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Optical phonons for Peierls chains with long-range Coulomb interactions
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We consider a chain of atoms that are bound together by a harmonic force. Spin-1/2 electrons that move
between neighboring chain sites (Hückel model) induce a lattice dimerization at half band filling (Peierls effect).
We supplement the Hückel model with a local Hubbard interaction and a long-range Ohno potential, and
calculate the average bond-length, dimerization, and optical phonon frequencies for finite straight and zigzag
chains using the density-matrix renormalization group (DMRG) method. We check our numerical approach
against analytic results for the Hückel model. The Hubbard interaction mildly affects the average bond length
but substantially enhances the dimerization and increases the optical phonon frequencies whereas, for moderate
Coulomb parameters, the long-range Ohno interaction plays no role.
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I. INTRODUCTION

The calculation of lattice vibrations in ordinary metals
and band insulators is one of the basic tasks in theoretical
solid-state physics [1–5]. Phonon dispersions can be measured
with inelastic neutron scattering [6–8], and Raman and infrared
spectroscopy permit the detection of vibrations with finite
energy and vanishingly small momenta (“optical phonons”)
in crystals and in molecules [9–11].

For correlated electron systems, however, the calculation
of phonon frequencies is still at its beginning. For one-
dimensional systems, for example, theoretical investigations
focus on the ground-state phase diagram of the Holstein-
Hubbard model where the competition between the electron-
phonon coupling and the electron-electron interaction leads to
a rich ground-state phase diagram [12–16].

In the adiabatic limit where the phonons can be treated clas-
sically, one-dimensional electronic systems at half band filling
dimerize (Peierls effect) [17], as is observed in π -conjugated
polymers such as trans-polyacetylene [18,19]. The phonon
spectrum of such a Peierls insulator cannot be described by
short-range forces (“harmonic springs”) acting between atoms
at short distances because the optical phonon branch shows a
nontrivial momentum dependence with a strong reduction at
small momenta. A Peierls chain of noninteracting electrons
provides a well-known example for this softening of optical
phonons [20]. This was shown some forty years ago by
Rice and Strässler and by Schulz [21,22]. To distinguish the
softening of longitudinal acoustic phonons on the metallic side
(the Kohn anomaly) [17,23] from the optical phonon softening
on the insulating side, we term the latter Rice-Strässler-Schulz
(RSS) anomaly although the anomalies are the two sides of
the same coin [22].

It is not well understood how the electron-electron interac-
tion influences the (optical) phonon frequencies. In this work,
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we study electrons that move between neighboring sites on a
half-filled chain (the Hückel model) [24] so that the system de-
scribes a Peierls insulator. We add a local Hubbard interaction
and a long-range Ohno potential that approximates the elec-
trons’ Coulomb interaction (the Hückel-Hubbard and Hückel-
Hubbard-Ohno models). Therefore we are able to investigate
the influence of electronic correlations on the RSS anomaly.

Reliable numerical investigations of ground-state and
excited-state properties for long Hückel-Hubbard chains have
become possible only recently using the density-matrix renor-
malization group (DMRG) method [25,26]; for developments
of the method in the last decade, see Refs. [27–29] and
references therein. We find that the Coulomb interaction
suppresses the RSS anomaly and increases the frequency of
the optical phonons.

Our work is structured as follows. In Sec. II, we set up our
Hückel-Hubbard-Ohno Hamiltonian for the itinerant electrons
that move over a straight or zigzag backbone of harmonically
bound atoms. Moreover, we define the backbone distortions
that correspond to phonons in the limit of long wavelengths.

In Sec. III, we analyze the Hückel model for noninteracting
electrons analytically for periodic boundary conditions and
numerically for open boundary conditions using the DMRG
method. For Peierls insulators with a sizable gap, the average
bond length, the dimerization, the single-particle gap, and the
optical phonon frequencies for systems with up to LC = 110
sites can safely be extrapolated to the thermodynamic limit.

In Sec. IV, we show that the Hubbard interaction is
primarily responsible for the increase of the dimerization and
of the phonon frequencies in comparison with the results for
the bare Hückel model. A moderately large Ohno interaction
leads to very small corrections only. Since the Hubbard interac-
tion substantially increases the single-particle gap, finite-size
effects are well under control. For our parameter set, the
calculated optical phonon frequencies on a zigzag chain are in
the range of measured values in trans-polyacetylene [30–33].

Summary and conclusions, Sec. V, close our presenta-
tion. Technical details are deferred to two appendices and
Ref. [20].
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FIG. 1. Coordinates and angles in a planar and unflexed dimerized
zigzag chain.

II. MODEL

Our model study mimics the properties of trans-
polyacetylene. We focus on the carbon-carbon stretch and
bend modes so that we can work with a small set of
parameters. The calculation of optical phonon frequencies in
trans-polyacetylene requires a more sophisticated description
of the structure, namely, the motion of the hydrogen atoms
(C-H bond stretching and bending) must be included.

A. Structure

The carbon atoms in trans-polyacetylene are arranged in
a zigzag chain. For a perfect sp2 hybridization of the carbon
2s–2p orbitals, the atoms arrange in a zigzag chain as ground-
state conformation with ϑ

(0)
l = χ

(0)
l = ϕ

(0)
l = �0 = 2π/3 =

120◦, see Fig. 1. For illustrative purposes and for comparison
with earlier work, we shall also address a straight chain with
ϑ

(0)
l = π = 180◦,χ (0)

l = ϕ
(0)
l = π/2 = 90◦.

For our analytic calculations, we consider a chain with
LC = 2L atoms that is supposed to be planar and unflexed.
The atoms occupy the positions (l = 1,2, . . . 2L)

�rl =
(

xl

yl

)
. (1)

We denote the ground-state coordinates by capital letters,
�r (0)
l ≡ (Xl,Yl)T. We orient the chain to the right of the origin,

X1 = Y1 = 0 and X3 > 0,Y3 = 0 in the ground state. For
our numerical investigations, we add two atoms, one at the
beginning and one at the end of the chain, whose positions are
kept fixed during the geometry optimization. In the following,
we formulate our equations for LC = 2L.

B. Contributions to the ground-state energy

In the ground state, the bond lengths are alternating between
long “single” bonds and short “double” bonds. The Peierls
distortion is due to the itinerant electrons that interact via the
Hubbard-Ohno interaction. For the zigzag chain, a clock spring
models the repulsive interaction of the σ bonds.

1. Electronic Hamiltonian

The system is half-filled, i.e., the number of electrons equals
the number of sites, N↑ + N↓ = LC = 2L; it is paramagnetic,
N↑ = N↓ = LC/2 = L. The electrons move between neigh-
boring sites (Hückel model) [24]

T̂ = −
∑

σ

2L−1∑
l=1

tl(ĉ
†
l+1,σ ĉl,σ + ĉ

†
l,σ ĉl+1,σ ), (2)

where ĉ
†
l,σ (ĉl,σ ) creates (annihilates) an electron with spin

σ = {↑,↓} on carbon atom l. The parameters for the electron
transfer between nearest neighbors are given by the Peierls
expression (l = 1,2, . . . ,2L − 1)

tl = t(dl) = t0 exp(−(dl − r0)α/t0), (3)

where t0 = 2.5 eV is the electron transfer parameter at distance
r0 = 1.4 Å, and α = 4.0 eV Å−1 parameterizes the Peierls
coupling [34]. Moreover, the nearest-neighbor distances dl as
a function of the coordinates {xl},{yl} are given by

dl = | �dl| =
√

(xl+1 − xl)2 + (yl+1 − yl)2. (4)

More generally, we denote the distance between the atoms i

and j by

dij = |�ri − �rj | =
√

(xi − xj )2 + (yi − yj )2. (5)

The Coulomb interaction between the electrons is given by
the Hubbard-Ohno interaction,

Ĥint = U

2L∑
l=1

(n̂l,↑ − 1/2)(n̂l,↓ − 1/2)

+ 1

2εd

2L∑
l �=m=1

V (dlm)(n̂l − 1)(n̂m − 1), (6)

where n̂l,σ = ĉ
†
l,σ ĉl,σ counts the number of σ electrons on

carbon atom l, and n̂l = n̂l,↑ + n̂l,↓. We parametrize the
distance-dependence of the density-density interaction by the
Ohno expression [18,19]

V (x) = V√
1 + β(x/Å)2

, β =
(

V

14.397 eV

)2

. (7)

The Ohno form guarantees that, at large distances, the
electrons interact via their unscreened Coulomb interaction,
e2 = 14.397 eV Å. In this study, we use the Coulomb and
screening parameters U = 6 eV, V = 3 eV, and εd = 2.3, as
in our investigation of polydiacetylene [35].

The Hückel-Hubbard-Ohno model reads

Ĥel = T̂ + Ĥint. (8)

We must determine the electronic ground-state energy

Eel({xl},{yl}) = 〈�0|Ĥel|�0〉. (9)

Eel parametrically depends on the positions of the atoms.
For our analytical calculations for the Hückel model, we use
periodic boundary conditions for a ring with LC = 2L atoms,
see Appendix A.

For our numerical investigations for the Hückel–Hubbard
(-Ohno) model, we employ open boundary conditions for
chains with LC = 2L + 2 atoms. The DMRG provides highly
accurate results for large system sizes with up to LC = 110
sites, see Appendix B.

2. Bond compression/stretching energy

In the adiabatic limit, the energy for bond compression or
stretching parametrically depends on the distances between
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neighboring atoms,

ECC({xl},{yl}) =
2L−1∑
l=1

Vσ (dl). (10)

We use a linear force function

Vσ (r) = Kσ,0(r − r0) + Kσ,1

2
(r − r0)2, (11)

where r0 = 1.4 Å is the average carbon atom distance in
trans-polyacetylene. For most of our study we use Kσ,0 =
−4.8 eV Å−1 and Kσ,1 = 42 eV Å−2, as motivated in Ref. [34].

3. Bond bending energy

The electronic Hamiltonian and the σ -bond distortion term
do not lead to a zigzag geometry in the ground state. To
stabilize the structure shown in Fig. 1, we include the repulsion
of the σ bonds via a clock spring,

ECC b({xl},{yl}) = Cb

2

2L−1∑
l=1

(cos(ϑl) − cos(�0))2 (12)

with

cos(π − ϑl) = (xl+1 − xl)(xl − xl−1)

dldl−1

+ (yl+1 − yl)(yl − yl−1)

dldl−1
. (13)

For the straight chain, we set Cb = 0 and arrange all atoms on
a line, i.e., we set yl = 0 from the outset.

To second order in (ϑl − �0), we may equally write

ECC b({xl},{yl}) = C̃b

2

2L−1∑
l=1

(ϑl − �0)2 (14)

with C̃b = Cb sin2(�0). The clock-spring constants differ by
a factor sin2(�0) = 3/4 when we work with angles, as in
Eq. (14), instead of their cosines, as in Eq. (12). For the zigzag
chains, we set C̃b = 3.5 eV rad−2, i.e., Cb = 4.667 eV, which
is a reasonable value for polymers [31].

4. Total energy

The total energy of the structure is the sum of all three
contributions. We abbreviate the coordinates of the atoms in
the lth unit cell (l = 1, . . . ,L) by

�pl =

⎛⎜⎜⎝
x2l

y2l

x2l−1

y2l−1

⎞⎟⎟⎠. (15)

Then, the total energy of the structure reads

Estruc({ �pl}) = Eel({xn},{yn}) + ECC({xn},{yn})
+ECC b({xl},{yl}). (16)

FIG. 2. Four distortions in the unit cell for optical phonons in a
planar and unflexed zigzag chain.

It must be minimized with respect to the positions of the carbon
atoms ({xn},{yn}),

E0 = Estruc({ �Rl}), (17)

∂Estruc({ �pl})
∂pl,j

∣∣∣∣
�pl= �Rl

= 0 for j = 1, . . . ,4. (18)

By construction, we find the minimum E0 of the en-
ergy functional Estruc at the optimal atomic positions �Rl =
(X2l ,Y2l ,X2l−1,Y2l−1)T for l = 1, . . . ,L.

C. Optical phonons

The second derivatives of the ground-state energy with
respect to the atomic positions define the dynamical matrix
from which the phonon spectrum can be calculated [5]. In the
following we shall focus on distortions that are identical in
each unit cell (“optical phonons”).

1. Distortions and dynamical matrix

The light field adds vanishingly small momentum to the sys-
tem [5]. Therefore, at q ≈ 0, the motion of all atoms is the same
when going from one unit cell to the next. Thus we may set

�pl − �Rl = �δ = (δ1,δ2,δ3,δ4)T. (19)

The energy in presence of the distortion becomes a function
of the four parameters �δ,

E(�δ) = Estruc({ �Rl + �δ}). (20)

The distortions are shown schematically in Fig. 2. Note that the
distortions describe both optical and acoustic modes. At q = 0,
the latter have zero energy because they correspond to the
motion of the chain as a whole, see our discussion in Sec. II C 2.

The chain is symmetric under a rotation by 180◦ around
its midpoint. It is useful to work with lattice distortions that
respect this C2 symmetry. Therefore, for our calculations, we
henceforth use

�pl − �Rl = �̃δ = (δ̃1,δ̃2,δ̃3,δ̃4)T = (O · �δ )T

=
(

δ1 + δ3√
2

,
δ2 + δ4√

2
,
δ1 − δ3√

2
,
δ2 − δ4√

2

)T

(21)
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with

O+ = O−1 = O =
√

1

2

⎛⎜⎝1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞⎟⎠ (22)

to separate the symmetry sectors Ag (“gerade”) and Bu

(“ungerade”).
For the calculation of the dynamical matrix, we need to

Taylor expand the energy to second order,

E(�δ) ≈ E0 + L

2

4∑
i,j=1

Ki,j δiδj , (23)

where we used Eqs. (17) and (18) and defined the elements of
the real, symmetric dynamical matrix

Ki,j = 1

L

L∑
n,m=1

∂2Estruc({ �pl})
∂pn;i∂pm;j

∣∣∣∣
�pl= �Rl

(24)

for optical phonons. Correspondingly, we have

E(�δ) ≈ E0 + L

2

4∑
i,j=1

K̃i,j δ̃i δ̃j (25)

with K̃ = O+ · K · O. Note that K̃ is block diagonal,

K̃ =
(

Bu 0

0 Ag

)
, (26)

where Ag and Bu, are 2 × 2 matrices and 0 is the 2 × 2 zero

matrix.

2. Classical Hamilton function and phonon frequencies

The corresponding classical Hamilton function for the
displacement in one unit cell is given by

Hph({δ̇l},{δl}) = T ({δ̇l}) + V ({δl}) (27)

with

T ({δ̇l}) = M

2

4∑
i=1

(δ̇i)
2 = M

2

4∑
i=1

( ˙̃δi)
2,

V ({δl}) = 1

2

4∑
i,j=1

Ki,j δiδj = 1

2

4∑
i,j=1

K̃i,j δ̃i δ̃j , (28)

where M is the mass of the atoms.
The optical phonon frequencies can be derived from the

classical equations of motion [5]. The four phonon frequen-
cies result from the zeros of the characteristic polynomials
PA,B(ω2) with

PA(ω2) ≡ Det(−ω2M1 + Ag) = 0,

(29)
PB(ω2) ≡ Det(−ω2M1 + Bu) = 0,

where M = 12u (1u = 1.66054 × 10−27 kg) is the mass of an
atom and 1 is the 2 × 2 unit matrix. Since all atoms have equal

mass, we immediately find (l = 1,2)

ωacc
l =

√
K̃B,l

M
, ω

opt
l =

√
K̃A,l

M
, (30)

where K̃A/B,l are the two eigenvalues of the dynamical
matrices Ag and Bu, respectively.

For periodic boundary conditions, the two eigenvalues in
the Bu symmetry sector are zero, K̃B,1 = K̃B,2 = 0, because
they correspond to a horizontal or vertical motion of the
whole chain. For our numerical investigations, we fix the
first and last atom so that K̃B,1 and K̃B,2 are not exactly
zero. This gives rise to two “acoustic” phonons in our DMRG
calculations. Their energies are proportional to the inverse of
the total mass of the chain so that the energy of the acoustic
modes vanishes in the thermodynamic limit, ωacc

l ∼ √
1/LC .

Differences between the analytic and numerical results for
ω

opt
1 and ω

opt
2 in the Hückel model can be used to assess

the importance of finite-size effects and to test the numerical
accuracy of our approach.

When we measure energies in eV and distances in
Ångström, the entries of the dynamical matrix have the unit
eV Å−2. Thus the phonon frequencies in Eq. (30) are given
in units of

√
eV/u/Å. To express the phonon frequencies in

terms of wave numbers (cm−1), we use the conversion factor

λ−1

cm−1
= ω√

eV/u/Å

√
1.60219

1.66054

× 1014 1

2π 2.997925 × 1010
. (31)

The conversion factor amounts to 521.473.

III. HÜCKEL MODEL

We start the presentation of our results with an analysis of
the Hückel model that can be solved analytically for periodic
boundary conditions. Therefore we can assess the quality of
the numerical DMRG calculations, i.e., we study edge effects
and finite-size effects for the average bond length and the
dimerization, and the system-size dependence of the optical
phonon frequencies. We shall show that DMRG provides
a reliable description for finite systems, and we can safely
extrapolate the optical phonon data to the thermodynamic limit
if the single-particle gap is converged for the maximal system
sizes that we have reached numerically.

For the Hückel model, we use two parameter sets. The
first set is t0 = 2.5 eV, α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1,
and Kσ,1 = 29.5 eV Å−2, similar to the values suggested by
Su, Schrieffer, and Heeger [36]. For the first parameter set,
the electron-phonon coupling parameter, λ = 2α2/(πt0Kσ,1),
is large, λ(1) = 0.14, and we find a large dimerization and a
substantial Peierls gap. The second set uses the same values
for t0, α, and Kσ,0 but employs Kσ,1 = 42 eV Å−2 so that the
electron-phonon coupling parameter is smaller, λ(2) = 0.097.
The second set permits the discussion of the case of a small
dimerization and a small Peierls gap. When used in the Hückel-
Hubbard-Ohno model with U = 6 eV, V = 3 eV, and εd =
2.3, the second parameter set leads to reasonable values for the
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FIG. 3. Bond lengths for the Hückel model on a straight chain
with t0 = 2.5 eV, α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, and Kσ,1 =
42 eV Å−2 for L = 32 unit cells for periodic boundary conditions
(pbc, analytic calculation, LC = 64) and open boundary conditions
(obc, DMRG, LC = 66).

dimerization, single-particle gap, and exciton binding energy
for trans-polyacetylene [34].

A. Average bond length and dimerization

For noninteracting electrons, the average bond length and
dimerization are the same for the straight and zigzag chains
because the energy is solely a function of the bond lengths so
that bond angles are irrelevant.

1. Edge effects

In Fig. 3, we show the bond length dl as a function of the
bond coordinate l for the Hückel model on a straight chain with
L = 32 unit cells for periodic boundary conditions (analytic
result, pbc) and for open boundary conditions (DMRG, obc).
As seen from the figure, the lengths of the single and double
bonds obtained from open boundary conditions agree within
a small error margin with the analytical result for periodic
boundary conditions not only in the center of the chain but for
all sites 20 < l < 46. Therefore our calculated average length
r and dimerization �, taken at the middle of the chain, are
not influenced by edge effects for moderately large chains,
L � 30.

2. Finite-size effects

The finite-size extrapolation for the average bond length
and the dimerization can nicely be carried out from our DMRG
data for up to LC = 110, see Fig. 4. The average bond length
is almost independent of system size and boundary conditions,
as seen from the comparison of periodic boundary conditions
(analytical result) and open boundary conditions (DMRG).

Finite-size and interaction effects are more pronounced
for the dimerization. For the Hückel model, open boundary
conditions lead to a larger dimerization than periodic boundary
conditions. In both cases, the data for finite system sizes
can reliably be extrapolated to the thermodynamic limit even
for Kσ,1 = 42 eV Å−2 that leads to a small dimerization,
� ≈ 0.015 Å.

FIG. 4. Average bond length and dimerization for the Hückel
model with t0 = 2.5 eV, α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, and
Kσ,1 = 42 eV Å−2 as a function of the inverse chain length for
periodic boundary conditions (pbc, analytic calculation, LC = 2L)
and for open boundary conditions (obc, DMRG, LC = 2L + 2). The
limiting values for the Hückel model are rH = 1.39107 Å and �H =
0.01555 Å. For the quadratic extrapolation of the DMRG data, system
sizes LC � 50 are used. Inset: Dimerization for Kσ,1 = 29.5 eV Å−2.

In the inset of Fig. 4, we show the dimerization for Kσ,1 =
29.5 eV Å−2 that leads to a large dimerization, � ≈ 0.077 Å.
The convergence is significantly faster, and systems as small
as LC = 32 provide a reliable estimate for the value in the
thermodynamic limit.

B. Optical phonons

The frequency of the optical phonons sensitively depends
on the size of the gap. To elucidate this effect, we analyze two
different parameter sets.

1. Large Peierls gap

We start with a parameter set that leads to a sizable gap and
a large dimerization with weak finite-size dependencies. For
Kσ,1 = 29.5 eV Å−2, the average bond length is r̄ ≈ 1.38 Å,
and the dimerization is � ≈ 0.08 Å, see the inset of Fig. 4,
close to the values used by Su, Schrieffer, and Heeger [36].
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TIMÁR, BARCZA, GEBHARD, AND LEGEZA PHYSICAL REVIEW B 95, 085150 (2017)

0 0.01 0.02 0.03 0.04 0.05
1/L

C

1

1.2

1.4

1.6

1.8
ΔE

sp
(e

V
)

ΔEsp, analytic, pbc

ΔEsp, DMRG, obc

1.2868+331.5x2

FIG. 5. Single-particle gap for the Hückel model with t0=2.5 eV,
α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, and Kσ,1 = 29.5 eV Å−2 as a
function of the inverse chain length for periodic boundary conditions
(pbc, analytic calculation, LC = 2L) and for open boundary con-
ditions (obc, DMRG, LC = 2L + 2). The limiting value is �Esp =
1.2853 eV. For the quadratic extrapolation of the DMRG data, system
sizes LC � 50 are used.

For the Hückel model the single-particle gap is given by

Esp = 2[t(r̄ − �) − t(r̄ + �)]. (32)

The finite-size dependence of the gap is shown in Fig. 5.
For a large Peierls gap, the finite-size effects are seen to

be small for periodic boundary conditions. The gap value
changes by only 1% from LC = 20 to the thermodynamic
limit. The gap is essentially converged for LC � 50. For open
boundary conditions, however, there are noticeable finite-size
effects. Systems as large as LC = 100 are required to detect
the quadratic convergence of the gap as a function of 1/LC .
In spite of the large discrepancies in the finite-size results
for different boundary conditions, the extrapolated gap value
agrees with the analytic result with an accuracy of 0.1%.

0 0.01 0.02 0.03 0.04 0.05
1/L

C

860

880

900

920

940

960

980

ω
(c

m
-1
)

ωopt, analytic, pbc
ωopt, DMRG, obc
880.2+1999x

FIG. 6. Optical phonon frequency for the Hückel model on a
straight chain as a function of the inverse chain length for the same
parameter set as in Fig. 5. The limiting value is ωopt = 856.3 cm−1.
For the linear extrapolation of the DMRG data, system sizes LC � 50
are used.

0 0.01 0.02 0.03 0.04 0.05
1/L

C

700

800

900

1000

ω
(c

m
-1
)

ω
1
opt; analytic, pbc

ω
1
opt; DMRG, obc

716.3+1343x
ω

2
opt; analytic, pbc

ω
2
opt; DMRG, obc

1013.9+95.0x

FIG. 7. Optical phonon frequencies for the Hückel model on a
zigzag chain with C̃b = 3.5 eV/rad2 as a function of the inverse
chain length for the same parameter set as in Fig. 5. The limiting
values are ω

opt
1 = 705.1 cm−1 and ω

opt
2 = 1014 cm−1. For the linear

extrapolation of the DMRG data, system sizes LC � 50 are used.

In Fig. 6, we show the phonon frequency for a straight chain
as a function of inverse system size. As for the single-particle
gap shown for different boundary conditions in Fig. 5, the
finite-size effects are seen to be small for periodic boundary
conditions. The phonon frequency changes only by 2% from
LC = 20 to the thermodynamic limit. For LC � 50, the optical
phonon frequency is essentially converged. For open boundary
conditions on the contrary, the large finite-size effect seen for
the single-particle gap are even more pronounced for optical
phonons. Even for LC = 110, the optical phonon frequencies
show a fairly linear dependence on the inverse system
size. Note that a reliable extrapolation of a size-dependent
quantity F (LC) to the thermodynamic limit is only possible
if the expected asymptotic behavior F (LC) = F∞ + F2/L

2
C

is discernible. Since this is not the case for the numerical
data for ω(LC) in Fig. 6, a linear extrapolation of the data
to the thermodynamic limit does not recover the result in the
thermodynamic limit, ω

opt
∞ = 880 cm−1 is about 24 cm−1 or

2.8% larger than the analytic result ωopt = 856.3 cm−1 for
an infinitely long chain. The precise extrapolation into the
thermodynamic limit for the given parameter set would require
significantly larger system sizes which would, however, be
very demanding computationally when a fixed threshold on the
numerical error of the lattice relaxation procedure is enforced.

The slow convergence of the frequencies corresponding to
stretching can be understood as follows. For q = 0 optical
phonons, the distortions are identical in the bulk and at the
edges. Accordingly, they are more susceptible to the boundary
conditions than the lowest-energy single-particle excitation
that has a vanishing amplitude at the boundaries. Therefore a
possible way to improve the convergence would be to address
optical phonons at small but finite momenta, of the order
of 1/LC .

We note that the bare optical frequency for a chain
without electron-phonon coupling (α = 0) is given by ω0 =√

4Kσ,1/M = 1635 cm−1 [20]. For the Hückel model, we see
a strong renormalization of the optical phonon frequency. The
renormalization of the phonon frequency is quite large, about
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FIG. 8. Optical phonon distortions associated with the antiphase
stretching mode at frequency ω

opt
1 (blue arrows) and with the antiphase

swinging mode at frequency ω
opt
2 (red dotted arrows) for the Hückel

model on LC = 80 sites and periodic boundary conditions, for the
same parameter set as in Fig. 5.

a factor of two, ωopt/ω0 = 0.524. This behavior reflects the
well-known RSS anomaly [18,20–22].

In Fig. 7, we show the phonon frequencies for a zigzag chain
as a function of inverse system size. The lower (higher) phonon
frequency is associated with antiphase stretching (swinging)
of the carbon atoms with respective eigenvectors,

√
2
(�δopt

1

)T = (cos(γ ), sin(γ ),− cos(γ ),− sin(γ )),
√

2
(�δopt

2

)T = (sin(γ ),− cos(γ ),− sin(γ ), cos(γ )). (33)

For LC = 80 sites and periodic boundary conditions, we find
γH = 0.355 rad = 20.4◦. They result from the diagonalization
of the dynamical matrix with the entries K̃

pbc
33 = 24.78, K̃pbc

34 =
K̃

pbc
43 = −7.64, and K̃

pbc
44 = 42.57 (in units of eV Å−2). The

distortions are shown in Fig. 8. The corresponding numbers
for open boundary conditions are K̃obc

33 = 27.48, K̃obc
34 =

K̃obc
43 = −8.28, K̃obc

44 = 41.64 (in units of eV Å−2), and γ obc
H =

0.431 rad = 24.7◦.
The antiphase mode at frequency ω

opt
1 corresponds to a

stretching of the double bond. Therefore it is strongly linked
to the π -electron system and, correspondingly, it is sensitive
to the choice of boundary conditions and to the actual size
of the single-particle gap, as already seen for the phonon in
the straight chain. Consequently, the linear extrapolation of the
DMRG data to the thermodynamic limit in Fig. 7 overestimates
the analytic value by about 1.5%.

The antiphase swinging mode at frequency ω
opt
2 increases

the bond-bending energy but barely changes the kinetic energy
of the π electrons because the bond lengths remain almost
constant. Since ω

opt
2 is a very well localized excitation it shows

small finite-size effects for both periodic and open boundary
conditions. Correspondingly, we recover the analytic value in
the thermodynamic limit from a linear extrapolation of the
DMRG data with an accuracy of 0.01%, see Fig. 7. In sum, for
Peierls insulators with a sizable gap, DMRG calculations for
open boundary conditions can be used to calculate reliably
bond lengths, gaps, and optical phonon frequencies in the
thermodynamic limit.

2. Small Peierls gap

For Peierls insulators with a small single-particle gap, finite-
size effects are much larger and it is much more difficult to

0 0.01 0.02 0.03 0.04 0.05
1/L

C

0

0.2

0.4

0.6

0.8

1

ΔE
sp

(e
V

)

ΔEsp, analytic, pbc

ΔEsp, DMRG, obc

0.3093+656x2

FIG. 9. Single-particle gap for the Hückel model with t0 =
2.5 eV, α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, and Kσ,1 = 42 eV Å−2

as a function of the inverse chain length for periodic boundary
conditions (pbc, analytic calculation, LC = 2L) and for open bound-
ary conditions (obc, DMRG, LC = 2L + 2). The limiting value is
�Esp = 0.2525 eV. For the quadratic extrapolation of the DMRG
data, system sizes LC � 50 are used.

extract optical phonon frequencies in the thermodynamic limit
from finite-size data. To illustrate this feature, we analyze a
parameter set that leads to a small dimerization and a small
Peierls gap. For Kσ,1 = 42 eV Å−2, the average bond length is
r̄ ≈ 1.39 Å, and the dimerization is � ≈ 0.016 Å, see Fig. 4.
The finite-size dependence of the gap is shown in Fig. 9.

For a small Peierls gap, the finite-size effects are seen to
be relatively large. Even for periodic boundary conditions, the
gap value for LC = 20 is larger than that in the thermodynamic
limit by almost a factor two. Concomitantly, the finite-size
dependence of the gap is quite large for open boundary
conditions. A quadratic dependence of Esp(LC) on the inverse
system size 1/LC becomes discernible only for LC � 100. As
a consequence, the extrapolated gap is 22% larger than the
analytic value in the thermodynamic limit.

0 0.01 0.02 0.03 0.04 0.05
1/L

C

800

900
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1100

1200

1300

1400

ω
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m
-1
)
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1014+10013x

FIG. 10. Phonon frequency for the Hückel model on a straight
chain as a function of inverse chain length for the same parameter
set as in Fig. 9. The limiting value for the Hückel model is ωopt =
864.5 cm−1. For the linear extrapolation of the DMRG data, system
sizes LC � 50 are used.
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In Fig. 10, we show the optical phonon frequency for
a straight chain as a function of inverse system size. The
finite-size effects are seen to be large even for periodic
boundary conditions. The phonon frequency at LC = 20 is
45% larger than its value in the thermodynamic limit. A
quadratic dependence of ωopt(LC) on the inverse system
size 1/LC becomes discernible only for fairly large systems,
LC � 100. Corresponding to the large finite-size effects,
the boundary conditions also matter. The analytic results
for periodic boundary conditions and the numerical DMRG
results for open boundary conditions differ by 250 cm−1 for
moderately long chains, LC ≈ 100. Consequently, the linear
extrapolation of the DMRG data to the thermodynamic limit
leads to an optical phonon frequency that is 17% or 150 cm−1

higher than the analytic value.
In Fig. 11, we show the optical phonon frequencies for

a zigzag chain as a function of inverse system size. For
short chains, the frequency ω

opt
1 of the lower-energy optical

phonon is almost independent of LC until its frequency
becomes comparable to that of the higher-energy phonon at
ω

opt
2 which displays a large finite-size renormalization. Then,

an avoided crossing occurs around LC ≈ 30 for our parameter
set. The frequency ω

opt
2 of the higher-energy phonon levels

off and becomes independent of the system size and the
choice of boundary conditions. In contrast, the frequency ω

opt
1

of the lower-energy phonon displays large finite-size effects,
similarly to the optical phonon of the straight chain. As can be
seen from Fig. 11, it drops by almost 350 cm−1 from LC = 20
to the thermodynamic limit. It requires very large systems to
determine ω

opt
1 from finite-size extrapolations.

The example shows that the RSS anomaly is clearly visible
in Peierls insulators with a small gap. The dimerization and
single-particle gap display large finite-size effects. Corre-
spondingly, the optical phonon frequencies show a substantial
finite-size dependence. In the case of the zigzag chain, an
avoided crossing as a function of system size can be seen.
However, the RSS anomaly is suppressed in one-dimensional
Mott-Peierls insulators with a sizable single-particle gap, as
we shall show in the next section.
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FIG. 11. Optical phonon frequencies for the Hückel model on
a zigzag chain with C̃b = 3.5 eV/rad2 as a function of the inverse
chain length for the same parameter set as in Fig. 9. The limiting
values are ω

opt
1 = 746.9 cm−1 and ω

opt
2 = 1122 cm−1. For the linear

extrapolation of the DMRG data, system sizes LC � 50 are used.
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FIG. 12. Average bond length and dimerization for the Hückel-
Hubbard(-Ohno) model with t0 = 2.5 eV, U = 6 eV [V = 3 eV,
εd = 2.3], α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, Kσ,1 = 42 eV Å−2,
and C̃b = 3.5 eV/rad2 as a function of the inverse chain length
for open boundary conditions (obc, DMRG, LC = 2L + 2). For the
constant extrapolation of the DMRG data, system sizes LC � 50 are
used.

IV. HÜCKEL-HUBBARD-OHNO MODEL

In this section, we include the Coulomb interaction.
We choose U = 6 eV to obtain the average bond length,
dimerization, and single-particle gap as observed for trans-
polyacetylene. Moreover, the long-range Ohno interaction
with V = 3 eV and static screening parameter εd = 2.3 permit
us to reproduce the singlet-exciton binding energy [34]. The
Coulomb interaction increases the frequency of the optical
phonons and, due to the large single-particle gap, it eliminates
the signatures of the RSS anomaly as seen for small-gap Peierls
insulators in the previous section.

A. Average bond length, dimerization,
and single-particle gap

For the Hückel-Hubbard(-Ohno) model, finite-size and
edge effects are effectively suppressed because the single-
particle gap is large in the presence of the Coulomb interaction.
Therefore the corresponding length scales for the decay of
the edge effects are shorter than for the Hückel model, and
extrapolations for the average bond length and dimerization
are even more robust.
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FIG. 13. Single-particle gap for the Hückel-Hubbard model and
the Hückel–Hubbard-Ohno model on a straight chain as a function of
inverse chain length for the same parameter set as in Fig. 12. For the
quadratic extrapolation of the DMRG data, system sizes LC � 50 are
used.

For noninteracting electrons and for the Hückel-Hubbard
model with a purely local interaction, the average bond length
and dimerization are the same for the straight and zigzag chains
because the energy is solely a function of the bond lengths so
that bond angles are irrelevant. For this reason. we do not dis-
criminate the chain geometry for the Hückel-Hubbard model.

As seen from Fig. 12, the influence of the Coulomb
interaction on the average bond length is very small. The
Hubbard interaction increases the average bond length by
only 0.015 Å. The long-range Ohno interaction reduces the
average bond length again by a small amount so that the
increase in bond length is below 0.01 Å from the Hückel to
the Hückel-Hubbard-Ohno model. Figure 12 also shows that
the zigzag geometry has a negligible influence on the average
bond length.

In contrast, the Coulomb interaction is very important for
the size of the dimerization. The dimerization for the Hückel-
Hubbard(-Ohno) model with U = 6 eV (and V = 3 eV, εd =
2.3), is larger than that for the bare Hückel model by a factor
of two, from �H ≈ 0.02 Å to �HH ≈ 0.04 Å, the experimental
value for trans-polyacetylene. As seen from Fig. 12, the
main reason for this large increase is the Hubbard interaction
whereas the Ohno contribution is fairly small, below 0.002 Å.
For this reason, the chain geometry does not play a big role. As
seen from the figure, the difference between the dimerization
for straight and zigzag chains is at most 0.001 Å.

Finite-size effects are negligibly small. The average bond
length is essentially independent of LC , and the dimerization
becomes independent of system size for LC � 50. Therefore
we fit the DMRG data to a constant in Fig. 12.

For completeness, we show the single-particle gap for
the Hückel-Hubbard and Hückel-Hubbard-Ohno model for a
straight chain in Fig. 13. The results for the Hückel-Hubbard-
Ohno model change by less than one percent when we go from
the linear chain to the zigzag geometry. The parameters for the
Hückel-Hubbard-Ohno model reproduce the single-particle
gap and the exciton binding energy of trans-polyacetylene [34].
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FIG. 14. Phonon frequency for the Hückel-Hubbard(-Ohno)
model on a straight chain as a function of inverse chain length for the
same parameter set as in Fig. 12. For the quadratic extrapolation of
the DMRG data, system sizes LC � 50 are used.

The gaps are well converged for LC � 100 so that a reliable
extrapolation to the thermodynamic limit is possible. Since
the gaps are large, of the same magnitude as in Sec. III B 1,
we may expect that the optical phonon frequencies in the
thermodynamic limit can be extrapolated reliably from DMRG
data for chains with LC � 100 atoms.

B. Optical phonons

1. Linear chain

In Fig. 14, we show the phonon frequency as a function
of inverse system size for the Hückel-Hubbard and Hückel-
Hubbard-Ohno models. For comparison we note that the bare
optical frequency for a chain without electron-phonon cou-
pling (α = 0) is given by ω0 = √

4Kσ,1/M = 1951 cm−1 [20].
For our parameter set, the Coulomb interaction leads

to a substantial single-particle gap, see Fig. 13. As seen
from Fig. 14, the phonon frequency shows a very moderate
finite-size dependence and can nicely be extrapolated to
the thermodynamic limit. Moreover, the long-range Ohno
interaction shifts the phonon frequency by only 10 cm−1, or
less, i.e., the frequency shift is almost negligibly small, below
0.1%. This observation is helpful for parameter optimizations
because DMRG calculations for the Hückel-Hubbard model
are much less time consuming than those for the Hückel-
Hubbard-Ohno model due to the absence of the long-range
parts of the Coulomb interaction. It was already noted in
Ref. [37] that the long-range part of the Coulomb interaction
barely influences the effective σ -bond spring constant.

2. Zigzag chain

Lastly, we present results for the zigzag chain with an
angle �0 = 120◦ between adjacent double and single bonds.
In Fig. 15, we show the frequencies of the optical phonons for
the Hückel-Hubbard-Ohno model. As also seen for the straight
chain in Fig. 14, the phonon frequencies in the Ag symmetry
sector are shifted upward by the Coulomb interaction. As for
the straight chain, the long-range Coulomb interaction does
not affect the phonon frequencies significantly. The changes
are again of the order of 10 cm−1 or one percent.
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FIG. 15. Phonon frequencies for the Hückel-Hubbard(-Ohno)
model on a zigzag chain as a function of inverse chain length for
the same parameter set as in Fig. 12. For the linear extrapolation of
the DMRG data, system sizes LC � 30 are used.

The optical phonons are split in energy by about 100 cm−1

for all chain lengths so that an anticrossing of the phonons
as a function of frequency is not observed, in contrast to
the bare Hückel model with a small gap. The system sizes
LC ≈ 100 are still too small to permit a quadratic fit of the
phonon frequencies as a function of system size. We expect,
however, that the linear frequency extrapolations lead to the
correct phonon frequencies in the thermodynamic limit, to
within 10 cm−1 or one percent.

For completeness, in Fig. 16, we show the entries of the
dynamical matrix K̃i,j in the Ag sector as a function of
system size for the Hückel model with a small gap, and the
Hückel-Hubbard model. In the Hückel model with a small
gap, the matrix element K̃33 for antiphase distortions in the x

direction displays a large finite-size dependence, similar to the
finite-size gap in Fig. 9. For this reason, K̃33 equals the value for
K̃44 around LC = 30, which leads to the avoided crossing of
the phonon frequencies seen in Fig. 11. This drastic finite-size
behavior is suppressed by the Hubbard(-Ohno) interaction.
The Coulomb repulsion leads to a much larger single-particle
gap that is well converged as a function of inverse system
size for LC � 50. As a consequence, the phonon frequencies
shown in Fig. 15 are well separated and do not show signatures
of an avoided crossing. Note that K̃44 and K̃34 = K̃43 are
quite similar, i.e., the Coulomb interaction plays a minor role
for distortions that involve the y direction, perpendicular to
the chain orientation. This is not surprising because in our
quasi-one-dimensional system the electron wave functions are
extended only along the x direction.

In Fig. 17, we show the eigenvectors for the antiphase
oscillations for the Hückel-Hubbard model for U = 6 eV and
LC = 66. The eigenvectors for the lattice distortions for the
Hückel-Hubbard(-Ohno) model are still given by Eq. (33) but
now we have γHH = 1.13 rad = 65◦. The eigenvectors result
from the diagonalization of the dynamical matrix with the
entries K̃33 = 60.59, K̃34 = K̃43 = −4.54, and K̃44 = 53.00
(in units of eV Å−2).

A comparison of Fig. 8 for the Hückel model with a large
gap and of Fig. 17 for the Hückel-Hubbard model shows
that the eigenvector pairs are rotated against each other by
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FIG. 16. Entries of the dynamical matrix K̃i,j in the Ag sym-
metry sector for the Hückel-Hubbard model with t0 = 2.5 eV,
α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1, Kσ,1 = 42 eV Å−2, C̃b =
3.5 eV/rad2, and U = 6 eV, as a function of the inverse chain length
for open boundary conditions.

about 45 degrees. In the Hückel-Hubbard model, there is
no clear distinction between a “stretching” and a “swinging”
mode. Instead, the phonon mode with the (higher) energy ω

opt
2

corresponds to a stretching of the single bond whereas the
phonon mode with the (lower) energy ω

opt
1 involves a stretching

(and swinging) of the double bond. Therefore both modes are
very similar in their finite-size behavior.

FIG. 17. Optical phonon distortions associated with the antiphase
stretching mode at frequency ω

opt
2 (red dotted arrows) and with the

antiphase swinging mode at frequency ω
opt
1 (blue arrows) for the

Hückel-Hubbard model on LC = 66 sites for the same parameter set
as in Fig. 12.
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V. SUMMARY AND CONCLUSIONS

In this work, we calculated the optical phonon frequen-
cies for the Hückel and Hückel-Hubbard(-Ohno) models on
linear and zigzag chains with up to LC = 110 sites using
the density-matrix renormalization-group (DMRG) method.
When the electron-electron interaction is absent (Hückel
model), the (optical) phonon spectrum can be calculated an-
alytically for periodic boundary conditions and thus provides
a benchmark test for the DMRG calculations. For systems
with a large single-particle gap, the analytic and numerical
results for the average bond length, the dimerization, the
single-particle gap, and the optical phonon frequencies agree
very well, which validates the applicability of the DMRG
approach.

When the Peierls gap is small, the RSS anomaly leads
to an avoided crossing of the two optical phonon branches
of the zigzag chain as a function of inverse system size.
Numerically, it is difficult to reach system sizes where the
frequency of the bond-stretching phonon becomes close to its
value in the thermodynamic limit. Moreover, we treated the
lattice deformations classically. This is justified in presence
of a large single-particle gap but causes problems when the
system is close to the Peierls transition. In systems with a
small Peierls gap, the phonons ought to be treated quantum
mechanically [12].

In presence of a sizable Hubbard interaction, of the order
of half the bandwidth, the gap for single-particle excitations
is large and the RSS anomaly is suppressed. Finite-size
effects of the average bond length, the dimerization, the
single-particle gap, and the optical phonon frequencies are
small, and the DMRG results can be extrapolated reliably
to the thermodynamic limit. For the zigzag chain we find
that the two optical phonon modes are energetically well
separated for all system sizes. We find that a moderate Ohno
repulsion increases the single-particle gap whereas it barely
influences the average bond length, the dimerization, and the
optical phonon frequencies. When we increase the interaction
parameters we observe that a larger Hubbard-U and/or a larger
Ohno-V increase both the band gap and the dimerization
substantially. Contrary to this, the average bond length remains
insensitive to the Coulomb interaction.

The Hückel-Hubbard-Ohno model on a zigzag chain
includes the basic structural elements and fundamental elec-
tronic components for the description of optical phonons
in trans-polyacetylene. Raman spectroscopy reveals four Ag

phonon modes [30–33] of which two display a pronounced
dependence on the chain length, describing single and double
carbon-carbon bond stretches, respectively, with significant
carbon-hydrogen bond distortions [30]. Their frequencies
are ωA ≈ 1070 cm−1 and ωC ≈ 1460 cm−1. Apparently, ωA

is close to ω
opt
1 ≈ 1080 cm−1, as derived for the Hückel-

Hubbard-Ohno model. Even ωC is in the range of ω
opt
2 ≈

1180 cm−1. Note, however, that the modes A and C seen
in experiment couple to the motion of the hydrogen atoms
whereas we studied solely the motion of the carbon atoms.
Therefore the good agreement between ωA and ω

opt
1 is rather

fortuitous, and a realistic description of optical phonons
in trans-polyacetylene requires the inclusion of the carbon-
hydrogen bonds. Work in this direction is in progress.
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APPENDIX A: NONINTERACTING ELECTRONS

In this appendix, we provide analytical expressions for the
ground-state conformation and optical phonons for noninter-
acting electrons on straight and zigzag chains with periodic
boundary conditions.

1. Ground-state energy and bond lengths

The operator for the kinetic energy reads

T̂ = −
∑

σ

L∑
n=1

td (ĉ+
2n−1,σ ĉ2n,σ + ĉ+

2n,σ ĉ2n−1,σ )

−
∑

σ

L∑
n=1

ts(ĉ
+
2n,σ ĉ2n+1,σ + ĉ+

2n+1,σ ĉ2n,σ ), (A1)

where

td = t0 exp(−(rd − r0)α/t0),
(A2)

ts = t0 exp(−(rs − r0)α/t0)

are the electron transfer matrix elements for short bonds
(atomic distance rd ) and long bonds (atomic distance rs). The
length of the bonds is modulated periodically due to the Peierls
effect.

The Hamiltonian is readily diagonalized in momentum
space [20],

T̂ =
∑
k,σ

E(k)(â†
k,σ,+âk,σ,+ − â

†
k,σ,−âk,σ,−),

E(km) =
√

(ts + td )2 cos2(km) + (ts − td )2 sin2(km), (A3)

km = (π/L)m, m = −(L/2) + 1, . . . ,(L/2).

The kinetic energy per unit cell as a function of rs and rd is
given by

T (rs,rd ) = − 2

L

L/2∑
m=−L/2+1

E(km). (A4)

The parameters rd and rs follow from the minimization of the
kinetic energy and the potential energy per unit cell.

The potential energy is given by the compression energy
per unit cell,

ECC(rs,rd ) = Vσ (rs) + Vσ (rd ),
(A5)

Vσ (r) = Kσ,0(r − r0) + Kσ,1

2
(r − r0)2,

see Eq. (11). The optimal values (Rs,Rd ) for the bond lengths
follow from the (numerical) solution of the equations

V ′
σ (Rs) = ∂T (rs,rd )

∂rs

∣∣∣∣
rs=Rs,rd=Rd

,

(A6)

V ′
σ (Rd ) = ∂T (rs,rd )

∂rd

∣∣∣∣
rs=Rs,rd=Rd

.
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Note that (Rs,Rd ) depend on the number of unit cells L of the
chain.

We rewrite the total energy in terms of the average bond
length and the dimerization using the dimensionless variables

s = α(rd + rs − 2r0)

2t0
, v = α(rs − rd )

2t0
. (A7)

Then, the total energy per unit cell becomes

E/L = −4t0e
−s cosh(v)

× 1

L

∑
|k|�π/2

√
cos2(k) + tanh2(v) sin2(k)

+ 2Kσ,0t0

α
s + Kσ,1t

2
0

α2
(s2 + v2). (A8)

At the optimal values s0 and v0 the gradient of the energy
vanishes. This leads to the coupled equations

0 = 2Kσ,0t0

α
+ 2Kσ,1t

2
0

α2
s0 + 4t0e

−s0 cosh(v0)

× 1

L

∑
|k|�π/2

√
cos2(k) + tanh2(v0) sin2(k),

0 = 2Kσ,1t
2
0

α2
v0 − 4t0e

−s0
1

L

×
∑

|k|�π/2

sinh(2v0)√
2 cos(2k) + 2 cosh(2v0)

, (A9)

which thus define Rs and Rd from Eq. (A7). For noninteracting
electrons, the bond lengths are independent of the bond
angles so that the above expressions apply for both straight
and zigzag chains. The expressions are evaluated using
MATHEMATICA [38].

2. Optical phonons

a. Straight chain

For an optical phonon, the displacements leave the length
of the unit cell invariant, rd + rs = Rd + Rs = a0. The optical
phonon corresponds to an antiphase oscillation of the atoms in
the unit cell. Its effective spring constant is given by

Keff = α2

2t2
0

∂2(E/L)

∂v2

∣∣∣∣
s=s0,v=v0

, (A10)

where we included the Jacobi determinant of the transforma-
tion (A7). Explicitly,

Keff = Kσ,1 − α2

t0
e−s0

1

L

∑
|k|�π/2

H (k)

H (k) = 3 + 4 cos(2k) cosh(2v0) + cosh(4v0)√
2(cos(2k) + cosh(2v0))3/2

, (A11)

and

ωopt =
√

4Keff

M
. (A12)

For t0 = 2.5 eV, α = 4.0 eV Å−1, Kσ,0 = −4.8 eV Å−1,
Kσ,1 = 42 eV Å−2, and M = 12u, we find ωopt = 864.5 cm−1

for an infinitely long chain. For finite chains, the results are
shown in Fig. 10. We compare these results with a bare straight
chain without itinerant electrons for which ωopt,bare = ω0 =√

4Kσ,1/M = 1951.2 cm−1. Apparently, the renormalization
of the phonon frequency is quite large, about a factor of two,
ωopt/ω0 = 0.443.

b. Zigzag chain

For the zigzag chain, the size of the unit cell is given by

a0 =
√

R2
s + R2

d + RsRd (A13)

because all bonds form an angle of �0 = 2π/3. Then, the
carbon atoms are located at (n = 1, . . . ,L)

X2n−1 = (n − 1)a0, Y2n−1 = 0,

X2n = (n − 1)a0 + Rd

√
1 − 3R2

s

4a2
0

, (A14)

Y2n =
√

3RsRd

2a0
.

Since (Rs,Rd ) are determined from Eq. (A6), the ground-state
conformation is fixed for a given number of unit cells L.

Optical phonons induce displacements of the four atoms
in the unit cell in the directions x and y. The coordinates in
the presence of the four displacements �δ = (δ1,δ2,δ3,δ4) are
defined by

x2n−1 = X2n−1 + δ3, y2n−1 = Y2n−1 + δ4,
(A15)

x2n = X2n + δ1, y2n = Y2n + δ2.

The distortions �δ result in a change of the bond lengths. The
distances between neighboring atoms are given by

rs(�δ) =
√

(x2n−1 + a0 − x2n)2 + (y2n−1 − y2n)2,
(A16)

rd (�δ) =
√

(x2n − x2n−1)2 + (y2n − y2n−1)2

for all 1 � n � L, and we may set n = 1 for convenience.
The kinetic energy per unit is still given by Eq. (A4),

T (rs(�δ),rd (�δ)) = − 2

L

L/2∑
m=−L/2+1

E(km), (A17)

where E(km) depends on �δ via the tunnel amplitudes
ts,d (rs(�δ),rd (�δ)), see Eqs. (A2) and (A3). The bond-length
distortions result in the potential-energy contributions

ECC(�δ) = Vσ (rs(�δ)) + Vσ (rd (�δ)) (A18)

and

ECC b(�δ) = Cb[cos(ϑ(�δ)) − cos(�0)]2 (A19)

per unit cell with

− cos(ϑ(�δ)) = (a0 − X2 + δ3 − δ1)(X2 + δ1 − δ3)

rs(�δ)rd (�δ)

+ (δ4 − Y2 − δ2)(Y2 + δ2 − δ4)

rs(�δ)rd (�δ)
. (A20)
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The total energy per unit cell becomes

Estruc(�δ) = T (rs(�δ),rd (�δ)) + ECC(�δ) + ECC b(�δ). (A21)

By construction, see Eq. (A6), the gradient of Estruc(�δ) vanishes
at �δ = �0, as it must be for a stable ground-state conformation.

The entries of the dynamical matrix K are determined from

Ki,j = ∂2Estruc(�δ)

∂δi∂δj

∣∣∣∣�δ=�0
. (A22)

The dynamical matrix is given in units of eV Å−2. As seen
from Eqs. (A16) and (A20), only the combinations δ1 − δ3 and
δ2 − δ4 appear in the energy. Therefore two of the eigenvalues
of the dynamical matrix are zero, as required for optical
phonons. The two zero eigenvalues correspond to the motion
of the chain as a whole into the x direction [displacement
eigenvector �δx = (1,0,1,0)] and in the y direction [displace-
ment eigenvector �δy = (0,1,0,1)]. We verify numerically that
the other two eigenvalues are positive, as it must be for a stable
ground-state configuration.

APPENDIX B: DYNAMICAL MATRIX FROM DMRG
CALCULATIONS

In this appendix, we provide some details of our DMRG
algorithm, we discuss how the ground-state conformation
is obtained iteratively, and we show how to calculate the
elements of the dynamical matrix straightforwardly using
DMRG.

1. DMRG algorithm

We investigate the Hückel, the Hückel-Hubbard, and
the Hückel-Hubbard-Ohno models with open boundary
conditions applying the density-matrix renormalization group
(DMRG) method [25,26]. We perform simulations on system
sizes from LC = 10 up to LC = 110 (LC = 2L + 2) in steps
�LC = 4. The precision of the calculations is controlled
in terms of the dynamic block-state selection (DBSS)
approach [39,40], whereby we keep up to 1000 block states
and perform six sweeps.

Using the DMRG as a kernel, we implement a self-
consistent geometrical optimization method in order to obtain
the relaxed geometry, i.e., the geometry with the lowest
ground-state energy. In each iteration step the DMRG solves
the electronic Hamiltonian problem Ĥel (8) for a fixed atomic
conformation. Moreover, the algorithm provides the transition
and occupation probabilities in (2) and (6). Using these
expectation values for the construction of the electronic energy
term (8), the total energy (16) becomes a function of the atom
coordinates ({xn},{yn}) that is minimized using a gradient
search.

2. Optimization of the ground-state structure

The minimization of the total energy of the structure,
Eq. (16), is achieved iteratively. For a fast convergence, an
educated guess for the ground state conformation is helpful.
We start with the homogeneous conformation investigating
small system size with L = 2 unit cells. We set rs,l = rd,l =
r0 = 1.4 Å in Eq. (A14) so that a0 = √

3r0 is the bare size

of the unit cell. In order to speed up convergence, for larger
systems with L > 2 unit cells a distorted initial geometry is
constructed utilizing the optimized geometry of system with
L − 2 unit cells. We set rs,l = rd,l = r0 = 1.4 Å in Eq. (A14)
so that a0 = √

3r0 is the bare size of the unit cell.

a. Iteration

The algorithm seeks for the self-consistent solution of the
structural and the electronic problem. (1) The structure de-
termines the parameters for the π -electrons’ nearest-neighbor
transfer and their mutual Coulomb interaction; and (2) the
potential energy landscape shaped by the σ bonds and the π

electrons defines the structure.
Correspondingly, the algorithm proceeds as follows.
(1) We define for the kth iteration (k = 1,2, . . . ,kmax) for

n = 1,2, . . . ,2L:

�r (k)
n =

(
x(k)

n

y(k)
n

)
. (B1)

Typically, kmax = 10 is sufficient to obtain convergence.
(2) The kth DMRG run is based on the atomic positions

�r (k−1)
n (k = 1,2, . . . ,kmax). It provides the elements of the

single-particle density matrix for nearest neighbors (n =
1,2, . . . ,2L − 1),

P (k)
n,σ ≡ 〈ĉ†n,σ ĉn+1,σ + ĉ

†
n+1,σ ĉn,σ 〉(k)

0 , (B2)

the local double occupancy,

D(k)
n ≡ 〈(n̂n,↑ − 1/2)(n̂n,↓ − 1/2)〉(k)

0 , (B3)

and the elements for the density-density correlation function
(n,j = 1, . . . ,2L, n �= j )

C
(k)
nj ≡ 〈(n̂n − 1)(n̂j − 1)〉(k)

0 . (B4)

The positions �r (k−1)
n and the matrix elements P (k)

n,σ , D(k)
n , and

C
(k)
nj determine the total energy of the structure E

(k)
struc, see

Eq. (16).
(3) The iteration cycle stops if k = kmax is reached or if,

for k � 2, ∣∣E(k−1)
struc − E

(k)
struc

∣∣
2L + 2

< ε (B5)

with ε = 10−4 for a sufficient accuracy.
If neither of the two conditions is fulfilled, we determine

new atomic positions. Starting from the configuration �r (k−1)
n

the energy functional Estruc for fixed P (k)
n,σ , D(k)

n , and C
(k)
nj is

minimized with respect to the atomic positions �rn. A conjugate
gradient method requires the derivatives of Estruc with respect
to the atomic positions. The gradients are calculated ana-
lytically using the Hellman-Feynman theorem [41–43]. The
corresponding expressions are collected in Ref. [20].

After convergence we find the new positions �r (k) and the
energetic minimum defines E

(k)
struc. The steps 2 and 3 are iterated

until the iteration cycle stops.
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FIG. 18. Excitation energy for distortions of the first carbon atom
in each unit cell in the x direction for the Hückel-Hubbard model on
a zigzag chain with t0 = 2.5 eV, α = 4.0 eV Å−1, U = 6 eV, Kσ,0 =
−4.8 eV Å−1, and Kσ,1 = 42 eV Å−2 in units of eV as a function
of the distortion � in units of Å for open boundary conditions. The
straight line is a parabolic fit with K33 = 60.59 eV Å−2.

3. Calculation of the dynamical matrix

a. Diagonal terms

We start with the diagonal terms and consider a small
distortion with amplitude �i in the ith component of �pl ,

e(�i,L) ≡ Estruc({ �Rl + �i �ei}) − E0

L
= 1

2
Ki,i�

2
i , (B6)

up to second order in �i . Thus we have

Ki,i(L) = lim
�i→0

2e(�i)

�2
i

. (B7)

In our approach, we calculate e(�i,L) for chains with up to
LC = 110 sites and for three values �

(k)
i . Then, we apply a

quadratic fit of the parabola

ε(�,L) = (Ki,i(L)/2)�2 (B8)

to the three points (�(k),e(�(k),L)) and the origin. The
curvature defines Ki,i .

We set

�(1) = 0.005 Å, �(2) = 0.010 Å, and �(3) = 0.015 Å.

(B9)

The choice of these values is derived from typical values for the
displacements. For a phonon of energy h̄ω, the average square
displacement at thermal energy kBT is 〈x2〉 = kBT/(Mω2).
For a typical optical phonon energy of h̄ω = 0.2 eV in
polyacetylene (1/λ = 1600 cm−1), the square average dis-
placement for carbon (M = 12u, 1u = 0.9315 GeV/c2) at
room temperature (kBT = 0.025 eV) is

√
〈x2

C〉 ≈ 0.015 Å; for
the calculation, we used h̄c = 1974 eVÅ.

As an example, in Fig. 18 we show the extrapolation of K̃33

for the Hückel-Hubbard model for U = 6 eV and L = 32 unit
cells on a zigzag chain. It is seen that the extrapolation is stable
and provides a reliable value for the ‘spring constant’ K̃33 =
60.59 eV Å−2. Likewise, we obtain K̃44 = 53.00 eV Å−2.

0 0.005 0.01 0.015
Δ/Å

-0.06

-0.04

-0.02

0

[e
2(Δ

)/
Δ(1

) ]/
(e

V
/Å

)

e
2
(Δ

i
)/Δ(1)

K
34

Δ

FIG. 19. Excitation energy for distortions of the first carbon atom
in each unit cell in the x direction in the presence of a distortion �(1)

in the y direction, relative to the excitation energies of the individual
distortions, Eq. (B10), divided by �(1) in units of eV/Å. Data are
shown for the Hückel-Hubbard model on a zigzag chain as a function
of the distortion � in units of Ångström for open boundary conditions
and the same parameter set as in Fig. 18. The straight line is a linear
fit with K34 = −4.54 eV Å−2.

b. Off-diagonal terms

For the off-diagonal terms, 1 � i < j � 4, we consider

e2(�i,�j ,L) ≡ Estruc({ �Rl + �i �ei + �j �ej })/L
−Estruc({ �Rl + �i �ei})/L
−Estruc({ �Rl + �j �ej })/L + E0/L

= Ki,j�i�j + O(�3). (B10)

We fix �i at its smallest value, �i ≡ �(1), and find

Ki,j (L) = lim
�j →0

e2(�(1),�j ,L)

�(1)
. (B11)

In our approach, we calculate e(�(1)
i ,�

(k)
j ,L) for chains with

up to LC = 110 atoms and for three values �
(1,2,3)
j . Then, we

apply a fit of the linear function

ε(�) = Ki,j (L)� (B12)

to the three points (�(k)
j ,e(�(1),�j ,L)/�(1)) and the origin.

The slope defines Ki,j (L).
As an example, in Fig. 19, we show the extrapolation of K̃34

for the Hückel-Hubbard model for U = 6 eV and L = 32 unit
cells on a zigzag chain. It is seen again that the extrapolation
is fairly stable and provides a reliable value for the “spring
constant” K̃34 = K̃43 = −4.54 eV Å−2.

c. Number of DMRG runs

In this approach, we need a total number Nrun of ground-
state DMRG calculations for fixed geometry. To calculate all
elements of the symmetric 4 × 4 dynamical matrix, we need
Nrun = 4 × 3 + [(4 × 3)/2] × 3 = 12 + 18 = 30 DMRG cal-
culations for each system size.
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A more compact way to calculate K̃ij without an ex-
trapolation in � would be to employ the second-order

Hellman-Feynman theorem. Further information can be found
in Ref. [20].
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