄n.

We introduce a uniform notation for all of the eigenstates
as follows:

|�n,m〉 = norm(n)

( ||n|,m〉
−sgn(n)|(|n| − 1),m〉

)
= |�n〉 ⊗ |m〉,

ED
n = sgn(n)vF

√
2B̄|n| − μ, (79)

where it is understood that |−1,m〉 = 0 and norm(n) = 1/
√

2
for |n| > 0 and norm(0) = 1. With this notation at hand n ∈
Z,m ∈ Z+. The unperturbed Green’s function is

G0(t) =
∫

d


2π
e−i
t

∑
n,m

|�n,m〉〈�n,m|

 − ED

n + iεsgn
(
ED

n

) . (80)

The massless Dirac action is easily decomposed into the
terms free of and linear in external electromagnetic field
perturbations (about the constant magnetic field and chemical
potential),

SD = S
(0)
D + S

(1)
D , (81)

where

S
(0)
D =

∫
d3x�†

(
i∂0 + μ vF

√
2B̄a†

vF

√
2B̄a i∂0 + μ

)
�,

S
(1)
D =

∫
d3x�†

(
δA0 vF δAz

vF δAz̄ δA0

)
�. (82)

The first term gives the bare propagator

S
(0)
D =

∫
d3x�†G−1

0 �, (83)

which satisfies

G−1
0 |�n,m〉 = (


 + μ − ED
n

)|�n,m〉, (84)

and

G−1
0 G0 = δ(t)

∑
i

|�i〉〈�i | = 1. (85)

The second term gives the vertex in position space:

V (t,x) =
(

δA0(t,x) vF δAz(t,x)
vF δAz̄(t,x) δA0(t,x)

)
. (86)

Note that the vertices have no explicit coordinate dependence
or derivatives, and it simply remains to Fourier transform them,
using (21) and (36).

Following Sec. II, we wish to evaluate Tr G0V G0V to
derive the generating functional. In this case, there are no
contact terms because Dirac Hamiltonian (and the action) is
linear in external fields. Using the results of Appendixes B
and C, we can take the trace over the Fock space generated by
b† and over time:

Tr G0V G0V =
∫

dt
∑
m,n

〈�n,m(t)|G0V G0V |�n,m(t)〉

= 1

2π�2

∫
d
′

2π

d


2π

d2k
(2π )2

e− |k�|2
2

∑
nn′

V̂nn′ (k,
)


′ + 
 − ED
n + iεsgn

(
ED

n

) V̂n′n(−k,−
)


′ − ED
n′ + iεsgn

(
ED

n′
) , (87)

in which the vertex operator in the momentum space is defined as

V̂nn′ (k,
) = 〈�n|
(

δA0(−k,−
) vF δAz(−k,−
)
vF δAz̄(−k,−
) δA0(−k,−
)

)
e
− k�a†√

2 e
− k̄�a√

2 |�n′ 〉. (88)

The iε prescription is crucial in evaluating the frequency integral∫
d
′

2π

1


′ + 
 − ED
n + iεsgn

(
ED

n

) 1


′ − ED
n′ + iεsgn

(
ED

n′
) =

⎧⎪⎨
⎪⎩

i

ED
n −ED

n′ −

, ED

n < 0,ED
n′ > 0

i

ED
n′−ED

n +

, ED

n > 0,ED
n′ < 0

0, else

. (89)

The polarization tensor �
μν

D (
,k) is given by

�
μν

D (
,k) = −e− |k�|2
2

2π�2

∑
n′�N,n>N

(
�

μ

Dnn′ (k)�ν
Dn′n(−k)

ED
n − ED

n′ − 


+ �ν
Dnn′(−k)�μ

Dn′n(k)

ED
n − ED

n′ + 


)
, (90)

where

�
μ

Dnn′ (�k) = 〈�n|Pμ

De
− k�a†√

2 e
− k̄�a√

2 |�n′ 〉 (91)

and

P0
D = 1, P1

D = vF σ 1, P2
D = vF σ 2. (92)
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Using (46), we evaluate the vertices �
μ

Dnn′(k). The expressions
turn out to be quite complicated and so we list them in
Appendix D.

B. Dirac polarization tensor

In this section, we write out explicit expressions for the
Landau level polarization tensor for Dirac fermion in the lead-
ing order in momentum and frequency. While Eq. (90) looks
similar to the corresponding Eq. (52) for the nonrelativistic
fermions we want to emphasize that there is a difficulty in
evaluating the summation, even when we limit ourselves to
some finite order in momentum and frequency. The reason is
that every component of the polarization tensor, contains the
sum over n′ (i.e., the sum over the Dirac sea) from −∞ to
N , where N is the number of filled Landau levels. We remind
the reader that in the nonrelativistic case this sum consisted
of a finite number of terms (because the parabolic dispersion
relation has a bottom, see Fig. 4) in every order in momentum
and frequency. In the present case, the sum has infinite number
of terms, however, it is convergent and does not need to be
regularized. To simplify the expressions, we fix a coordinate
frame in which k = (k1,0). Leaving the details to Appendix E
we present the leading-order terms below:

�12
D (
,k) = i


N + 1/2

2π
− i
(k1�)2 6N2 + 6N + 1

16π

+ i
3 �2

v2
F

8N2 + 8N + 1

8π
+ · · · , (93)

�00
D (
,k) = −k2

1
3�

2
√

2πvF

ζ

(
−1

2
,N + 1

)
+ · · · , (94)

�11
D (
,k) = −
2 3�

2
√

2πvF

ζ

(
−1

2
,N + 1

)
+ · · · , (95)

�22
D (
,k) = −
2 3�

2
√

2πvF

ζ

(
−1

2
,N + 1

)

+ k2
1

3�vF

4
√

2π
ζ

(
−1

2
,N + 1

)
+ · · · , (96)

where ζ (s,n) is the Hurwitz ζ function.2 We stress that each
component of the polarization tensor is finite without any need
for regularization. The use of ζ function is a convenient choice
that allows to evaluate the sums analytically.

In the coordinate space, the generating functional is given
by

WD =
∫

d3x

[
N + 1

2

4π
AdA − 3�

4
√

2πvF

ζ

(
−1

2
,N + 1

)
|δ �E|2

+ 3�vF

8
√

2π
ζ

(
−1

2
,N + 1

)
δB2

− �2 6
(
N + 1

2

)2 − 1
2

8π
δB(∂iδEi) + . . .

]
. (97)

Equation (97) is valid in arbitrary coordinate frame. Equation
(97) is the main result of the present section. Note that

2See Appendix E for more detail.

despite the Lorentz invariance of the action (75) the generating
functional is not Lorentz invariant. This happens because the
Lorentz invariance is broken by the background magnetic field,
which is held at a fixed value.

We can subject the above results to several checks. First,
we extract the Hall conductivity via3

σH (
,k) = δ

δE2(k,
)
〈J1(k,
)〉. (98)

Second, define the finite frequency and momentum corrections
to the Hall conductivity via

σH (
,k) = σH (0) + σH
k2 |k�|2 + σH


2

2 + · · · . (99)

According to Ref. [9] there is a relations between 
2 and
|k�|2 coefficients of finite frequency and momentum Hall
conductivity given by

2σH
k2 + v2

F σH

2 = S�2

4π
, (100)

where S = N (N + 1) is the relativistic version of the
Shift [10] of the integer quantum Hall state of Dirac electrons
at filling fraction ν = N . We have checked explicitly that
Eq. (100) holds.

Next, we compare the polarization tensors for the Dirac and
nonrelativistic electrons in the large-N limit. Using the results
of Sec. II, we have in the nonrelativistic case

�12
nr (
,k) = i
 N

2π
− i
k2

1�
2 3N2

8π
+ i
3�2 N2

πv2
F

+ · · · , (101)

�00
nr (
,k) = k2

1
�N3/2

vF

√
2π

+ · · · , (102)

�11
nr (
,k) = 
2 �N3/2

vF

√
2π

+ · · · , (103)

�22
nr (
,k) = 
2 �N3/2

vF

√
2π

− k2
1
�vF N3/2

2
√

2π
· · · , (104)

where ωc can be written in terms of Fermi velocity vF and
Fermi momentum kF as follows:

ωc = B̄

m
= B̄vF

kF

= vF

√
B̄√

2N
, (105)

where we used the relation between filling fraction and Fermi
momentum,

N = ρ̄

B̄/2π
= k2

F

2B̄
, (106)

where ρ̄ is the nonrelativistic electron density.
Using the asymptotic formula for the ζ function at large N ,

ζ
(− 1

2 ,N + 1
) ≈ − 2

3

(
N + 1

2

)3/2
, (107)

we find that the nonrelativistic and Dirac polarization tensors
agree in leading and subleading order in N , provided we
replace N −→ N + 1/2. The latter replacement comes up
due to the contribution of the Berry phase in the Dirac’s case.

3We choose to define the Hall conductivity σH (k,
) as the variation
of the current over the electric field, because the naively defined off-
diagonal component of the conductivity tensor, σ 12(k,
) = �12(k,
)

i

,

is divergent in the zero-frequency limit.
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Dirac Non-relativistic

FIG. 3. The linear response of the LLL is universal. The gen-
erating functionals of nonrelativistic and Dirac (upon discarding
divergent terms) electrons differ from each other by a factor of 1/2
to all orders in the gradient expansion.

We stress that the equivalence holds when the g factor of the
nonrelativistic electrons vanishes and does not equal to 2 as
one may naively expect.

The terms that are sub-sub-leading order in N do not agree,
which can be shown by an explicit calculation. The agreement
of the leading and subleading orders is not surprising, since
in large-N limit, which is the case of high density and
small applied magnetic field, the semiclassical approximation
applies equally well to both systems, however, Dirac theory has
an extra Berry phase contribution. We will study the large-N
limit in more detail in Sec. V.

IV. UNIVERSALITY OF THE PROJECTED
LOWEST LANDAU LEVEL

In this section, we will show that the exact electromagnetic
linear response functions of the lowest Landau level of
nonrelativistic and Dirac electrons agree to all orders in the
gradient expansion, in the limit, where the transitions to higher
Landau levels are neglected. The main result of this Section
is summarized in Fig. 3. In the nonrelativistic case, this limit
is accomplished by taking m → 0, keeping magnetic field
fixed. Generally, this limit is not well-defined since the exact
degeneracy of the LLL is split in inhomogeneous magnetic
field, however, when g = 2, the LLL is exactly degenerate for
any smooth, inhomogeneous background of a magnetic field.
In the relativistic case, this limit is taken via sending vF → ∞.
Both limits send the spectral gap to infinity suppressing the
contributions of the higher Landau levels. Note that LLL means
N = 1 for the nonrelativistic case and N = 0 for Dirac.

It was demonstrated in Ref. [11] that the nonrelativistic
action (7) reduces to (75) in the limit m → 0, g = 2 and
provided that transitions across the gap are neglected. This
argument was used to deduce the following relationship
between the generating functionals:

WD[δAμ] = Wnr[δAμ] − 1

2

1

4π

∫
AdA. (108)

This relation holds only in the leading order in the gradient
expansion. We will show that there is an exact version of this
relation, which reads

WD[δAμ] = Wnr[δAμ] − 1
2Wnr[δAμ] = 1

2Wnr[δAμ]. (109)

Equation (109) can be understood as follows. A completely
filled zeroth Landau level contributes Wnr[δAμ] to the linear
response, however, the filled negative energy bands contribute
total of − 1

2Wnr[δAμ], which leads to exact relation (114).
To prove (109), we first turn to the nonrelativistic generating

Cancel

FIG. 4. (Left) Spectrum of Dirac operator in magnetic field.
Dashed lines illustrate the transitions “across the Fermi sea”, while
solid lines illustrate the transitions between LLL and the excited
levels. Total contribution to the linear response of the LLL of Dirac
electrons from the transitions “across the Fermi sea” adds up precisely
to 0, leading to an exact relation (109). (Right) Spectrum of nonrela-
tivistic electrons in magnetic field. The transitions that contribute to
the electromagnetic response of the LLL are qualitatively the same is
in the Dirac case. The presence of the filled Dirac sea results in the
overall factor of 1/2 in the Hall conductivity of Dirac electrons.

functional. In the leading order, we have

Wnr[δAμ] = 1

4π

∫
d2xdt

[
AdA + 1

ωc

|�δE|2 − 2 − g

2m
δB2

− 3 − g

2
�2δB(∂iδEi) + · · ·

]
. (110)

In the limit m → 0,g = 2, we find

Wm→0
nr [δAμ] = 1

4π

∫
AdA − 1

2
�2δB(∂iδEi) + · · · . (111)

In fact, by dimensional analysis and the regularity of the
massless limit, only the terms linear in the electric field
survive.4 These terms contribute to the (momentum dependent)
Hall conductivity, which can be calculated exactly at zero
frequency [12]:

σ nr
H (k) = 1

2π

1

|k�|2 s(k), (112)

where s(k) = 1 − e− |k�|2
2 is the static structure factor [13].

Equation (112) agrees with the results produced from (64)
upon setting the frequency ω = 0.

The Dirac electrons are more tricky since in addition
to the contribution of the LLL there are also, in principle,
contributions from the transitions across the Dirac sea as
illustrated on Fig. 4. We have checked that these transitions
sum up to zero in |k�|0,|k�|2, |k�|4, and |k�|6 orders of the
momentum expansion. If we assume that these transitions do
not contribute to all orders in the gradient expansion, then the
Hall conductivity is given by [using (90) and (91)]

σD
H (k) = e− |k�|2

2

2π

∞∑
n=1

2−n−1

n!
|k�|2n−2 =

(
1 − e− |k�|2

2
)

4π |k�|2 , (113)

4This also can be seen, with some work, from the Eq. (64).
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which leads to the exact relationship

σD
H (k) = 1

2σ nr
H (k), (114)

which is equivalent to (109), provided we neglect the LL
mixing [that is, take g = 2,m → 0 in the right-hand side (r.h.s.)
and vF → ∞ in the left-hand side (l.h.s.)].

There is, however, a subtlety as we have not explained
how to take the infinite gap limit of the Dirac generat-
ing functional (97). Since the energy levels are given by
En = ±vF

√
2B̄n we should take the limit vF → ∞, which

removes all of the energy levels except E0. In this limit, the
term quadratic in the electric field indeed vanishes and the
term linear in the electric field survives, however, the term
quadratic in magnetic field diverges linearly with vF . In the
nonrelativistic case, this term was removed by an appropriate
choice of the g-factor g = 2, but in the Dirac case, there is
no such mechanism. Thus, in order to ensure the regularity of
the vF → ∞ limit, we must subtract this term “by hand.” The
regular part of the generating functional for Dirac electrons
then satisfies (109).

V. UNIVERSALITY OF THE LARGE-N LIMIT

In this section, we calculate the polarization tensor in the
large-N limit and then re-derive it using the semiclassical
approximation. The result of the semiclassical calculation
agrees with previous work [14], but we will present a simpler
method of calculation. Furthermore, we show that in the

large-N limit, the result of the RPA calculation agrees with the
Fermi liquid theory [15–17].

A. large-N limit of RPA

Working at large filling factors N means that we consider a
regime in which the density of electrons is much bigger than
the external magnetic field,

N = ρ̄

B̄/2π
 1. (115)

Noninteracting electrons in a weak magnetic field form a
Fermi sphere. Furthermore, large filling also implies kF �  1.
Therefore the gradient expansion in k is valid in the range of
momenta that satisfy k�

√
N ∼ 1, which is the right regime for

Landau’s Fermi liquid theory.
First, we will explicitly take the large-N limit of the RPA

result (64). We will use the asymptotic form of Laguerre
polynomial (valid in the leading order in N )

lim
N→∞

Lα
N (x) ≈ Nα/2

xα/2
e

x
2 Jα(2

√
Nx). (116)

In the expression (64), only the terms for n ≈ n′ contribute
to the final result. This remains true for any N . Thus, in the
following, we will use the approximation

n′!
n!

≈ 1

Nn−n′ , (117)

which is valid for n ≈ n′ ≈ N .
The generating function Gas(k,k′,N ) in the large-N limit

takes the form

Gas(k,k′,N ) =
∞∑

n=1

n(−1)n
e

�2(|k′ |2+|k|2)
4

( (kk̄′)n
n−ω

+ (k̄k′)n
n+ω

)
Jn

(
2
√

N kk̄�2

2

)
Jn

(
2
√

N k′ k̄′�2

2

)
(kk̄)n/2(k′k̄′)n/2

, (118)

where ω is the dimensionless frequency.
The asymptotic form of generating function Gas(k,k′,N ) agrees with the exact generating function G(k,k′,N ) up to subleading

order in N , which can be checked order by order in the momentum expansion. We choose a frame where k = (k1,0), in this case
k = k̄ = k1. It will be convenient to use the rescaled momentum q = k1�

√
2N = k1kF �2.

Finally, using Eq. (118) together with (64), we obtain the polarization tensor for any g factor:

�11(q,ω) = − ρ̄

m
+

∞∑
n=1

− n4ωc[Jn(q)]2

2πN (ω2 − n2)
, (119)

�22(q,ω) = − ρ̄

m
+

∞∑
n=1

−Nn2ωc[Jn−1(q) − Jn+1(q)]2

2π (ω2 − n2)
− g

∞∑
n=1

n2ωcq[Jn−1(q) − Jn+1(q)]Jn(q)

4π (ω2 − n2)
− g2

∞∑
n=1

q2n2ωc[Jn(q)]2

32Nπ (ω2 − n2)
,

(120)

�12(q,ω) = −
∞∑

n=1

iNn2ωωcJn(q)q[Jn−1(q) − Jn+1(q)]

π (ω2 − n2)
− g

∞∑
n=1

iωn2ωc[Jn(q)]2

4π (ω2 − n2)
. (121)

Note that using Eqs. (72)–(74) one can restore all of the components of the polarization tensor at vanishing g factor.
Remarkably, the infinite sums for each component of the nonrelativistic polarization tensor can be evaluated in a closed form.

The details of the calculation are presented in Appendix F. The results are written for the conductivity tensor (6):

σ 11(q,ω) = iN

π

(
− ω

q2
+ πω2Jω(q)J−ω(q)

q2 sin(πω)

)
, (122)
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σ 22(q,ω) = iN

π

(
− ω

q2
+ πω2Jω(q)J−ω(q)

q2 sin(πω)
+ πJ1+ω(q)J1−ω(q)

sin(πω)

)

+ igq

8 sin(πω)

∂

∂q
[Jω(q)J−ω(q)] − ig2q2

64πNω

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)
(123)

σ 12(q,ω) = −N
ω

2q

1

sin(πω)

∂

∂q
(Jω(q)J−ω(q)) + g

8π

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)
. (124)

Equations (122)–(124) are the main result of this section. Next, we will compare these results to a semiclassical computation.

B. Semiclassical computation

1. Review of the Fermi liquid theory with a g-factor

In this section, we review the derivation of Boltzmann’s
equation mostly to fix the notation. The derivation follows
closely the bosonization of a Fermi liquid [18–21]. We
assume a system of two-dimensional noninteracting spinless
fermions with Fermi momentum kF and mass m in a magnetic
field B(x,t) = B̄ + b(x,t) and an electric field �E(x,t). We
will assume that b(x,t) and �E(x,t) are weak and slowly
varying. We denote the distribution function as f (K,x,t).
The collective modes are described by the perturbation of
distribution function

f (K,x,t) = f 0(K) + δf (K,x,t). (125)

The perturbations of the distribution function caused by weak
fields are also assumed to be weak. Where the unperturbed
distribution function is

f 0(K) = �(kF − |K|), (126)

where �(x) is the step function. Employing the collisionless
limit of the Boltzmann equation [22–24], we obtain the time
evolution equation for the distribution function f (K,x,t):

∂tf (K,x,t) + �v(K) · �∇xf (K,x,t) +
(

�E + g

4m
�∇xB(x,t)

+�v(K) × �B(x,t)

)
· �∇Kf (K,x,t) = 0,

where �v(K) = �∇KεK is the group velocity and εK is the
nonrelativistic dispersion relation. We also introduce a vector,
normal to the Fermi surface via �v(K) = vF �nθ . Note that we
included the term g

4m
�∇xB(x,t) �∇Kf (K,x,t), which is necessary

to account for the finite g factor.
In the low-energy limit, we take the momentum to be

|K| = kf + u(x,θ,t) (see Fig. 5). Then the perturbations of
the distribution function occur only close the Fermi surface

δf (K,x,t) = u(θ,x,t)δ(kF − |K|), (127)

where θ is the direction of K on the Fermi surface.
Then the Boltzmann equation takes form [6,25]

∂tu(θ,x,t) + vF �nθ · �∇xu(θ,x,t) − ωc∂θu(θ,x,t)

− �nθ ·
(

�E(x,t) + g

4m
�∇xB(x,t)

)
= 0, (128)

where vF = kF

m
is the Fermi velocity, and �nθ is the normal

vector to the Fermi surface. We ignore terms that are second
order in �E(x,t), �b(x,t), and δf (K,x,t). The charge density of

the electrons can be written in terms of u(θ,x,t) as follows:

ρ(x,t) =
∫

d2K
(2π )2

f (K,x,t) = ρ̄ +
∫

dθ
kF

(2π )2
u(θ,x,t),

(129)
where the background charge density is given by

ρ̄ =
∫

d2k
(2π )2

f 0(K) = k2
F

4π
. (130)

At nonzero g factor, the current density is defined as [cf.
Eq. (68)]

J i(x,t) =
∫

d2K
(2π )2

f (K,x,t)vi(K) + g

4m
εij ∂jρ,

which in terms of u(θ,x,t) is given by

J i(x,t) = kF vF

2π

∫
dθ

2π
ni

θu(θ,x,t)

+ g

4m

kF

2π
εij ∂j

∫
dθ

2π
u(θ,x,t). (131)

Equations (128), (129), and (131) are the key ingredients for
the semiclassical calculations.

2. Semiclassical calculation for the nonrelativistic
polarization tensor

We will work in the temporal gauge A0 = 0. In this
gauge, the electric field is given by Ei(�q,ω) = iωAi(�q,ω).

FIG. 5. Fluctuating Fermi surface. The function u(x,θ,t) de-
scribes the fluctuations of the surface in space and time. The har-
monics un(x,t) describe the dipolar, quadruploar, etc., deformations
of the Fermi surface.
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We decompose u(θ,x,t) into Fourier modes:

u(θ,x,t) =
∫

d
d2k
(2π )3

∞∑
n=−∞

un(k,
)einθ eik·xe−i
t . (132)

Next, we will fix the frame where k = (k1,0) and introduce
the notation

q = k1�
√

2N = k1kF �2. (133)

Then, Boltzmann equation (128) takes the form

(ω + n)un(q,ω) − q

2
(un+1(q,ω) + un−1(q,ω))

+ω

[
δn,1

(
Az + g

q2

32Nω
(Az − Az̄)

)

+ δn,−1

(
Az̄ + g

q2

32Nω
(Az − Az̄)

)]
= 0. (134)

The solution of the above equation of motion for un(q,ω)
with n > 0 and n < 0 is

un(q,ω) = F (q,ω)Jn+ω(q) (n > 0), (135)

un(q,ω) = (−1)nG(q,ω)J−n−ω(q) (n < 0), (136)

where Jν(x) is the Bessel function of the first kind. The
functions F (q,ω) and G(q,ω) depend on the external field
and are not fixed by the equations for |n| > 1. We will fix
these functions using the equations of motion for u−1,u0,u1.

The equation of motion for u0(q,ω) gives us

ωu0(q,ω) = q

2
[F (q,ω)J1+ω(q) − G(q,ω)J1−ω(q)]. (137)

Using (135)–(137) in the equation of motion for u1(q,ω) and
u−1(q,ω), we find

F (q,ω) = πω

sin(πω)

[
J−1−ω(q)

(
Az + g

q2

32Nω
(Az − Az̄)

)

+ J1−ω(q)

(
Az̄ + g

q2

32Nω
(Az − Az̄)

)]
, (138)

G(q,ω) = − πω

sin(πω)

[
J−1+ω(q)

(
Az + g

q2

32Nω
(Az − Az̄)

)

+ J1+ω(q)

(
Az̄ + g

q2

32Nω
(Az − Az̄)

)]
, (139)

where we used the following Bessel function identity:

J1−ω(q)J1+ω(q) − J−1−ω(q)J−1+ω(q) = 4ω sin(πω)

πq2
. (140)

Functions u1(q,ω) and u−1(q,ω) are then given by

u1(q,ω)=F (q,ω)J1+ω(q), u−1(q,ω)=−G(q,ω)J1−ω(q).

(141)

To calculate the response functions in terms of the applied
electric field, we write equation (131) in terms of the Fourier
modes

J 1 = Nωc

2π
(u1 + u−1), J 2 = iNωc

2π
(u1 − u−1) − igqωc

8π
u0,

(142)
where N = 1

2k2
F �2 is the number of filled Landau levels.

Using Eqs. (141), we can derive the current density in terms
of a vector potential in the usual form:

J i(q,ω) = �ij (q,ω)Aj (q,ω), (143)

from where we can extract the polarization tensor, which
is again given exactly by (122) and (123) combined with
Eqs. (72)–(74). Reducing Eq. (143) to the form of Eqs. (122)
and (123) involves nontrivial manipulations with the Bessel
functions. We leave these details to Appendix F. We conclude
that the RPA approximation in the large-N limit is equivalent
to the semiclassical approximation for any value of the g factor.

VI. CONCLUSION

We have calculated the electromagnetic response of the
IQH states of nonrelativistic and massless Dirac electrons to all
orders in the gradient expansion. In the nonrelativistic case, we
obtained a simple closed form expression (64), which agrees
with the one-loop calculation from the previous work [1] for
nonrelativistic electrons as well as the general (nonlinear)
structure of the generating functional [26,27]. The method
we used is extended naturally to the massless Dirac theory
in a magnetic field. We explicitly check that the polarization
tensors of nonrelativistic and Dirac electrons match in the
large-N limit up to the substitution N → N + 1/2. The extra
1/2 is due to the Berry phase of the Dirac cone. Furthermore,
in the Dirac case, we checked that the 
2 and k2 corrections
to the Hall conductivity satisfy the relation (100) imposed by
the Lorentz invariance [9].

We have used the semiclassical approximation to calculate
the electromagnetic response function of the Fermi liquid in a
weak constant background magnetic field, the polarization ten-
sor can be written in a closed form, given in terms of Bessel’s
functions, and agrees with the previous work [14], however, we
have used a simpler method of calculation. Our computation
can be easily modified to include the effect of short-range in-
teractions via introducing the Landau parameters [25]. The re-
sults, which include short-range interaction, can still be derived
in a closed form. Next, we showed explicitly that the large-N
limit of RPA calculation in the nonrelativistic case matches
the semiclassical approximation at the leading and subleading
order in N , without including the short-range interactions. The
agreement implies the equivalence of Fermi liquid theory in a
weak background magnetic field and the large-N limit of RPA
calculation. Finally, in view of the previous result, we see that
the Fermi liquid theory must be modified by the Berry phase
effects in order to work for the Dirac fermions. This effect can
be easily incorporated via the substitution N → N + 1/2.

We expect that our computations will find many applica-
tions to quantum Hall physics. The explicit expression for the
polarization tensor is necessary in composite fermion [1] and
boson [2] approaches to fractional quantum Hall (FQH) states.
These results can also serve as a starting point to accounting
for lattice, quenched disorder and weak interactions correc-
tions to the linear response theory. Moreover, some of the
gradient corrections to the transport coefficients, under certain
symmetry assumptions, carry universal information about the
quantum Hall states [8,12,28–30], thus the knowledge of these
corrections as well as general method of their computation is
of its own interest. The large-N results should be useful in the
recently proposed theory of composite fermions [11], where
the latter are viewed as neutral Dirac fermions interacting
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with an internal gauge field. Finally, all of the exact results
are useful in testing the recently discovered set of dualities in
2 + 1D [31–33].

The methods used in the present paper are suitable for the
calculation of the gravitational (or viscoelastic) and mixed
electromagnetic-gravitational response functions of quantum
Hall fluids in curved space [10,34,35] as well as more
general Newton-Cartan [36–38] backgrounds. We will present
the detailed computations of these responses in a separate
publication.
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APPENDIX A: GENERATING FUNCTIONAL SUMMARY

For the reader’s convenience, we list together all of the
final expressions derived in Sec. II in terms of dimensionless
momentum q = kl√

2
and for arbitrary g factor:

δSg = g

4m

∫
dtd2xBψ†ψ. (A1)

The generating function is given by

G(q,q ′; N ) =
∑

n�N,n′<N

(−1)n−n′ n′!
n!

(
(qq̄ ′)n−n′

n − n′ − ω

+ (q̄q ′)n−n′

n − n′ + ω

)
Ln−n′

n′

( |q|2
2

)
Ln−n′

n′

( |q ′|2
2

)
.

(A2)

The vertices are given by the following relations:

P̂0
nr(q) = 1, (A3)

P̂ z̄
nr(q) = − 1

2
√

2m�

[
2∂q̄ −

(
1 − g

2

)
q

]
, (A4)

where we have also added the dependence on the g factor
that describes the nonminimal coupling of the electrons to
the magnetic field due to the intrinsic magnetic moment. The
polarization operator is given by

�μν = m

4π
e−|q|2 lim

q→−q ′
P̂μ(q)P̂ν(q ′)G(q,q ′; N ) + �μν

c

(A5)
and

W (2)
c = Nωc

4π

∫
d2 �q

(2π )2
|δA(�q,0)|2. (A6)

APPENDIX B: DERIVATION OF (50)

Summation over b subspace

The first step in evaluation of (50) is to perform the
summation over the Fock space generated by b,b† operators.
This can be done easily because the b,b† operators com-
pletely factorize from the expression for the vertices (38)
and (37), because the perturbed action does not depend
on b and (a,a†) commute with (b,b†). We compute the
trace over the Fock spaces (suppressing the frequency
integration):

Tr a,bG0V
(1)G0V

(1) =
∑

n,n′,m,m′
〈nm|G0|nm〉〈nm|V (1)|n′m′〉〈n′m′|G0|n′m′〉〈n′m′|V (1)|nm〉

=
∑

n,n′,m,m′

1

ω − En

1

ω′ − En′
〈nm|V (1)|n′m′〉〈n′m′|V (1)|nm〉. (B1)

The matrix elements 〈n′m′|V (1)|nm〉 factorize as

〈n′m′|V (1)
μ |nm〉 = 〈m′|e− k�√

2
b
e

k̄�√
2
b† |m〉|b · 〈n′|V (1)

μ |n〉|aδAμ (B2)

because a commutes with b. In Eq. (B2), 〈m|X|m′〉|
b

means that the average value of operator X is computed in the Fock space

generated by the b†. Then
Tra,bG0V

(1)G0V
(1)

=
∑

n,n′,m,m′,k,q

1

ω − En

1

ω′ − En′
〈m|e− k�√

2
b
e

k̄�√
2
b† |m′〉|b〈m′|e− q�√

2
b
e

q̄�√
2
b† |m〉|b〈n′|V (1)

μ |n〉|a〈n′|V (1)
ν |n〉|aδAμ(k)δAν(q)

=
∑

n,n′,m,k,q

1

ω − En

1

ω′ − En′
〈m|e− k�√

2
b
e

k̄�√
2
b†

e
− q�√

2
b
e

q̄�√
2
b† |m〉|b〈n′|V (1)

μ |n〉|a〈n′|V (1)
ν |n〉|aδAμ(k)δAν(q), (B3)

where in the last line we have used that |m〉 form a complete
basis in the Fock space generated by b,∑

m′
|m′〉〈m′| = 1b, (B4)

where 1b is an identity operator in the Fock space spanned
by b operators. We have, thus, established that in all of
the components of the generalized polarization operator the
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summation over m can be done explicitly and amounts to the
computation of the sum∑

m

〈m|e− k�√
2
b
e

k̄�√
2
b†

e
− q�√

2
b
e

q̄�√
2
b† |m〉

= 1

π

∫
dαe|α|2〈0|eαbe

− k�√
2
b
e

k̄�√
2
b†

e
− q�√

2
b
e

q̄�√
2
b†

eᾱb† |0〉
(B5)

= 2π

�2
e− |k�|2

2 δ(2)(k + q). (B6)

In the first line, we replaced the summation in m with
integration over the coherent states (we explain how to do
it in Appendix C). In resume, for any component of the
polarization tensor, summation over m can be replaced by
2π
�2 e− |k�|2

2 δ(2)(k + q). This delta function is the manifestation
of the momentum conservation—after b summation the fully
filled Landau level looks translationally invariant.

Frequency integral

Next, we perform the trace over time and frequency:

Tr tG0V
(1)G0V

(1) =
∑

t

〈t |G0V
(1)G0V

(1)|t〉

=
∑
t,ω

∑
t ′,ω′

〈t |ω〉〈ω|G0|ω〉〈ω|t ′〉〈t ′|V (1)
nn′ |t ′〉〈t ′|ω′〉〈ω′|G0|ω′〉〈ω′|t〉〈t |V (1)

n′n |t〉

=
∑
n,n′

∑
t,ω

∑
t ′,ω′

eit(ω−ω′)e−it ′(ω−ω′) 1

ω − En

V
(1)
nn′ (t)

1

ω′ − En′
V

(1)
n′n(t ′)

=
∑
n,n′

∑
t,ω,


∑
t ′,ω′,


eit(ω−ω′−
)e−it ′(ω−ω′−
′) 1

ω − En

V
(1)
nn′ (
)

1

ω′ − En′
V

(1)
n′n(
′)

=
∑
n,n′

∑
ω,


∑
ω′,


δ(ω − ω′ − 
)δ(ω − ω′ − 
′)
1

ω − En

V
(1)
nn′ (
)

1

ω′ − En′
V

(1)
n′n(
′)

=
∑
n,n′

∑
ω,


1

(ω + 
) − En

V
(1)
nn′ (
)

1

ω − En′
V

(1)
n′n(−
)

=
∑
n,n′

∫
d


2π

dω

2π

1

(ω + 
) − En

1

ω − En′
V

(1)
nn′ (
)V (1)

n′n(−
),

where we have introduced a shorthand Vnn′ for matrix elements 〈n|V |n′〉. To perform the frequency integration, we rewrite the
fraction as a sum,

1

(ω + 
) − En

1

ω − En′
=
(

1

(ω + 
) − En

− 1

ω − En′

) −1


 − (En − E′
n)

, (B7)

and take only the first N poles in the integral over ω. This integration will project onto the Hilbert space of the first N Landau
levels. When this is done, we have

TrtG0V
(1)G0V

(1) =
∫

d


2π

(∑
n,n′

θ (N − n)V (1)
n′n(
)V (1)

nn′ (−
)

En′ − En − 

− θ (N − n′)V (1)

n′n(−
)V (1)
nn′ (
)

En′ − En − 


)

=
∫

d


2π

∑
n�N,n′>N

(
V

(1)
nn′ (
)V (1)

n′n(−
)

En′ − En − 

+ V

(1)
n′n(
)V (1)

nn′ (−
)

En − En′ + 


)
.

This is the final outcome of the computation (we have sup-
pressed the dependence on the momentum). This computation
yields (50).

APPENDIX C: COHERENT STATES

In this Appendix, we will describe the coherent states
that will be useful for multiple calculations. Here we follow
Perelomov [7], but customize the notations to agree with the
main text.

1. Heisenberg-Weyl group

We define the Heisenberg-Weyl algebra via the relations

[a,a†] = 1, [a,1] = [a†,1] = 0. (C1)

An arbitrary element of the algebra is given by a linear
combination:

W = is · 1 + qa† − q̄a, (C2)

where s is real and q is complex.
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We want to exponentiate the algebra into the group.
Arbitrary Heisenbrg-Weyl group element is given by

eW = eis · eqa†−q̄a = eiseqa†
e−q̄ae− 1

2 [qa†,−q̄a]

= eise− |q|2
2 eqa†

e−q̄a, (C3)

where we have used eA+B = e− 1
2 [A,B]eAeB , which is true for

linear combinations of creation/annihilation operators. We also
denote

D(q) = eqa†−q̄a . (C4)

These operators form a representation of the Heisenberg-
Weyl group. Representations for different values of s are
inequivalent. For fixed value of s, all representations are
unitary equivalent. So from now on, we fix s and drop eis

factor.
We can freely switch between D(q) and eqa†

e−q̄a at the cost
of an exponent, that is,

D(q) = e− |q|2
2 eqa†

e−q̄a . (C5)

Operators D(q) have the following multiplication rule:

D(q)D(k) = eiIm(qk̄)D(k + q). (C6)

This can be checked using the following simple identities:

ecaf (a†) = f (a† + c)eca, (C7)

eca†
f (a) = f (a − c)eca†

. (C8)

These relations can be used to prove the multiplication law.
The latter can be obviously generalized as follows:

i=1∏
i=M

D(qi) = ei
∑

i<j Im(qj q̄i )D

(
M∑
i=1

qi

)
. (C9)

The multiplication law implies the permutation relation

D(q)D(k) = e2iIm(qk̄)D(k)D(q). (C10)

2. Generalized coherent states

Operators a, a† naturally generate a Fock space H with an
orthnormal basis

|n〉 = a†
√

n!
|0〉, (C11)

where |0〉 is defined via a|0〉 = 0. Consider an arbitrary state
|�0〉 ∈ H. States of the form

D(q)|�0〉 = |q〉 (C12)

are generalized coherent states. One gets usual coherent states
choosing |�0〉 = |0〉. Most of relations for coherent sates hold
for any |�0〉. The overlap of the coherent sates is

〈q|k〉 = eiIm(kq̄)〈�0|D(k − q)|�0〉, |〈q|k〉|2 ≡ ρ(k − q).
(C13)

Also we have

D(k)|q〉 = eiIm(kq̄)|k + q〉. (C14)

Since the Fock space H is projected D(k) acts on the q plane
by translations. Therefore an invariant (under the action of

Heisenberg-Weyl group) measure is

dμ(k) = Cdk1dk2, with k = k1 + ik2, (C15)

where C is arbitrary constant to be fixed momentarily.
Consider an operator

A =
∫

dμ(k)|k〉〈k|. (C16)

We find that for any k we have [D(k),A] = 0, thus A = λ1̂
due to Schur’s lemma. We also can always choose C to set
λ = 1. We take C = 1

π
then the resolution of the identity takes

the form (this particular value of C will be explained shortly)∫
dk1dk2

π
|k〉〈k| = 1̂. (C17)

We now present some relations that are valid only for |�0〉 =
|0〉:

D†(q)aD(q) = a + q (C18)

and

a|k〉 = k|k〉. (C19)

Similarly, we have

|k〉 = D(k)|0〉 = e− |k|2
2 eka† |0〉 =

∞∑
n=0

kn

√
n!

|n〉. (C20)

Using the last relation, we find

|〈k|0〉|2 = ρ(k) = e−|k|2 , |〈k|q〉|2 = ρ(q − k) = e−|k−q|2 .

(C21)

Noticing that (C17) is equivalent to
∫

dμ(k)ρ(k) = 1, we find
that C = 1

π
as advertised.

We want to be able to evaluate traces in H. In the Fock
basis, we have

Tr O =
∑

n

〈n|O|n〉 =
∑

n

∫
dμ(k)dμ(q)〈q|n〉〈n|k〉〈k|O|q〉

=
∫

dμ(k)dμ(q)〈q|k〉〈k|O|q〉. (C22)

Using the resolution of the identity,

Tr O =
∫

dμ(q)〈q|O|q〉 =
∫

dμ(q)e−|q|2〈0|eq̄aOeqa† |0〉.
(C23)

So we have derived

Tr aÔ = 1

π

∫
dq1dq2(e−|q|2〈0|eq̄aÔeqa† |0〉). (C24)

Consider a matrix element of D(k),

G(k̄,q; p) ≡ e
1
2 (|k|2+|q|2)〈k|D(p)|q〉 = e− |p|2

2 ek̄q+k̄p−q̄p.

(C25)

Inserting the resolution of unity in terms |n〉, we find

G(k̄,q; p) =
∑
m,n

ūm(k)un(q)Dmn(p), (C26)
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where

un(k) ≡ 〈n|k〉 = km

√
m!

. (C27)

G is a generating function of the matrix elements of Dmn(p).
The latter are obtain expanding (C25) in series in k and q:

Dnm(p) =
√

n!

m!
e− |p|2

2 pm−nLm−n
n (|p|2), m � n, (C28)

Dnm(p) =
√

m!

n!
e− |p|2

2 (−p̄)n−mLn−m
m (|p|2), n � m. (C29)

We also find simple relations for the traces:

Tr D(p) = πδ(2)(p), (C30)

Tr [D(p)D−1(q)] = πδ(2)(p − q). (C31)

3. Application: Trace over b subspace

We want to evaluate the trace of a product of local operators:

Tr b

[
M∏
i=1

Oi(xi)

]
=
∫

[dk]
M∏
i=1

[
Tr b

[
ei
∑

i ki ·xi
]
Oi(ki)

]
, (C32)

where we have introduced a shorthand notation [dk] =∏M
i=1

d2ki

(2π)2M , and Oi(ki) is understood as a Fourier transform
of Oi(xi). Now, we rewrite the exponent in terms of a and b:

eik·x = e
k̄�√

2
a− k�√

2
a†

e
− k̄�√

2
b†+ k�√

2
b = eq̄a−qa†

e−q̄b†+qb, (C33)

where we introduced q = k�√
2
, so that [dk] = ( 2

�2 )
M

[dq]. We
have for the exponent

eik·x = Da(−q)e− |q|2
2 e−q̄b†eqb. (C34)

Now, we plug this back into the trace:(
2

l2

)M M∏
i=1

∫
[dq]Da(−qi)

[
Tr b

[
e− |qi |2

2 e−q̄i b
†
eqib

]
Oi(qi)

]
.

(C35)

To proceed, we use (C24):

Tr b

[
M∏
i=1

e− |qi |2
2 e−q̄i b

†
eqib

]

= 1

π
e−∑

i

|qi |2
2

∫
d2p

[
e−|p|2〈0|ep̄b

M∏
i=1

e−q̄i b
†
eqibepb† |0〉

]
.

We want to normal order the product. In order to do this,
we use permutation relations:

ep̄b

M∏
i=1

e−q̄i b
†
eqibepb†

=: ep̄b

M∏
i=1

e−q̄i b
†
eqibepb† : e|p|2e

∑
i>j −q̄i qj e−p̄

∑
i q̄i ep

∑
i qi .

Denoting
∑

i qi = Q and using

〈0| : ep̄b

M∏
i=1

e−q̄i b
†
eqibepb† : |0〉 = 1, (C36)

we have

Tr b

[
M∏
i=1

e− |qi |2
2 e−q̄i b

†
eqib

]

= 1

π
e−∑

i

|qi |2
2 e

∑
i>j −q̄i qj

∫
d2pe−p̄QepQ̄. (C37)

The latter integral is a δ function:

1

π

∫
dp1dp2e

−p̄QepQ̄ = πδ(2)(Q) = π

∫
d2λ

(2π )2
eiλ·Q.

(C38)
We also use q̄iqj = qi · qj + iqi ∧ qj, where a ∧ b = a1b2 −
a2b1. As well as

1

2

∑
i

|qi |2 +
∑
i<j

qi · qj = 1

2
Q2 (C39)

then

Tr b

[
M∏
i=1

e− |qi |2
2 e−q̄i b

†
eqib

]
= πe−i

∑
i>j qi∧qj

∫
d2λ

(2π )2
eiλ·Q.

(C40)

We have proven that

Tr b

[
M∏
i=1

Oi(xi)

]
= π

(
2

l2

)M ∫
d2λ

(2π )2

M∏
i=1

∫
[dq]

× [Da(−qi)e
iλ·qiOi(qi)]e

−i
∑

i>j qi∧qj .

(C41)

Finally, using

Da(−q1) · . . . · Da(−qM ) = ei
∑

i>j qi∧qj Da(−q1 − · · · − qM )

= ei
∑

i>j qi∧qj Da(−Q), (C42)

we arrive at the trace formula

Tr b

[
M∏
i=1

Oi(xi)

]

= π

(
2

l2

)M ∫
d2λ

(2π )2

M∏
i=1

∫
[dq][eiλ·qiÕ�i(qi)].

(C43)

This is the generalization of the b-summation formula that
was used in Appendix B to an arbitrary number of external
legs. This formula is useful if one is aiming to evaluate the
generating functional to arbitrary order in external fields.

APPENDIX D: VERTICES FOR THE DIRAC
POLARIZATION TENSOR

In this Appendix, we explicitly write out the ver-
tices for the Dirac polarization tensor. These are obtained
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by straightforwardly combining (79) with (91) and using (46), for |n′| � |n| > 0,

�0
Dnn′(�k) = 1

2

(√ |n|!
|n′|!

(
k̄�√

2

)|n′|−|n|
L

|n′|−|n|
|n|

( |k�|2
2

)
+ sgn(n)sgn(n′)

√
(|n| − 1)!

(|n′| − 1)!

(
k̄�√

2

)|n|′−|n|
L

|n′|−|n|
|n|−1

( |k�|2
2

))
, (D1)

�1
Dnn′ (�k) = vF

2

(
sgn(n′)

√
|n|!

(|n′| − 1)!

(
k̄�√

2

)|n′|−|n|−1

L
|n′|−|n|−1
|n|

( |k�|2
2

)

+ sgn(n)

√
(|n| − 1)!

(|n′|)!
(

k̄�√
2

)|n|′−|n|+1

L
|n′|−|n|+1
|n|−1

( |k�|2
2

))
, (D2)

�2
Dnn′(�k) = − ivF

2

(
sgn(n′)

√
|n|!

(|n′| − 1)!

(
k̄�√

2

)|n′|−|n|−1

L
|n′|−|n|−1
|n|

( |k�|2
2

)

− sgn(n)

√
(|n| − 1)!

(|n′|)!
(

k̄�√
2

)|n|′−|n|+1

L
|n′|−|n|+1
|n|−1

( |k�|2
2

))
. (D3)

For the case |n| � |n′| > 0, the expressions for the vertices are obtained by using (47) instead of (46). For the case n = 0, |n′| > 0,

�0
D0n′(�k) = 1√

2

(√
1

|n′|!
(

k̄�√
2

)|n′|
L

|n′|
0

( |k�|2
2

))
, (D4)

�1
D0n′ (�k) = vF√

2

(
sgn(n′)

√
1

(|n′| − 1)!

(
k̄�√

2

)|n′|−1

L
|n′|−1
0

( |k�|2
2

))
, (D5)

�2
D0n′ (�k) = − ivF√

2

(
sgn(n′)

√
1

(|n′| − 1)!

(
k̄�√

2

)|n′|−1

L
|n′|−1
0

( |k�|2
2

))
, (D6)

For the case |n| > 0, n′ = 0,

�0
Dn0(�k) = 1√

2

(√
1

|n|!
(−k�√

2

)|n|
L

|n|
0

( |k�|2
2

))
, (D7)

�1
Dn0(�k) = vF√

2

(
sgn(n)

√
1

(|n| − 1)!

(−k�√
2

)|n|−1

L
|n|−1
0

( |k�|2
2

))
, (D8)

�2
Dn0(�k) = ivF√

2

(
sgn(n)

√
1

(|n| − 1)!

(−k�√
2

)|n|−1

L
|n|−1
0

( |k�|2
2

))
, (D9)

we can write down the explicit form of Eq. (90) as the summation of product of Laguerre polynomials for each pair of indices μ

and ν.

APPENDIX E: EVALUATION OF THE INFINITE SUMS

In this Appendix, we again use �k = (k1,0). The components of polarization tensors can be obtained from equation (90) and
the explicit form of vertex operator �

μ

Dnn′ (�k),

�12
D (
,�k) = i
�12

1 + i
k2
1�

12
2 + i
3�12

3 + · · · , (E1)

where �12
1 , �12

2 , and �12
3 are the result of Taylor expansion of (90) at specific order of ω and p, · · · represents the higher order

of frequency and momentum. The explicit form of �12
1 is

�12
1 = i

8π

( ∞∑
n=N+1

[(
√

n − √
n − 1)2 − (

√
n + 1 − √

n)2](
√

N + √
N + 1)2

)
, (E2)
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the first two terms come from the summation with n′ < 0 and n > 0, the last term is from n,n′ > 0. Similarly,

�12
2 = i�2

64π

{ ∞∑
n=N+1

[4(2n+ 1)(
√

n+1 − √
n)2 − 4(2n−1)(

√
n−√

n−1)2 + (n−1)(
√

n−√
n − 2)2 − (n + 1)(

√
n + 2−√

n)2]

− 4(2N−1)(
√

N + 1 +
√

N )2 + N (
√

N + 1 + √
N − 1)2 + (N + 1)(

√
N + 2 +

√
N )2

}
, (E3)

�12
3 = i�2

16πv2
F

{ ∞∑
n=N+1

[(
√

n−√
n−1)4−(

√
n + 1−√

n)4](
√

N + √
N + 1)4

}
. (E4)

The summations are convergent and can evaluated �12
1 , �12

2 , and �12
3 to obtain

�12(
,�k) = i

N + 1/2

2π
− i
k2

1�
2 6N2 + 6N + 1

16π
i
3 �2

v2
F

8N2 + 8N + 1

8π
+ · · · . (E5)

We derive similarly

�00
D (
,�k) = k2

1�
00
1 + · · · , (E6)

�11
D (
,�k) = 
2�11

1 + · · · , (E7)

�22
D (
,�k) = 
2�22

1 + k2
1�

22
2 + · · · . (E8)

There is no k2
1 term in �11(
,�k) and no 
2 term in �00(
,�k),

we can calculate the coefficients

�00
1 = �11

1 = �22
1

= �

8
√

2πvF

{ ∞∑
n=N+1

[(
√

n + 1 − √
n)3 + (

√
n

−√
n − 1)3] + (

√
N + √

N + 1)3

}
. (E9)

The summation is convergent and is given by

∞∑
n=N+1

[(
√

n + 1 − √
n)3 + (

√
n − √

n − 1)3]

= −(
√

N + √
N + 1)3 − 12ζ

(
− 1

2
,N + 1

)
, (E10)

where ζ (s,n) is the Hurwitz ζ function, which is defined as

ζ (s,q) =
∞∑

n=0

1

(n + q)s
. (E11)

As a result, we have

�00
1 = �11

1 = �22
1 = − 3�

2
√

2πvF

ζ

(
− 1

2
,N + 1

)
. (E12)

The coefficient �22
2 can be also calculated similarly:

�22
2 = 3�vF

4
√

2π
ζ

(
− 1

2
,N + 1

)
. (E13)

We summarize these results in Sec. III.

APPENDIX F: EVALUATE THE SUMMATIONS OF
NONRELATIVISTIC POLARIZATION TENSOR AT

LARGE-N LIMIT

In this Appendix, we will show the explicit calculation of
polarization tensors in the Sec. V A. The following Bessel
function identities will come in handy:

J1−ω(q)J1+ω(q) − J−1−ω(q)J−1+ω(q) = 4ω sin(πω)

πq2
, (F1)

ωJω(q) = q

2
(J1+ω(q) + J−1+ω(q)), (F2)

ωJ−ω(q) = −q

2
(J1−ω(q) + J−1−ω(q)). (F3)

The summations (119)–(121) can be recast as

�11(q,ω) = −Nωc

2π
+

∞∑
n=1

−2Nn4ωc[Jn(q)]2

πq2(ω2 − n2)
, (F4)

�22(q,ω) = − Nωc

2π
+

∞∑
n=1

−Nn2ωc[Jn−1(q) − Jn+1(q)]2

2π (ω2 − n2)

− g
∞∑

n=1

n2ωcq[Jn−1(q) − Jn+1(q)]Jn(q)

4π (ω2 − n2)

− g2
∞∑

n=1

q2n2ωc[Jn(q)]2

32Nπ (ω2 − n2)

= − Nωc

2π
− Nωc

2π

∞∑
n=1

n2[Jn−1(q) − Jn+1(q)]2

(ω2 − n2)

− gωcq
∂

∂q

∞∑
n=1

n2[Jn(q)]2

4π (ω2 − n2)

− g2
∞∑

n=1

q2n2ωc[Jn(q)]2

32Nπ (ω2 − n2)

= − Nωc

2π
− Nωc

2π

∞∑
n=1

[−4n2Jn−1(q)Jn+1(q)

(ω2 − n2)

+4n4Jn(q)Jn(q)

q2(ω2 − n2)

]
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− gωcq
∂

∂q

∞∑
n=1

n2[Jn(q)]2

4π (ω2 − n2)

− g2
∞∑

n=1

q2n2ωc[Jn(q)]2

32Nπ (ω2 − n2)

=�11(q,ω) + 2Nωc

π

∞∑
n=1

n2Jn−1(q)Jn+1(q)

(ω2 − n2)

− gωcq
∂

∂q

∞∑
n=1

n2[Jn(q)]2

4π (ω2 − n2)

− g2
∞∑

n=1

q2n2ωc[Jn(q)]2

32Nπ (ω2 − n2)
, (F5)

�12(q,ω) =
∞∑

n=1

− iNn2ωωcJn(q)[Jn−1(q) − Jn+1(q)]

πq(ω2 − n2)

− g
∞∑

n=1

iωn2ωc[Jn(q)]2

4π (ω2 − n2)

= − iNωωc

πq

∂

∂q

∞∑
n=1

n2Jn(q)Jn(q)

(ω2 − n2)

− g
∞∑

n=1

iωn2ωc[Jn(q)]2

4π (ω2 − n2)
, (F6)

where we used
∂

∂x
Jn(x) = 1

2
(Jn−1(x) − Jn+1(x)). (F7)

Using the identity
∞∑

n=1

n2[Jn(x)]2 = x2

4
, (F8)

we can rewrite �11(q,ω) as

�11(q,ω) = −2Nω2ωc

πq2

∞∑
n=1

n2[Jn(q)]2

(ω2 − n2)
. (F9)

Next, we need to evaluate
∞∑

n=1

n2[Jn(q)]2

(ω2 − n2)
= ω2

∞∑
n=1

[Jn(q)]2

(ω2 − n2)
−

∞∑
n=1

[Jn(q)]2, (F10)

∞∑
n=1

n2Jn−1(q)Jn+1(q)

(ω2 − n2)

= ω2
∞∑

n=1

Jn−1(q)Jn+1(q)

(ω2 − n2)
−

∞∑
n=1

Jn−1(q)Jn+1(q) (F11)

to derive the closed form of �ij (p,ω). Both of the above
summations can be evaluated using the tricks in Ref. [14],
which gives us

∞∑
n=1

n2[Jn(q)]2

(ω2 − n2)
= −1

2
+ πω

2 sin(πω)
Jω(q)J−ω(q), (F12)

∞∑
n=1

n2Jn−1(q)Jn+1(q)

(ω2 − n2)
= − πω

2 sin(πω)
J1−ω(q)J1+ω(q).

(F13)

We therefore can derive the closed form of polarization tensor

�11(q,ω) = Nω2ωc

πq2

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)
, (F14)

�12(q,ω) = − iNωωc

2πq

πω

sin(πω)

∂

∂q
[Jω(q)J−ω(q)]

+ i
gωωc

8π

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)
, (F15)

�22(q,ω) = Nω2ωc

πq2

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)

− Nωcω

sin(πω)
J1−ω(q)J1+ω(q)

− gqωωc

8 sin(πω)

∂

∂q
[Jω(q)J−ω(q)]

+ g2q2ωc

64πN

(
1 − πω

sin(πω)
Jω(q)J−ω(q)

)
. (F16)

Since the closed form of polarization tensor is obtained, we can
derive the large-N approximation of conductivity and compare
with the Fermi liquid calculation.
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