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Recently synthesized three-dimensional materials with Dirac spectrum exhibit peculiar electric transport
qualitatively different from its two-dimensional analog, graphene. By neglecting impurity scattering, the real part
of the conductivity is strongly frequency dependent, while the imaginary part is nonzero unlike in undoped, clean
graphene. The Coulomb interaction between electrons is unscreened as in a dielectric and hence is long range.
We demonstrate that the interaction correction renders the electrodynamics nonlocal on a mesoscopic scale. The
longitudinal conductivity σL and the transverse conductivity σT are different in the long-wavelength limit and
consequently the standard local Ohm’s law description does not apply. This leads to several remarkable effects
in optical response. The p-polarized light generates in these materials bulk plasmons as well as the transversal
waves. At a specific frequency the two modes coincide, a phenomenon impossible in a local medium. For any
frequency there is a Brewster angle where total absorption occurs, turning the Weyl semimetals opaque. The
effect of the surface, including the Fermi arcs, is discussed.
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I. INTRODUCTION

One of the common assumptions of electrodynamics in
media is that the effect of external electric fields can be
described locally by constitutive relations connecting the
“induced” currents to the electric field even when spatial
dispersion is present. Because of space-time translational
symmetry of the material, the relation between the Fourier
components reads

Ji(ω,k) = σij (ω,k)Ej (ω,k), (1)

within linear response. Here σij is the ac conductivity tensor
with indices i,j = x,y,z, and ω,k the frequency and wave
number. With rotational, reflection, and time-reversal invari-
ance, the conductivity tensor can be uniquely decomposed into
the transversal and longitudinal parts [1]:

σij (ω,k) =
(

δij − kikj

k2

)
σT(ω,k) + kikj

k2
σL(ω,k). (2)

Locality of the electrodynamic response means that the long-
wavelength limit exists. In such limit, δij is the only second-
rank tensor consistent with the symmetries of the system, and
hence the conductivity tensor simplifies into

σij (ω,k = 0) ≡ σij (ω) = δijσ (ω). (3)

Although locality seems to be ubiquitous in condensed
matter systems, it is not guaranteed on the microscopic level
[1]. Ohm’s law is generally applicable in all ordinary con-
ductors, including disordered metal, semimetals at arbitrary
temperature, and semiconductors at nonzero temperature. If
disorder is significant, one has usual Drude transport with
a mean free path even at zero temperature providing the
necessary length scale to ensure the locality, Eq. (3). Even in
clean metals at zero temperature, the noninteracting electron
gas (or Landau liquid for short-range interactions) is local.
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This is not evident since there is no energy gap, so there
are gapless charged excitations. The standard “Lindhard” type
calculations [1] in an absolutely clean metal show that σT and
σL are not independent at small wave vectors,

σT(ω,k = 0) = σL(ω,k = 0) ≡ σ (ω);
(4)

σL(ω,k) − σT(ω,k) = β(ω)k2 + O
(
k4
)
,

thus leading to the local Ohm’s law equation (3).
It was shown [2] that all the above reasons ensuring

locality are inapplicable to clean graphene at Dirac point
when Coulomb interactions are included. The reason for
the nonlocality is that the Coulomb interactions remain
unscreened and thus long range. The question arises if this
is also true for the recently discovered three-dimensional (3D)
Weyl semimetals (WSMs).

Although it has been known for a long time that the
two-band electronic structure of bismuth may be described
by a four-component nearly 3D massless Dirac fermion [3],
only recently was possible physical realization predicted [4,5].
Since then, several materials have been discovered: the time-
reversal invariant topological Dirac semimetal Na3Bi [6–8],
a bulk crystal symmetry protected semimetal Cd3As2 with a
single pair of Dirac points [9–11], and crystals on the phase
transition boundary between topological and band insulators
HgCdTe [12]. Moreover [13–16], WSMs such as TaAs were
found to exhibit Fermi arcs on their surface [4]. All these ma-
terials exhibit a great variety of new electromagnetic transport
and optical phenomena [not seen in a two-dimensional (2D)
WSM-like graphene] including giant diamagnetism, quantum
magnetoresistance showing linear field dependence [17–20],
superconductivity [21], etc.

In this paper we assume that the WSM is clean enough, so
that the disorder scale is irrelevant and the chemical potential is
tuned to the Dirac point. When the interaction is neglected, the
ac conductivity of a WSM remains local as expected [22,23].
However, by calculating the screening due to the interaction
corrections [22,24,25], it becomes clear that the Coulomb
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interaction is still long range unlike in metals. Hence, there
is no good reason to insist that the electric response in a WSM
is still local. In fact, we demonstrate by explicit calculation
of the interaction effects using a rather generic model of
WSMs that the electrodynamics is indeed nonlocal. The rather
unusual macroscopic electrodynamics then is formulated and
applied to analyze various optical phenomena in which the
nonlocality can be demonstrated. The optical generation of
both longitudinal (plasmon) and transversal waves and their
subsequent propagation in the material are considered. The
effects of the surface including those due to the Fermi arcs
(that depend on the crystallographic orientation of the surface)
are studied using a microscopic model defined next.

II. ac LINEAR RESPONSE OF THE BULK
WEYL SEMIMETAL

A. The model

An analogous calculation in graphene [2,26] reveals that
in order to avoid complications linked to the absence of scale
separation in systems with relativistic massless fermions, one
should use a well-defined lattice model. Electrons in a WSM
may be described accurately enough by the tight-binding
model of nearest neighbors on a cubic lattice [22,27] n = niai ,
having space-inversion and time-reversal symmetries, and
translational symmetry for the unlimited bulk.

The noninteracting Hamiltonian is

K̂ = iγ

2

∑
n,i

cσ†
n σ

σρ

i c
ρ
n+ai

+ H.c., (5)

where c
σ†
n are the creation operators with spin σ = 1,2, γ

the hopping energy, and σi are the Pauli matrices. The Fermi
velocity is v = γ a/h̄ and a the lattice spacing. One observes
eight Weyl points inside the Brillouin zone (BZ). Four are right
handed: one in the center (the � point) and three on the faces
(X); while four are left handed: three on the edges (M) and
one in the corner (R).

In terms of Fourier components, the Coulomb interaction
takes the form

V̂ = α

2V
∑
pkl

vpc
σ†
k+pc

σ
k c

ρ†
l−pc

ρ

l , (6)

where α = e2

εh̄v
is the coupling with ε being the dielectric

constant of the WSM. V is the sample volume and

vp = π

sin2 (pxa/2) + sin2(pya/2) + sin2 (pza/2)
. (7)

One may extract σT and σL from Eq. (2): kikjσij /k2 =
σL and σii = 2σT + σL (where the summation convention
was used). In particular, leading interaction corrections are
given by the vertex renormalization, self-energy, and glasses
diagrams, respectively. Details involving Matsubara action and
Feynmann rules appear in Appendix A.

B. The electrodynamics of a free Fermi gas is local

The free conductivity tensor at Dirac point is

σij (ω,k) = N

24πω

e2

h̄v

(
1 − i

π
log

�2

ω2 − v2k2

)
×{δij (ω2 − v2k2) + v2kikj }. (8)

N is the number of Weyl fermions and � � 2.5πv/a is the
ultraviolet frequency cutoff of order 1015 s−1. For the details
of the calculation see Appendix B.

In the long-wavelength limit one recovers the ac conduc-
tivity σ 0

ij (ω,k = 0) = σ0(ω)δij with

σ0(ω) = Nω

24π

e2

h̄v

(
1 − i

π
log

�2

ω2

)
. (9)

It has an imaginary part, logarithmically divergent as a function
of �/ω. Thus the dc conductivity is zero, i.e., the material be-
haves like an insulator, qualitatively different from graphene.
It is well known that in 3D Weyl semimetals the Coulomb
interaction is unscreened [22,24,28]. The dependence on the
wave vector follows uniquely from the pseudorelativistic
invariance of the free Weyl gas [2]. From Eq. (4), we deduce

β0(ω) = −σ0(ω)v2/ω2. (10)

C. Electron-electron interactions cause nonlocality
of electrodynamics

Using the Coulomb interaction in Eq. (6), one obtains
the corrections to first order in (renormalized) coupling.
While the corrections to σT and σL are small, the correction
to the difference σnl ≡ σL − σT can be considerable in the
homogeneous regime v2k2 � ω2. In particular, for k = 0 the
real and imaginary parts of σnl for N � 1 Weyl nodes are

σ ′
nl

ω
= −e2α

h̄v

N2

48π2
log

(
�2

ω2

)
,

(11)
σ ′′

nl

ω
= −e2α

h̄v

N2

96π3
log2

(
�2

ω2

)
.

One observes that the signs of both are negative. Details of the
calculation of both σT and σL and expression for arbitrary N

are given in Appendix C.

III. FERMI ARCS CONTRIBUTION TO
SURFACE CONDUCTIVITY

In the absence of topological surface states the conductivity
changes abruptly from the vacuum to the bulk value, Eq. (9).
However, cutting the crystal along a certain crystallographic
axis such as [110] [Fig. 1(b)] causes Fermi arcs, albeit, a cut
along [100], for example, is topologically trivial, as is shown
in Appendix D.

Edge states along the diagonal cut [110]

The translation invariance along the z direction allows one
again to Fourier transform first

cβ
nx,ny ,nz

=
∑
kz

eikznzc
β

nx,ny,kz
. (12)
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FIG. 1. A simple tight-binding model of WSM exhibiting Fermi
arc. A cubic lattice cut along (in a plane perpendicular to the z axis)
(a) the [100] plane and (b) the [110] plane.

It is convenient to rotate the remaining axes by 45◦ to x ′ and
y ′ and label the atoms in a plane perpendicular to z with two
integers n and m, and a sublattice index I taking two values A

and B (the protuberance of the zigzag surface and the sinkage)
(see Fig. 2). The tight-binding model including the surface
becomes

FIG. 2. The cubic WSM lattice (in a plane perpendicular to the z

axis) cut along the diagonal [110]. The x and y axes are rotated by
45◦ to x ′ and y ′. The unit cells [consisting of the two sublattices A

(green) and B (red)] are labeled with the integers n and m.

K = iv

2

∑
n

⎧⎪⎨⎪⎩
∑
m=2

c
A†
nm

(
σxc

B
nm + σyc

B
n,m−1

)+ c
A†
n,1σxc

B
n,1 + ∑

m=1
c
B†
nm

(
σxc

A
n+1,m+1 + σyc

A
n+1,m

)
− ∑

m=2

(
c
B†
nmσxc

A
nm + c

B†
n,m−1σyc

A
nm

)− ∑
m=1

(
c
A†
n+1,m+1σxc

B
nm + c

A†
n+1,mσyc

B
nm

)− c
B†
n,1σxc

A
n,1

⎫⎪⎬⎪⎭. (13)

This can be rearranged as

K = iv

2

∑
n

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M−1∑
m=2

{
c
A†
nm

(
σxc

B
nm − σxc

B
n−1,m−1 + σyc

B
n,m−1 − σyc

B
n−1,m

)
+ c

B†
nm

(
σxc

A
n+1,m+1 − σxc

A
nm + σyc

A
n+1,m − σyc

A
n,m+1

)}
+ c

B†
n,1

(
σxc

A
n+1,2 − σxc

A
n,1 + σyc

A
n+1,1 − σyc

A
n,2

)+ c
A†
n,1

(
σxc

B
n,1 − σyc

B
n−1,1

)
+ c

B†
n,M

(
σyc

A
n+1,M − σxc

A
n,M

)+ c
A†
n,M

(
σxc

B
n,M − σxc

B
n−1,M−1 + σyc

B
n,M−1 − σyc

B
n−1,M

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (14)

Therefore one can perform the Fourier transform over n:

cIα
nm =
∑

k

e−i
√

2nkcIα
km. (15)

For fixed k,kz the part of the Hamiltonian becomes

Kk,kz
= iv

2

⎧⎨⎩
M−1∑
m=2

{
c
A†
m

(
hm,mcB

m + hm,m−1c
B
m−1

)+ c
B†
m

(
h
†
m,m+1c

A
m+1 + h

†
m,mcA

m

)}
+ c

A†
1 h11c

B
1 + c

B†
1

(
h
†
12c

A
2 + h

†
11c

A
1

)+ c
A†
M

(
hMMcB

M + hM,M−1c
B
M−1

)+ c
B†
M h

†
MMcA

M

⎫⎬⎭, (16)

where

hmm = h11 = hMM = σx − ei
√

2kσy ;
(17)

hm,m−1 = hM,M−1 = σy − ei
√

2kσx .

The Schrödinger equations away from the surface are

iv

2

{
σxψ

B
m + σyψ

B
m−1 − ei

√
2k
(
σxψ

B
m−1 + σyψ

B
m

)} = EψA
m,

(18)
iv

2

{
e−i

√
2k
(
σxψ

A
m+1 + σyψ

A
m

)− (σxψ
A
m + σyψ

A
m+1

)} = EψB
m.
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The edge states obey the condition ψA
m+1 = λσzψ

A
m and the

Schrödinger equation h†ψB = hψA = 0, where

h = σx(λσze
−i

√
2k − 1) + σy(e−i

√
2k − λσz), (19)

which results in

λ = i
1 − ie−i

√
2k

1 + ie−i
√

2k
. (20)

The effective theory on the surface is

Harc = i

2

∑
n,nz

c†n,nz
σzcn,nz+1 + H.c.

= 1

(2π )2

∫ π

kz=−π

∫ π/
√

2

k=−π/
√

2
c
†
k,kz

kzσzck,kz . (21)

The dispersion in the z direction is therefore E(kz) =
± i

2 (eikz − e−ikz ) = ∓ sin kz. The 2D conductivity tensor of
this one-dimensional system therefore acquires only the
imaginary component [29]

σzz = −ic
ωf a

ω
, (22)

with the characteristic frequency ωf a ≡ √
2 e2γ

ch̄2 in the terahertz
range.

The cubic WSM lattice (in a plane perpendicular to the
z axis) cut along the diagonal [110]. The x and y axes are
rotated by 45◦ to x ′ and y ′. The unit cells [consisting of
the two sublattices A (green) and B (red)] are labeled with
the integers n and m.

IV. OPTICS/PLASMONICS WITHIN A WSM

A. Coexistence of transversal and longitudinal waves in WSM

Employing the macroscopic Maxwell equations [30,31],
we now investigate the behavior of electromagnetic waves in
a WSM. By combining Ampère’s and Faraday’s law, we find
the following two modes: (i) E transversal:

1 + i
4π

ω
σT(ω,p) = c2p2

ω2
. (23)

(ii) E longitudinal:

1 + i
4π

ω
σL(ω,q) = 0. (24)

Note that when ω � � the imaginary part of the conduc-
tivity in Eq. (9) is dominant. Thus, the dispersion relations and
for the transversal and longitudinal modes are (see Appendix E
for details and full expressions for arbitrary N )

p = ω

c

√
Ne2

6πvh̄
log

�2

ω2
;

(25)

q = ω

v

√
1 − Nα

4π
log

�2

ω2
,

FIG. 3. Two branches of excitations in neutral plasma of the
WSM: the transverse (red) and longitudinal (blue) wave vectors.
Both are monotonically increasing as a function of frequency (the
inset on the right is for the transverse wave). At the intersection point
the electromagnetic wave is monochromatic (the left inset).

respectively. The real part of the conductivity determines the
penetration depth

δT = 12h̄v

Ne2ω2
c2p;

(26)

δL = v2

ω2

4π

Nα
q.

We present the results for p,q in units of �/v as functions of
ω/� in Fig. 3. Here, N = 4, v = c/300, ε = 5.5, and � �
2.5πv/a = 1015 s−1 (characteristic of Na3Bi and Cd3As2).
Since the light wave vector p is real for all frequencies ω < �,
it is nondissipating (see the right inset in Fig. 3). In contrast,
the longitudinal wave vector q is real only for frequencies
above the threshold ωp, given by

ωp = � exp

{
− 1

Nα
[(π − α) +

√
6π2/ε + (π − α)2]

}
.

(27)
Here ωp, the “plasma frequency” (in the terahertz range), is
that of a neutral plasma rather than that of the charged plasma
in metals.

By taking the difference between Eqs. (23) and (24), one
obtains

i
4π

ω
σnl(ω,k) = −c2k2

ω2
. (28)

This leads to 4πiωβ0(ω) = c2 upon using Eq. (10). In local
materials, this generally cannot be satisfied. In a WSM,
however, σnl(ω,0) is finite and such solutions do exist and can
be seen in Fig. 3 (the left inset). Therefore at this special value
of the wave vector both transverse and longitudinal waves
exist.

B. Additional boundary condition

To observe the effect of nonlocality, let us consider the
reflection and transmission of an incident electromagnetic
wave on a vacuum-WSM interface. To simplify, we will choose
the xz plane to be the incident one. For p-polarized incoming
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waves,

Evac

E0
=
{

kz

k
,0,

−kx

k

}
ei(kxx+kzz) − r

{
kz

k
,0,

kx

k

}
ei(kxx−kzz),

(29)
where E0 is the incoming amplitude and r the reflection
coefficient with kx > 0 and kz < 0 and θ the incident angle.
The field in the WSM is given by

EWSM

E0
= tT

{
pz

p
,0,

−kx

p

}
ei(kxx+pzz) + tL

{
kx

q
,0,

qz

q

}
ei(kxx+qzz),

(30)
where tT and tL are the transmitted transversal and longitudinal
amplitudes.

The previous formulation may also be used to analyze
the problems like in exciton physics [31,32]. In addition
to the usual four boundary conditions, one also needs the
so-called additional boundary condition (ABC), since there
are two different modes propagating in the bulk [32,33]. With
a “sharp” interface no current may escape the WSM, and the
ABC becomes σzxE

WSM
x + σzzE

WSM
z = 0. Applying all these

boundary conditions, we obtain the following reflection and
transmission amplitudes:

r = 1 − D

1 + D
; tT = 2k/p

1 + D
; tL = −2kxq(p2 − k2)

kqzp2(1 + D)
;

D = k2pzqz − (p2 − k2)k2
x

kzqzp2
. (31)

Remarkably, D = 1 at certain frequency-dependent incident
angles and the WSM becomes opaque.

In contrast, the s-polarized wave does not generate a
longitudinal wave. Hence, the amplitudes are standard. In
Fig. 4 the amplitudes for the p polarizations and s polarizations
are presented. It shows the vanishing of the p-polarization
reflection coefficient at an incident angle in the terahertz range.
In Fig. 5, the (p) reflection amplitude as a function of frequency
for various incident angles is shown.

FIG. 4. Reflection and transmission amplitudes as a function of θ .
The p-polarization amplitudes (solid): reflected (green), transmitted
transversal (red), and longitudinal (blue); the incident radiation
is totally absorbed by the WSM at Brewster’s angle θB . The
s-polarization amplitudes are plotted dashed.

FIG. 5. The (p) reflection amplitude r as a function of frequency
for various incident angles displaying the total absorption.

C. Effect of Fermi arcs on optics

The contribution of the Fermi arc is obtained in a standard
way [34] and no ABC is needed. Now the optical response is
highly anisotropic, leading for ω � ωf a to large polarization
effects. In particular, for the incident wave vector in the
xz plane, the p-polarized light is not affected. Therefore
the effects of nonlocality in the p-polarized light, Eq. (31),
are present without correction. On the contrary, the re-
flection/transmission amplitudes of the boundary for the s

polarization are

rarc = − 1

1 + i
2ckz

ωf a

; tarc = 1

1 − i
ωf a

2ckz

. (32)

V. DISCUSSION

The calculation of the leading Coulomb interaction effect in
a type I 3D WSM reveals that its macroscopic electrodynamics
becomes nonlocal as the ac conductivity tensor becomes non-
analytic at small wave vectors. As a result, the longitudinal and
the transversal conductivities, σL and σT, become different and
consequently the standard local Ohm’s law no longer applies.
The origin of the nonlocality is a unique combination of
the long-range Coulomb interaction and the linear dispersion
relation of the quasiparticles. The optical response of a WSM
is sensitive to the nonlocality effect.

The most remarkable distinct feature is the splitting of the
incident p-polarized light into a transversal and a longitudinal
wave. A local medium such as a dielectric or a metal does not
allow the coexistence of the two modes. In a dielectric there
are no plasmons, while in a metal the transversal waves do not
propagate. We find that for parameters typical for materials
like TaAs the effect is observable in the terahertz range. The
two modes coincide at a specific frequency. The effect of total
absorption of the p-polarized wave in WSM is similar to that
in the “usual” “Brewster’s angle” of a dielectric material.
However, the frequency dependence differs drastically. It
originates from the fact that the transmitted wave consists
of a transversal and a longitudinal wave, causing the WSM
Brewster’s angle to depend on the plasmon wave number.

The effect of nonlocality is easily distinguished from the
much more evident effect of the Fermi arcs on the surface of
the WSM. The latter depends sensitively on the direction of
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the surface with respect to the crystallographic axes. For some
surfaces (see our example of the [100] for our simple tight-
binding model) the arcs are avoided even for well separated
Weyl points. For more generic edges like [110] Fermi arcs
appear and before the light enters the bulk it is reflected by
a highly anisotropic surface layer that is typically akin to the
neutral 2D “regular” semimetal (parabolic dispersion relation
with effective mass m) with n/m = √

2v/h̄a, where n is the
density of carriers with a peculiarity that the 2D conductivity
tensor is a rank-one symmetric matrix (just the σzz component
is nonzero in our explicit example). The reflection of the arc
is highly polarization and orientation dependent and has a
frequency dependence very different from that of the bulk
WSM one. The nonlocal conductivity of Fermi arcs as probed
by a magnetic field was investigated in [35,36].

Finally let us mention the limitations of our formulas. The
applicability of perturbation theory in 3D WSMs has been re-
cently addressed by several groups who used renormalization
group and other nonperturbative methods such as the random
phase and large N approximations [25,37,38]. The latter shows
perturbation theory to be reliable over a wide range of α up
to a critical value αc ≈ 14. Typical values of the background
dielectric constant in 3D WSMs lies in the range ε ∼ 5–40
[25,39,40], which assures α below αc. In contrast, αc was found
to be 0.78 in 2D [41]. This is close to the values measured in
the samples substrated on boron nitride or suspended samples
[42,43], and therefore perturbation theory is less reliable in
such case.

Several unavoidable factors can set limit to the nonlocality
phenomenon. The calculation was done at zero temperature,
while possible experiment would be performed at finite
temperature. The thermal excitations create screening and thus
limit the nonlocality range to distances smaller than the thermal
screening length. Disorder, similar to puddles in graphene,
is also present and the averaging over mean free path will
average away the nonlocality. An additional obstacle seen
clearly in angle-resolved photoemission spectroscopy images
is the chemical potential. WSM away from the neutrality point
is a regular low electron (hole) density metal, and therefore
is local beyond the screening length. The effect that we have
described would be washed away if the wavelength of the
electromagnetic wave is longer than such a length scale.

To summarize, our result is applicable as long as
max[kBT ,μ,h̄

τ
] � h̄ω, where τ is the relaxation time due to

impurities.
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APPENDIX A: INTERACTION CORRECTIONS TO THE
BULK CONDUCTIVITY OF WSM

1. The current density in the tight-binding model

The minimal substitution determines the coupling of the
external electromagnetic field, described by vector potential
Ai with electrons on the lattice:

K̂mc[A(r,t)] = i

2

∑
n,i

�n,ic
α†
n σ

αβ

i c
β
n+ai

+ H.c., (A1)

where the hopping integral �n,i becomes

�n,i = γ exp

{
i
ea

ch̄

∫ 1

s=0
Ai(n + sai ,t)

}
. (A2)

Applying the charge symmetry transformation cα
n → eiχn(t)cα

n ,
the current density on the link is

Jni(t) ≡ − c

V
δ

δAni(t)
K̂mc. (A3)

In linear response the current density operator is expanded up
to the first order in Ani as Jni(t) = J

p

ni(t) + J d
ni(t):

J
p

ni(t) = ev

2V cα†
n σ

αβ

i c
β
n+ai

+ H.c.,
(A4)

J d
ni(t) = i

e2va

2ch̄V

∫ 1

s=0
Ai(n + sai ,t)c

α†
n σ

αβ

i c
β
n+ai

+ H.c.

Normalized operators in momentum space are cα
n =

N−1/2∑
k e−ik·ncα

k , where the number of unit cells is N =
V/a3 with V = a3∑

n 1, where k̂i = sin (aki). There are eight
Weyl points at which εk ∝ |̂k| = 0 inside the Brillouin zone.
The calculation therefore was performed for N = 8.

2. Matsubara action and Feynman rules

It is useful to represent the electron gas via the Matsubara
action (τ = it) involving the 3 + 1 fermion field ψ and the
static photon (auxiliary) field φ. Using convenient units with
a = γ = h̄ = 1, it reads

A =
∑

n

∫
τ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ†

n(τ )

(
d

dτ
− ieφn

)
ψn(τ ) − 1

2

∑
i

(ψ†
n(τ )σiψn+ai

(τ ) + H.c.)

+ 1

2

∑
i

[
2φn(τ ) − φn+ai

(τ ) − φn−ai
(τ )
]
φn(τ )

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (A5)

The Feynman rules can be read from the Fourier transform

A =
∑
kω

{
ψ

†
kω(iω − k̂ · σ )ψkω − ie

∑
pν

ψ
†
kωψk−p,ω−νφpν

}

+ 1

2

∑
pνi

φ∗
pν[1 − cos (pi)]φpν . (A6)

The fermion propagator is

Gpω = (iω − p̂ · σ )−1 = −iω − p̂ · σ

ω2 + ε2
p

, (A7)

while the photon propagator is frequency independent, gpω =
vp. The vertex is ieδk−k′+pδω−ω′ . These Feynman rules are
used to calculate the linear response diagramatically.
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APPENDIX B: DIRECT CALCULATION OF THE
CONDUCTIVITY TENSOR FOR THE

NONINTERACTING WSM

1. General relation between the conductivity tensor and the
dielectric constant

We calculate the transversal and longitudinal conductivities
σT and σL. From Eq. (3) we derive an expression for two scalars
formed from the conductivity tensor σij :

2σT(ω,k) + σL(ω,k) = σii(ω),
(B1)

σL(ω,k) = lim
k→0

kikj

k2
σij (ω).

Of course, due to charge conservation the transverse conduc-
tivity is proportional to the dielectric constant (Matsubara) [1]

σL(ω,k) = ω

4π
[1 − εL(ω,k)]. (B2)

2. The noninteracting WSM

The ac conductivity of the noninteracting WSM on the
lattice is obtained from the Kubo formula. The trace is (for
positive ω)

σii(ω) = e2

h̄vω

∑
p,ν

Tr{σiGp,νσi(Gp,ν+ω − Gp,ν)}

= 2
e2

h̄v

∑
p

ω

εp
(
ω2 + 4ε2

p

) , (B3)

while the longitudinal conductivity is

σL(ω) = lim
k→0

e2

h̄vωk2

∑
p,ν

Tr{k · σGp,νk · σ (Gp,ν+ω − Gp,ν)}

= 2

3

e2

h̄v

∑
p

ω

εp
(
ω2 + 4ε2

p

) = 1

3
σii . (B4)

From here one deduces that σT = σL and thus no nonlocal
conductivity arises in the noninteracting relativistic system
(see general arguments in [27]).

On the lattice one obtains (unit of length a = h̄ = v = 1)

σ
(0)
T = σ

(0)
L = σ0 = e2ω

3π2
log

�2

ω2
; (B5)

� � 2.5πv/a is the ultraviolet frequency cutoff. This result
is consistent with [20]. The (Matsubara) dielectric constant to
this order is

ε = 1 − 4e2

3π
log

�2

ω2
. (B6)

Generalizing the results from our particular model with
eight Weyl fermions to arbitrary number N of the Weyl
fermionic fields by just multiplication by N/8 (and in physical
units), one gets

σ0 = e2Nω

24π2vh̄
log

�2

ω2
. (B7)

FIG. 6. The Feynman diagrams for conductivity tensor. (a) The
vertex correction. (b) The self-energy correction. (c) The glasses
correction.

The continuation to physical frequencies (ωM → −iω) gives

σ0 = e2Nω

24πvh̄

(
1 − i

π
log

�2

ω2

)
. (B8)

APPENDIX C: THE INTERACTION CORRECTIONS

1. Calculation of the trace of the conductivity tensor, Eq. (B1)

The three interaction corrections to the trace of the conduc-
tivity tensor are the self-energy, the vertex, and the “glasses”
corrections [see Figs. 6(a)–6(c)] σ

(1)
ii = e2α(σ ver

ii + σ se
ii + σ

gl
ii ),

σ ver
ii = 1

ω

∑
pqνρ

Tr[vq−p p̃ · q̃ Gp,νGq,ρσiGq,ρ+ωGp,ω+νσi

−{ω → 0}];
σ se

ii = − 2

ω

∑
pqνρ

Tr[vq−pp̃ · p̃ Gp,νGq,ρGp,νσiGp,ω+νσi];

σ
gl
ii = 1

ω
vk

(∑
p,ν

TrGp,νGk+p,ω+ν

)2

, (C1)

where the first term is the vertex, the second term the self-
energy, and the third term the glasses diagram. The following
shorthand is useful:

k̂i ≡ sin ki ; k̃i ≡ cos (ki); 2̂ki ≡ sin (2ki); εk =
√

k̂2;
(C2)

k̂n = {k̂1
n
,k̂2

n
,k̂3

n}
, k̃n = {k̃1

n
,k̃2

n
,k̃3

n}
.

Calculating the trace and integrating over the internal
frequencies ν and ρ results in the following expressions for
the three diagrams (symmetrized in p and q). The vertex

σ ver
ii = 1

ω

1

36

∑
qp

vq−p(�1 + �2)

εpεq
(
ω2 + 4ε2

p

)2(
ω2 + 4ε2

q

)2 , (C3)
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with

�1 = −ω2{4 (̂p · q̂) (̃p · q̃) − 2̂p · 2̂q};

�2 = 2

{
(̂p · q̂)
(
2̂p · 2̂q

)+ 12̃p · q̃ − 16ε2
p p̃ · q̃ + 24̃q3 · p̃

+ 4(̃p · p̃) (̃q · q̃)( p̃ · q̃) − 8(̃p · p̃) (̃q3 · p̃) + p ←→ q

}
,

the self-energy,

σ se
ii = − 1

ω

1

3

∑
qp

vq−p

εpεq

(
�3 + �4

ε2
p

(
ω2 + 4ε2

p

)2 + p ←→ q

)
, (C4)

�3 = ω2
{−ε4

p (̂p · q̂) + 2ε2
p (̂p3 · q̂) + 2ε2

p (̂p · q̂) − (̂p2 · p̂2)(̂p · q̂)
}
;

�4 = 4ε2
p

{
ε4
p (̂p · q̂) + 2ε2

p (̂p3 · q̂) − 2ε2
p (̂p · q̂) − 3(̂p2 · p̂2)(̂p · q̂)

}
,

and the glasses diagram that is proportional to the square of the number of the Weyl points. Generalizing to arbitrary number N

of Weyl points, one has

σ
gl
ii = e4

ω

4πN2

3

(∑
p

p̂2
yp̃x

ε3
p

(
ω2 + 4ε2

p

))2

. (C5)

The integration over the momenta is performed with the sum of the vertex and the self-energy diagrams, which ensures
convergence. The integral for the glasses diagram vanishes. The result is

σ
(1)
ii = Nα2ω

24π

(
3.053 + 1.036

π
log(ω2) + 1

2π2
log2(ω2)

)
. (C6)

2. The longitudinal conductivity via the dielectric constant, Eq. (B2)

The general expressions for the dielectric function (the longitudinal part) via the ρ − ρ correlator can be written as εL =
1 + e2ε

(0)
L + e2αε

(1)
L with

ε(0) = −vkTr
∑
pν

Gp,νGp+k,ν+ω, (C7)

and ε
(1)
L = εver + εse + εgl, where

εver = vk

∑
pqνρ

TrGp+k,ν+ωGp,νvqGp+q,ρGp+q+k,ρ+ω;

εse = −2vk

∑
pqνρ

vq−pTrGp,νGq,ρGp,νGp+k,ω+ν ; (C8)

εgl =
(

vkTr
∑
pν

Gp,νGp+k,ω+ν

)2

.

The sums are expanded in powers of k; the trace is calculated and integrated over the internal frequencies. All the terms
divergent in the k → 0 limit vanish after integration over the internal frequencies. The relevant terms (symmetrized in p and q)
at k = 0 are

εse = π

6

∑
qp

vq−p

εpεq

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((

3−ε2
p

)(
ω2−4ε2

p

)
+2
(
ω2+12ε2

p

)
2
(
ω2+4ε2

p

)2
ε2

p

−
[

3ω2+20ε2
p

]
(̂2p)

2

8ε4
p

(
ω2+4ε2

p

)2
)

p̂ · q̂

−
(
ω2+12ε2

p

)̂
p3 ·̂q(

ω2+4ε2
p

)2
ε2

p

⎫⎪⎪⎪⎬⎪⎪⎪⎭+ p ←→ q; (C9)

εver = π

6

∑
qp

vq−p

ε3
pε

3
q

(
ω2 + 4ε2

p

)(
ω2 + 4ε2

q

)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
4ε2

pε
2
q − ω2(̂p · q̂)

](
2̂p · 2̂q

)
+ 4ε2

pε
2
q[4(̂p · q̂) − ω2](̃p · q̃)

− 2ε2
p

{
2ε2

q

(
2̂p · 2̂q

)− ω22̂q · (̂q ∗ p̃)
}
⎫⎪⎪⎪⎬⎪⎪⎪⎭+ p ←→ q; (C10)
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εgl = π2

4

{∑
p

1
3 (̂p2 · p̂2) + 1

12 2̂p
2 − ε2

p

ε3
p

(
ω2 + 4ε2

p

) }2

. (C11)

The numerical integration over the internal momenta results in, generalizing to N Weyl fermions,

εse+ver
L = −Ne2α

{
0.091 + 0.146

6π
log ω2 + 1

36π2
log2(ω2)

}
;

(C12)

ε
gl
L = N2e2α

{
0.22 − 1

6π
log(ω2)

}2

.

The longitudinal conductivity correction thus is

σ
(1)
L = − ω

4π
ε

(1)
L = Ne2αω

24π

{
0.545 + 0.146

π
log ω2 + 1

6π2
log2(ω2) − 6N

(
0.22 − 1

6π
log(ω2)

)2
}

. (C13)

3. Nonlocal conductivity: Analytic continuation to physical frequency

Using the expressions for the conductivity tensor trace and σL given in Eqs. (C6) and (C13), one obtains the corrections to
transversal and nonlocal conductivities

σnl = σL − σT = 1

2

(
3σ

(1)
L − σ

(1)
ii

) = e2αω

24π

{
N

(
−0.71 − 1

π2
log(ω2)

)
− 9N2

(
0.22 − 1

6π
log(ω2)

)2
}

. (C14)

Continuation to physical frequencies (ωM → −iω) results in the following real and imaginary parts (in terms of the ultraviolet
cutoff frequency �):

σ ′
nl = Ne2αω

24π2

{
1 + N

2
log

�2

ω2

}
;

(C15)

σ ′′
nl = Ne2αω

24π2

{(π
4

N − 2.23
)

+ 1

π
log

�2

ω2
− N

4π
log2 �2

ω2

}
.

One observes that the contribution of the real part of the nonlocal conductivity is positive for frequencies up to �/e1/N , while
the sign of the the imaginary part can depend on frequency and N . It is negative at small frequencies and large N . The
Nielsen-Ninomiya theorem ensures N � 4 in 3D.

APPENDIX D: FERMI ARCS

Absence of edge states along the [100] cut

Annihilation operators in “half momentum half configura-
tion” space, cα

nxnynz
=∑ky ,kz

e−i(kyny+kznz)cα
nxkykz

, are useful to
this end since the boundary maintains the translation symmetry
of the bulk in the y,z directions. Using the tight-binding
Hamiltonian takes a form of the sum of one-dimensional
operators, K =∑ky ,kz

Kk⊥ ,

Kk⊥ = iv

2

∑
nx=1

c
†
nx,k⊥

[
(e−ikyaσyx + e−ikzaσz)cnz,k⊥

+ σxcnz+1,k⊥
]+ H.c. (D1)

To simplify notations, we denote k⊥ → k, nx → n and taking
a = 1. The Schrödinger equation away from the surface (n >

1) is

(k̂yσy + k̂zσz)ψn + i

2
σx(ψn+1 − ψn−1) = 0, (D2)

where k̂ ≡ sin (k)

The edge states would correspond to solutions of the type
ψn+1 = λψn = λnψ1. The projection matrix

P = (k̂yσy + k̂zσz) + i

2
(λ − λ−1)σx (D3)

does not allow the nontrivial solutions.

APPENDIX E: TRANSVERSAL AND LONGITUDINAL
WAVES PROPAGATION IN THE BULK OF WSM

1. The transversal wave dispersion

The dispersion relation, Eq. (12), with the bulk conductivity
including the p2 term,

σT = Ne2ω

24π

(
1 − i

1

π
log

�2

ω2

)(
1 − v2p2

ω2

)
, (E1)

takes a form

c2

ω2
p2 = 1 + i

N

6

(
1 − i

1

π
log

�2

ω2

)(
1 − v2

ω2
p2

)
. (E2)
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Its solution is

p2 = ω2

c2

1 + i N
6

(
1 − i 1

π
log �2

ω2

)
1 + i N

6

(
1 − i 1

π
log �2

ω2

)
v2

c2

. (E3)

Since v/c � 1, one obtains

p2 = ω2

c2

[
1 + i

N

6

(
1 − i

1

π
log

�2

ω2

)]
(E4)

so that

p = ±ω

c

√
1 + N

6π
log

�2

ω2
+ i

N

6

� ±ω

c

√
1 + N

6π
log

�2

ω2

(
1 + i

N

12
(
1 + N

6π
log �2

ω2

)).
(E5)

The last expression utilizes 1
π

log �2

ω2 � 1. Consequently, to
the leading order the dispersion relation is real

p = ±ω

c

√
1 + Ne2

6π
log

�2

ω2
, (E6)

while the penetration depth is

δT = 1

Imp
= c

ω

12

Ne2

√
1 + Ne2

6π
log

�2

ω2
. (E7)

2. The longitudinal wave dispersion

The main contribution to the longitudinal conductivity
σL(ω) comes from the imaginary part, so that the dispersion
relation, Eq. (13), for plasmons becomes

q = ω

v

√√√√1 + Ne2

6π

(
1 − α

π

)
log �2

ω2 − e2αN2

24π2 log2
(

�2

ω2

)
Ne2

6π

(
log �2

ω2 − 1
) , (E8)

and the penetration depth is

δL = v

ω

√
4π

Nα
log

�2

ω2
= v2

ω2

4π

Nα
q. (E9)
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