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2Departamento de Fı́sica Teórica de la Materia Condensada & Condensed Matter Physics Center (IFIMAC),
Universidad Autónoma de Madrid, Madrid 28049, Spain

3London Centre for Nanotechnology, Gordon Street, London WC1H 0AH, United Kingdom
4School of Physics & Astronomy, Monash University, Victoria 3800, Australia

(Received 26 January 2016; revised manuscript received 31 January 2017; published 21 February 2017)

We investigate the behavior of identical dipolar fermions with aligned dipole moments in two-dimensional
multilayers at zero temperature. We consider density instabilities that are driven by the attractive part of the
dipolar interaction and, for the case of bilayers, we elucidate the properties of the stripe phase recently predicted
to exist in this interaction regime. When the number of layers is increased, we find that this “attractive” stripe
phase exists for an increasingly larger range of dipole angles, and if the interlayer distance is sufficiently small,
the stripe phase eventually spans the full range of angles, including the situation where the dipole moments are
aligned perpendicular to the planes. However, in this regime, we expect the behavior to be strongly modified
by the binding of dipoles between layers. In the limit of an infinite number of layers, we derive an analytic
expression for the mean-field interlayer effects in the density-density response function and, using this result, we
find that the stripe phase is replaced by a collapse of the dipolar system.
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I. INTRODUCTION

Motivated by the prospect of novel many-body phases
generated by anisotropic long-range dipolar interactions,
much attention has recently been devoted to ultracold polar
molecules and magnetic atoms [1–3]. Dipolar fermions,
in particular, can be used to simulate strongly correlated
phenomena in electron systems, including charge density
modulations (stripes) and unconventional superconductivity
[4–6].

Quantum degeneracy has already been achieved for dipolar
Fermi gases of atoms with a permanent magnetic dipole
moment such as chromium [7], dysprosium [8], and erbium
[9]. This has enabled the observation of dipole-driven Fermi
surface deformations in the Fermi liquid phase [10]. However,
to investigate many-body phenomena at stronger dipole-dipole
interactions, it appears necessary to use polar molecules,
which generally possess larger dipole moments—the electric
dipole moment can be as large as 5.5 Debye in the case
of 133Cs 6Li [11]. Thus far, there has been major progress
towards producing quantum degenerate clouds of long-lived
fermionic dipolar molecules using 40K 87Rb [12–14], 23Na 6Li
[15], 133Cs 6Li [16], and 23Na 40K [17,18].

The dipole-dipole interaction can be further tuned and
enhanced by confining the polar molecules to two-dimensional
(2D) layers. Such a geometry has been used to suppress
chemical reactions [19] and to stabilize the gas against
mechanical collapse, which arises in three dimensions for
a sufficiently strong interaction [20–26]. Furthermore, by
aligning all the dipole moments with a strong electric field, the
nature of the effective 2D dipolar interaction within the plane
may be externally manipulated: The dipole-dipole repulsion
is maximized by aligning the dipole moments perpendicular
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to the plane, while anisotropy and attraction are gradually
introduced by varying the dipole tilt (see Fig. 1). This
possibility has stimulated much theoretical work on dipolar
fermionic gases in single and multilayer 2D geometries [3].

For the single-layer geometry and for small (but nonzero)
tilting angles, the weakly interacting system corresponds to
a Landau Fermi liquid with deformed Fermi surface [27],
similarly to the case in 3D. With increasing dipolar interaction
(or cloud density), the system is then predicted to undergo a
transition to a unidirectional density modulated phase [28–31],
where the modulations are perpendicular to the direction of the
dipole tilt. Such a “stripe” phase has also been shown to exist in
the isotropic case where the dipoles are aligned perpendicular
to the layer, thus requiring the system to spontaneously
break the rotational symmetry [32]. This result has recently
been supported by density functional theory calculations [33],
which predict a transition to a stripe phase followed by a
transition to a triangular Wigner crystal at higher coupling.
Quantum Monte Carlo calculations also find a Wigner crystal
phase for the case of perpendicularly aligned dipoles, although
at a much higher dipolar interaction than that obtained from
density functional theory [34].

For tilting angles greater than a critical angle, the attractive
part of the dipolar interaction can lead to p-wave superfluidity
in the single-layer system [35], and this phase may even
coexist with stripe order [36]. A sufficiently strong attrac-
tion eventually drives a mechanical instability of the cloud
towards collapse [28,31,32,35,37]. However, interestingly, if
one instead considers a bilayer geometry, the additional layer
stabilizes the collapse at large tilt angles—as long as the
dipoles are aligned out of the plane (θ < π/2)—to form a
new stripe phase, where the density modulations are oriented
along the direction of the dipole tilt [38].

In this paper, we investigate such a stripe phase, which
is generated by the attractive part of the dipolar interaction
for large enough dipole tilt angle. We start by elucidating its
properties in the case of the bilayer, where we provide a new
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FIG. 1. Schematic representation of the system geometry. A gas
of dipolar fermions is confined to N 2D layers labeled by an index
j = 1,2, . . . ,N and separated by a distance d . We assume that each
layer has the same density of dipoles n. The dipole moment of each
fermion is aligned by an electric field E = (Ex,0,Ez) in the x-z plane
(ϕ = 0 direction), at an angle θ with respect to the ẑ direction.

classical argument for how the stripes in each layer are shifted
with respect to each other. Then we extend our results for the
density-density response function to the multilayer geometry.
We employ an approach based on a version of the Singwi-Tosi-
Land-Sjölander (STLS) scheme [32,38,39] that incorporates
exchange interactions only, which should be reasonable for
the “attractive” stripe phase [38], provided that the interlayer
binding of dipoles [40–42] is weak. Note, however, that we
neglect the possibility of other stripe phases driven by the
strong intralayer repulsion [38,43].

As the number of layers N is increased, we find that the
attractive stripe phase spans an increasingly larger region of
the phase diagram. However, this stripe phase eventually gives
way to collapse in the N → ∞ limit.

The paper is organized as follows: In Sec. II, we describe
the system geometry and introduce the STLS scheme which
allows us to evaluate the density-density response function
matrix in the multilayer geometry; in Sec. III, we describe the
properties of the density instabilities driven by the attractive
part of the interlayer dipolar interaction and, in Sec. III A,
we explain via a classical model how the stripes in each
layer are shifted with respect to each other. In Sec. IV, we
extend the results to a generic number of layers N , while in
Sec. V we consider the N → ∞ limit. In Sec. VI we assess
the influence of interlayer correlations on the predicted stripe
phase by estimating the bound state properties in a bilayer (i.e.,
dimer in Sec. VI A), as well as for an infinite number of layers
(i.e., semiclassical bound chain in Sec. VI B). The concluding
remarks are gathered in Sec. VII.

II. MULTILAYER SYSTEM AND MODEL

We consider a gas of polar fermionic molecules in a
multilayer geometry, as shown in the schematic picture in
Fig. 1. The molecules have a dipole moment D and are
confined to N two-dimensional layers, each labeled by an
index j = 1,2, . . . ,N and equally separated by a distance d.
We assume that the dipoles are aligned by an external electric
field E = (Ex,0,Ez) in the x-z plane, which is tilted at an
angle θ with respect to the ẑ direction. Within each layer, we
parametrize the x-y in-plane wave vector by polar coordinates

q = (q,ϕ), where ϕ = 0 corresponds to the direction of the
dipole tilt.

In the limit qW � 1, where W is the layer width, the
effective 2D intralayer interaction between dipoles takes the
following form [44]:

vjj (q) ≡ v(q) = V0 − 2πD2qξ (θ,ϕ), (1)

where ξ (θ,ϕ) = cos2 θ − sin2 θ cos2 ϕ. Here, q corresponds to
the relative wave vector between two dipoles. The constant V0

is a short-range contact interaction term that in general depends
on the width W [44], yielding a natural UV cutoff. Since we
are considering identical fermions, the system properties will
not depend on V0. The 2D dipolar interaction can alternatively
be regularized by considering physical electrical dipoles with
a finite size l, which, like W , act as a UV cutoff [45]. In this
case, for ql � 1, the intralayer interaction recovers the same
expression (1).

In the limit where the layer width is much smaller than the
layer separation, W � d, the interaction between two dipoles
in different layers j > l is given by [46]:

vjl(q) = −2πD2qe−(j−l)qd [ξ (θ,ϕ) + i sin 2θ cos ϕ]. (2)

The remaining interlayer interactions can be obtained from the
condition vlj (q) = vjl(−q) = v∗

j l(q), which is derived from
the fact that the dipolar interaction is always real in real space.
Likewise, the momentum-space interaction is complex for θ �=
0 since the real-space interaction is not invariant under the
transformation r �→ −r.

Assuming that each layer has the same density n, we define
the Fermi wave vector kF = √

4πn. This allows us to define
the dimensionless interaction strength U = mD2kF , where m

is the fermion mass (henceforth we fix h̄ = 1). The other
parameters that can be independently varied are the dipole
tilt angle θ and the dimensionless layer separation kF d.

Response function and STLS equations

Similarly to Ref. [38], we make use of linear response
theory to analyze density wave instabilities. In the multilayer
system, the linear density response δn to an external perturbing
potential V ext defines the density-density response function
matrix [47],

δnj (q,ω) =
∑

l

χjl(q,ω)V ext
l (q,ω), (3)

where j,l are the layer indices. A divergence in the static
density-density response function matrix χjl(q,ω = 0) signals
an instability of the system. Specifically, the system is unstable
towards forming a stripe phase when the smallest eigenvalue
χ̃min(q) of the static response function matrix first diverges at
a critical value of the wave vector qc = (qc,ϕc).

While the response function is known exactly for the non-
interacting gas, typically one can only incorporate the effect of
interactions approximately. A standard approach is the random
phase approximation (RPA), where one replaces the external
potential with one that contains an effective potential due to the
perturbed density: V ext

j �→ V ext
j + ∑

l vjlδnl . However, RPA
neglects exchange correlations, which are always important
in the dipolar system, even in the long-wavelength limit
q → 0 [32]. This issue may be remedied using a conserving
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Hartree-Fock approximation [30,31,43], but we choose a
simpler and physically motivated approach where correlations
are included via local field factors Gjl(q) [48]. This yields the
inverse density-density response function matrix

χ̂−1
j l(q,ω) = δjl

	(q,ω)
− vjl(q)[1 − Gjl(q)], (4)

where 	(q,ω) is the noninteracting response function, which,
for equal density layers, reads as [47,49]

	(q,iω) = m

2πb
{
√

2[a +
√

a2 + (ωb)2]1/2 − b},

with a = b2

4 − b
k2
F

m
− ω2 and b = q2

m
. RPA corresponds to

taking the limit where the layer-resolved local field factors
Gjl(q) in Eq. (4) are all zero.

The response function (4) can be related to the layer-
resolved static structure factor Sjl(q) by the fluctuation-
dissipation theorem:

Sjl(q) = − 1

πn

∫ ∞

0
dωχjl(q,iω). (5)

In the noninteracting limit, the static structure factor is
diagonal, i.e., S

(0)
j l (q) = δjl S(0)(q), and can be evaluated

exactly (see Appendix), where

S(0)(q) = 2

π
arcsin

(
q

2kF

)
+ q

πkF

√
1 −

(
q

2kF

)2

, (6)

for q � 2kF , while S(0)(q) = 1 for q > 2kF [47,48].
To determine the local field factors, we consider the STLS

approximation scheme, where we have the expression [39,47]:

Gjl(q) = 1

n

∫
dk

(2π )2

q · k
q2

vjl(k)

vjj (q)
[δjl − Sjl(q − k)]. (7)

This approach ensures that all particle-particle correlations
present in the system, as encapsulated in the structure factor,
are fed back into the local field factor. The approximate relation
(7) is derived using a classical analogy—see, e.g., Appendix
10 in Ref. [48]. In principle, Gjl(q) can be determined
self-consistently by solving Eqs. (4), (5), and (7). Note that this
self-consistent approach includes correlations beyond RPA
and is not just limited to exchange correlations. As such,
the STLS scheme has proven to be a powerful method for
treating strongly correlated electron systems such as the 2D
electron gas [48]. We previously adapted an improved version
of this scheme to the dipolar system, both in the single- [32]
and double-layer [38] geometries. The scheme is improved
by imposing, at each iteration step, the condition that the
intralayer pair correlation function is zero at zero distance,
gjj (0) = 0, where,

gjl(r) = 1 + 1

n

∫
dq

(2π )2
eiq·r[Sjl(q) − δjl]. (8)

This ensures that the intralayer static structure factor Sjj (q) is
dominated by Pauli exclusion in the short wavelength limit,
q 
 2kF , and that the system response is independent of the
short-range contact interaction term V0 and the cutoff W .

In the following, we first review the bilayer case and
describe the instability to a stripe phase occurring for large
tilt angles θ , where the modulations are oriented along the

dipole tilt, i.e., along ϕ = 0. We then show how the instability
to the ϕ = 0 stripe phase can be well described using exchange
correlations only, and we use this to investigate its existence
in the multilayer geometry.

III. THE ϕ = 0 STRIPE PHASE IN BILAYERS

The case of two layers (N = 2) was previously analyzed
within the STLS self-consistent approximation scheme in
Ref. [38]. Here, at sufficiently small tilt angles θ < θc, and
by increasing the value of the dimensionless coupling strength
U , there is an instability from the uniform phase to a stripe
phase with modulations along the y axis (ϕ = π/2 stripe
phase). The instability to this stripe phase is driven by
intralayer correlations beyond exchange, which are induced
by the repulsive part of the intralayer interaction potential
v(q). By contrast, for θc < θ < π/2, the system develops an
instability to a stripe phase along the x axis (ϕ = 0 stripe
phase). While for a single layer, the attractive sliver of the
intralayer interaction produces a collapse of the dipolar Fermi
gas at large tilt angles, the bilayer geometry stabilizes the
collapse in favor of a ϕ = 0 stripe phase, which thus derives
from a competition between the intralayer attraction in the
ϕ = 0 direction and the interlayer interaction.

Interestingly, this latter stripe phase can be accurately
described using intralayer exchange correlations only. In fact,
it was found for this phase that the intralayer pair correlation
function gjj (r) deviated only slightly from the noninteracting
case, while the interlayer correlation function g12(r) ∼ 1.
In terms of local correlations, the interlayer local field
factor can thus be neglected, G12(r) = 0, while the intralayer
one Gjj (q) ≡ G(q) is determined from the noninteracting
intralayer structure factor (6):

G(q) = 1

n

∫
dk

(2π )2

q · k
q2

v(k)

v(q)
[1 − S(0)(q)]. (9)

We refer to this approximation scheme as the exchange-only
STLS approximation (X-STLS). For the single-layer case
[32], this approach yielded an instability towards collapse at
large θ that agreed with the predictions from Hartree-Fock
calculations [28,30,31,35].

The phase boundary between the normal phase and the
ϕ = 0 stripe phase obtained from the full STLS scheme is
displayed in Fig. 2 ([green] open triangles) and is compared
with the results of the X-STLS approximation ([blue] solid
line). The value of the critical tilt angle for such a phase is
θc � 0.75 if evaluated within the full STLS scheme, while it
is slightly higher, θc � 0.79, if evaluated within the X-STLS
approximation. It turns out that, for the phase boundary, the
X-STLS approximation works particularly well at large angles,
all the way up to θ = π/2, where, for U � 1.57 ([red] diamond
symbol and thick solid line), the gas collapses because the
Fermi pressure is not high enough to counteract the strong
dipolar attraction.

The eigenvectors of the density-density response function
(4) determine the phase-shift η between layers, and for the
bilayer geometry we have found that [38]:

eiη = − v12(q)[1 − G12(q)]

|v12(q)[1 − G12(q)]| . (10)
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FIG. 2. Main panel: Phase boundary for the ϕ = 0 stripe phase
in the two-layer geometry as a function of the tilt angle θ and
the dimensionless interaction strength U at fixed interlayer distance
kF d = 2. Density modulations are in the direction ϕ = 0 of the
dipole tilt (schematic figure). The instability to this phase is to
the right of the plotted boundaries: The full STLS results [38]
([green] open triangles) are compared to the results obtained with
exchange-only correlations ([blue] solid line), also referred to as the
X-STLS approximation scheme. Within X-STLS, the ϕ = 0 stripe
phase appears for θ > θc � 0.79. At θ = π/2, the gas is unstable
towards mechanical collapse for U � 1.57 ([red] diamond symbol
and thick solid line), where the gas compressibility is infinite. The
density modulations in the two layers have a phase shift η (lower inset)
equal to 2θ , i.e., the shift between the modulations 2θ/qc (schematic
figure).

For both ϕ = π/2 and ϕ = 0 stripe phases, we find that the
interlayer phase shift between the modulations is independent
of the dipole interaction strength U and the layer distance
d. In particular, for the ϕ = π/2 stripe phase, both the
interaction and the local field factor are real and thus both layer
modulations are always in phase, i.e., η = 0. On the other hand,
for the ϕ = 0 stripe phase, if we consider an exchange-only
approximation (X-STLS) for which G12(q) = 0, we obtain
a phase shift of η = 2θ . The phase shift for the ϕ = 0
stripe phase is plotted in the inset of Fig. 2. We see a very
good agreement between the full STLS results ([green] open
triangles) and the simplified X-STLS scheme ([blue] solid
line). The ϕ = 0 result may at first appear counterintuitive,
but it can be reproduced by evaluating the classical interaction
energy between an infinite layer of dipoles in one layer and a
single dipole in the second layer, as we discuss next.

Classical model

For the bilayer geometry, a simple classical model can
easily explain the phase shifts found in both ϕ = 0 and
ϕ = π/2 stripe phases. Let us consider the simplified case
of an infinite layer of dipoles whose density is modulated
sinusoidally with a wave vector qc = 2π/λc and amplitude
ρ0. We further assume that this interacts classically with a
single dipole positioned at r0 in the other layer. The two layer

FIG. 3. Schematic representation of a single dipole in the top
layer interacting classically with an infinite bottom layer of dipoles
arranged in a stripe modulated phase. As in Fig. 1, all dipoles are
aligned by an electric field E. In the left (right) panel, the single
dipole is shifted by x̄ (ȳ) with respect to one of the stripe crests for
the ϕ = 0 (ϕ = π

2 ) stripe phase.

densities are thus, respectively, given by:

ρ(1)(r) = n + ρ0 cos(qc · r) (11)

ρ(2)(r′) = δ(r′ − r0). (12)

For the ϕ = 0 (ϕ = π/2) stripe phase we have q̂c = x̂ (q̂c = ŷ)
and r0 = (x̄,0) (r0 = (0,ȳ))—see the schematic representation
of both geometries in Fig. 3. The classical interaction energy
is given by

Ecl =
∫

drdr′ρ(1)(r)v12(r − r′)ρ(2)(r′), (13)

where

v12(r) = D2 x2 + y2 + d2 − 3(x sin θ + d cos θ )2

(x2 + y2 + d2)5/2

is the interlayer potential (assuming that the distance d is
much larger than the layer thickness W ). For a uniform density
distribution ρ(1)(r) = n, the classical interaction energy would
be zero; therefore only deviations from the average density in
ρ(1)(r) contribute (either positively or negatively) to Ecl.

Considering the Fourier transforms ρ(1,2)(r) =∫
dq

(2π)2 ρ
(1,2)(q)eiq·r and v12(r) = ∫

dq
(2π)2 v12(q)eiq·r, we can

rewrite (13) to obtain

Ecl =
∫

dq
(2π )2

ρ(1)(−q)v12(q)ρ(2)(q), (14)

where

ρ(1)(q) = (2π )2

[
nδ(q) + ρ0

δ(q + qc) + δ(q − qc)

2

]

ρ(2)(q) = e−iq·r0 .

Thus, as v12(0) = 0, we get in general

Ecl = ρ0

2
[v12(−qc)eiqc ·r0 + v12(qc)e−iqc ·r0 ], (15)

and specifically for the two stripe phases:

E
ϕ=0
cl = −4π2D2ρ0

λc

e−2πd/λc cos

(
2π

x̄

λc

− 2θ

)

E
ϕ=π/2
cl = −4π2D2ρ0

λc

e−2πd/λc cos2 θ cos

(
2π

ȳ

λc

)
.
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Therefore, we can conclude that, for both stripe configurations,
the distance, x̄ or ȳ, that minimizes the interaction energy
Ecl does not depend on the dipole strength D or the layer
separation d. Further, for the ϕ = π/2 stripe phase, the best
configuration is the one where the single dipole in layer 2
aligns with the maximum density of layer 1, i.e., ȳmin = 0. By
contrast, for the ϕ = 0 stripe phase, the optimal configuration
is for a phase shift equal to twice the dipole tilt angle θ , i.e.,
2πx̄min/λc = 2θ . An analogous calculation was carried out
for the ϕ = π/2 stripe phase in the simplified limit where the
density modulations were approximated as discrete dipolar
wires [43].

We now wish to extend these results to multiple layer N > 2
configurations. We have seen that the presence of a second
layer stabilizes the region of collapse at large tilt angles θc <

θ < π/2, replacing it with a novel stripe phase oriented along
ϕ = 0 [38]. Furthermore, within the X-STLS approximation,
the critical tilt angle for the ϕ = 0 stripe phase in bilayers is
θc(N = 2) ∼ 0.79, which is lower than that for collapse in the
single layer, θc(N = 1) ∼ 0.89. It is therefore natural to ask
whether the ϕ = 0 stripe phase will tend to dominate the phase
diagram as the number of layers N is increased.

IV. N LAYERS

Motivated by the results obtained for the bilayer system, we
now apply the X-STLS approximation scheme to the general
case of finite N > 2 layers and evaluate the occurrence of
the ϕ = 0 stripe phase when varying the system parameters.
In particular, by neglecting all correlations except for the
exchange ones, we assume that all off-diagonal local field
factors are zero, Gj �=l(q) = 0, while the intralayer ones
G(q) are evaluated according to Eq. (9). To locate the
stripe instabilities, we extract the smallest eigenvalue of the
static density-density response function matrix, χ̃min(q), and
determine the critical wave vector qc = (qc,ϕc) at which it
first diverges. If the instability is for a specific angle ϕc, then
it signals the formation of a density wave with modulations in
that direction and with a period set by qc. Here, we always find
that ϕc = 0, as in the bilayer case.

At the stripe transition, the phase shifts ηjl between the
stripes in different layers j,l are extracted from the eigenvector
associated with the smallest eigenvalue, χ̃min(qc). We find that
the behavior of the multilayer system is a natural extension of
the bilayer case: The phase shift between nearest neighbor
layers ηj,j+1 grows monotonically with the tilt angle θ ,
although linearly only for small values of θ . Moreover, the
phase shift between more distant layers is always proportional
to ηj,j+1.

To gain insight into the phase diagram of the multilayer
system, we first focus on the trilayer, N = 3. In Fig. 4, we plot
the phase boundaries for the instability to a ϕ = 0 stripe phase
(left panel) and the associated critical wave vectors qc/kF

(right panel) for different values of the layer distance dkF . The
qualitative behavior we observe here is common to any number
of layers N , including the case of a bilayer N = 2. For large
enough layer distance d, the ϕ = 0 stripe phase can only occur
for values of the tilt angle greater than a critical angle θc, i.e., at
the stripe instability boundary, we have U → ∞ for θ → θc

([green] circle symbols). However, when the layer distance

0 5 10 15
U

0

π/4

π/2

θ

dk
F
=0.9

d
c
k

F
=1.05

dk
F
=2

0 0.5 1 1.5 2
q

c
/k

F

FIG. 4. Evolution of the ϕ = 0 stripe phase for the trilayer N = 3
geometry when varying the dimensionless layer separation dkF . Left
panel: phase boundary in the θ versus U plane; the instability to
the stripe phase is on the right side of the plotted boundary. The
boundary is gray at higher values of U and smaller values of the tilt
angle θ , where interlayer pairing correlations cannot be neglected
(see Sec. VI A). Right panel: Rescaled stripe wave vector qc/kF at
the phase boundaries as a function of the tilt angle θ .

decreases, we find that θc eventually reaches zero at a critical
distance dc ([violet] star symbols): Here, the ϕ = 0 stripe phase
spans the entire range of tilt angles θ . For smaller distances,
d < dc, stripe formation is always possible for sufficiently
large but finite values of the interaction strength U , even for
dipoles aligned perpendicular to the planes.

Note that when decreasing the value of dkF , eventually
our exchange-only formalism becomes questionable, since it
neglects interlayer correlations. In particular, for kF d � 1 and
for sufficiently small θ , interlayer pairing (e.g., dimers in the
two-layer configuration [50] and bound chains in multilayers
[42,51]) is expected to dominate over stripe formation, and
this is not included in the X-STLS approximation scheme.
However, even though small θc may be unphysical, the critical
distance dc still provides a useful measure of the system’s
behavior, since it constrains the overall shape of the stripe
phase boundary in the U -θ plane. In Sec. VI, we estimate
the region of the phase diagram where interlayer correlations
cannot be neglected.

We next investigate whether the ϕ = 0 stripe phase can
dominate the phase diagram as the number of layers N is
increased. To this end, we plot in Fig. 5 the phase boundaries
(left panels) for the ϕ = 0 stripe phase for different values
of N . We observe qualitatively different behavior depending
on whether the distance d is above or below ∼1.47/kF ,
corresponding to the critical distance dc for N → ∞, as
derived in Sec. V. When d > dc(N → ∞) (lower panels of
Fig. 5), the ϕ = 0 stripe phase exists for an increasingly larger
range of dipole tilt angles as N increases, but the critical
angle θc finally saturates to a finite positive value. When
instead d < dc(N → ∞) (upper panels of Fig. 5), the stripe
phase eventually spans the full range of angles, including the
situation where the dipole moments are aligned perpendicular
to the planes.

These results are summarized in Fig. 6, where we plot, as
a function of 1/N , the critical value of the interlayer distance
dckF at which the ϕ = 0 stripe phase first spans the full range
of dipole tilt angles. The data for N → ∞ in the figures
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π/4

π/2

θ

N=2
N=4
N=5
=25

5 10 15
U

0

π/4

π/2

θ

0 0.5 1 1.5qc/kF

dkF=1.2

dkF=2

FIG. 5. Phase boundaries (left panels) and rescaled stripe wave
vector at the boundaries qc/kF (right panels) for the ϕ = 0 stripe
phase for different values of the number of layers N and two fixed
values of the layer distance: dkF = 1.2 (top panels) and dkF = 2
(bottom panels). The phase boundary for stripe formation at N = 2
([red] open circles) is gray when the system preferentially forms
dimers. The shaded region indicates the crossover to a “bound-state
regime” dominated by dipolar chains (here evaluated for the case of
an infinite number of layers).

are evaluated following the procedure explained in the next
section.

V. THE N → ∞ LIMIT

We now show how the calculation for the ϕ = 0 stripe
instability can be extended to the limit of an infinite number of
layers. The key point is that the interlayer interaction potential
vjl(q) only depends on the layer index difference |j − l|,
so that, for a system with periodic boundary conditions and
N 
 1, we can make a transformation from the layer index
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1/N

0.8

1
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1.8

2

d ck F

0 0.1 0.2 0.3 0.4 0.5
1/N

0

0.5

1

1.5

2

q m
ax

/k
F

d=d
c

d
c
(N→∞)k

F

FIG. 6. Critical value of the interlayer distance dckF at which
θc = 0 (at U → ∞) as a function of the inverse number of layers, 1/N .
In the limit N → ∞, dckF = 1.47. Numerical data are represented
as (red) circles, while the dashed (blue) line is a linear fit to the data.
Inset: maximum value of the stripe wave vector qc/kF for d = dc as
a function of 1/N . Data are (orange) triangles, while the (turquoise)
dashed line is a nonlinear fit giving f (1/N ) = 2.83(1/N )0.49.

space j = 1,2, . . . ,N to the reciprocal space p = 2πm/N ,
where m = −N/2, . . . ,N/2 [52]:

ũp =
N∑

j−l=−N

e−i(j−l)pvjl . (16)

Of course, in the actual system, we do not have periodic
boundary conditions, but this should not change the physics
in the limit N → ∞. Inserting Eq. (2) yields the analytical
solution

ũp(q) = −2πD2q

[
ζ (θ,ϕ)

eip+qd − 1
+ ζ (θ,ϕ + π )

e−ip+qd − 1

]
, (17)

where ζ (θ,ϕ) = ξ (θ,ϕ) + i sin 2θ cos ϕ, and where we have
taken the limit N → ∞ after evaluating the geometric series.

We thus obtain the following expression for the eigenvalues
of the inverse density-density response function:

χ̃−1
p (q,ω) = 1

	(q,ω)
− v(q)[1 − G(q)] − ũp(q). (18)

To investigate the instabilities, we take the static limit, ω = 0,
and determine the values of p and q for which χ̃−1

p first hits
zero. In practice, this means we must find the value of p that
maximizes −ũp(q) for each q. Solving for the stationary points
gives us two solutions:

pi=1,2 = 2 arctan

[
(eqd ∓ 1) sin θ cos ϕ

(eqd ± 1) cos θ

]
+ πδi,2, (19)

where the argument is positive if we assume 0 � ϕ � π/2.
The first solution p1 corresponds to the maximum of −ũp(q),
where we have

ũp1 (q) = −4πD2q

(
cos2 θ

eqd − 1
− cos2 ϕ sin2 θ

eqd + 1

)
. (20)

Thus we have now considerably simplified the problem, as we
only have to find the zero of the maximum inverse eigenvalue
of the static response, χ̃−1

p1
(q,0), as a function of q.

In this limit, we always find that (qc,ϕc) = 0, i.e., by
increasing the number of layers to infinity, the gas becomes
unstable towards mechanical collapse. Here, the gas compress-
ibility, which is proportional to the static response function at
q = 0, is infinite. The results for the phase boundary of such a
collapsed phase are summarized in Fig. 7 and are qualitatively
similar to the boundaries found for the ϕ = 0 stripe phase in
the case of a finite number of layers. Below the critical layer
distance dckF � 1.47, the collapsed phase exists for any value
of the dipole tilt angle, including θ = 0. As discussed in the
next section, interlayer binding cannot be neglected for small
tilt angles in this limit. However, the value of dc still determines
the behavior of the phase boundary at larger θ , as shown
in Fig. 7.

The behavior of the infinite N multilayer system is
reminiscent of that expected for the 3D dipolar Fermi gas,
where one also has collapse for sufficiently large dipolar
interactions [21]. In particular, the θ = 0 case possesses the
same rotational symmetry as the 3D gas with aligned dipole
moments. Therefore, it is instructive to compare the onset of
collapse for θ = 0 in the multilayer system to that in the 3D
case. First, one can define a 3D density for the multilayer
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FIG. 7. Left panel: Phase boundary of the collapsed region for an
infinite number of layers N → ∞ and different values of the rescaled
layer density dkF . The instability to collapse is signalled by an infinite
compressibility of the dipolar gas, i.e., by a divergence of the static
response function for qc = 0. While for d > dc, collapse occurs only
for a tilt angle larger than a critical value θc, for d < dc, the collapsed
phase spans the entire range of angles. The phase boundaries are
plotted in gray when the system crosses over to the “bound state
regime” dominated by infinitely long dipolar chains (see Sec. VI B).
Right panel: We plot the asymptotic values of the tilt angle at the
phase boundary for U → ∞, θc, as a function of the rescaled layer
distance dkF ; we find that the critical distance for infinite layers is
given by dc(N → ∞)kF = 1.47.

geometry:

n3D = n

d
= k3

F

4π (kF d)
. (21)

This then yields the corresponding 3D dimensionless interac-
tion parameter:

U3D ≡ mD2n
1/3
3D = U

(4πkF d)1/3
. (22)

In the 3D dipolar gas, the collapse instability occurs at U3D �
2.4 [21]. Thus, to obtain a comparable U3D for collapse in
the multilayer system, we require dkF � 1.31 and U � 6.12.
In our 2D infinite layer configuration, we can interpret the
parameter dkF as an effective Fermi surface “deformation”
parameter if we treat 2π/d as a Fermi momentum in the
z direction. This assumes that it is the interparticle spacing
rather than the fermion exchange that is the key feature of
the Fermi surface deformation in 3D when considering the
collapse instability. For the multilayer geometry, the ratio
between the Fermi momenta in the z and radial directions
is then given by 2π/(kF d), thus yielding kF,z/kF,r ∼ 4.8 at
the collapse instability. This is not so dissimilar from that
obtained for the 3D Fermi gas within Hartree-Fock mean-field
theory, where kF,z/kF,r ∼ 2 [21]. In the layered system, we
can effectively tune the deformation such that the critical U3D

for collapse is raised (lowered) by increasing (decreasing) dkF .
Eventually, when d > dc, the Fermi surface is not sufficiently
elongated along the dipole direction to produce collapse.

VI. BOUND STATES IN MULTILAYERS

Thus far, we have neglected strong interlayer correlations,
which are expected to dominate in the multilayer system
for small d. While we have restricted our calculations to
kF d � 1, there is still the possibility of interlayer bound states

(e.g., chains) when U is sufficiently large [42]. Therefore,
in this section, we estimate the importance of interlayer
correlations by solving for the interlayer bound states in the
simplified limit of one dipole in each layer, and then comparing
the bound-state in-plane size with the interparticle spacing
within each layer: If the bound state is comparatively large
within the 2D planes, then the interlayer correlations are
negligible and we expect our X-STLS approximation scheme
to be reasonable. Due to the complexity of the multiparticle
bound state problem, we focus on two limiting cases: (i) the
dimer in the bilayer, which may be determined exactly, and (ii)
the chain in an infinite number of layers, where we will use a
semiclassical approximation.

A. Dimer in the bilayer

For the case of the bilayer with one dipole in each layer, we
must solve the following equation to obtain the dimer bound
state:

Eψ(k) = 2εkψ(k) +
∑

k′
v21(k − k′)ψ(k′), (23)

where ψ(k) is the momentum-space wave function for the two
dipoles in relative coordinates, E is the dimer energy and εk =
k2/2m the dipole kinetic energy. Note that the center-of-mass
momentum is decoupled from the relative motion and can thus
be set to zero.

A dimer bound state exists for all angles θ and interaction
strengths Ud = mD2/d [50]. We estimate the dimer size k0 in
momentum space by equating it to the point at which |ψ(k)|2
is half its maximum value, i.e., we define |ψ(k0,ϕ = 0)|2 =
1
2 |ψ(0)|2, where we have taken the direction (ϕ = 0) along
which the dimer is most tightly bound.

We plot in the left panel of Fig. 8 the rescaled dimer size
in momentum space, k0d, as a function of the interaction
strength Ud for two different angles. In the limit k0/kF 
 1,
the dimer state is tightly bound and the many-body bilayer
system corresponds to a gas of bosonic dimers. On the
other hand, interlayer correlations are weak in the opposite
limit k0/kF � 1. Thus, k0/kF � 1 approximately defines the
region of parameter space (which we denote as the “bound-
state regime”), where interlayer pairing correlations cannot be

0 5 10
Ud=mD

2/d

0

1

2

3

k 0
d

θ=0 N=2
θ=0 N→∞
θ=π/4 N=2
θ=π/4 N→∞

0 5 10
U=mD2kF

0

π/4

π/2
θ

N=2
N→∞

kFd=1.2

FIG. 8. Left panel: Size in momentum space, k0d , of dimers
(N = 2 [filled symbols]) and bound chains (N → ∞ [empty sym-
bols]) as a function of the interaction strength Ud for θ = 0
([red] circles) and θ = π/4 ([blue] squares). Right panel: “bound-
state” region for fixed kF d = 1.2, indicating where k0/kF � 1 and
interlayer correlations are important (see Fig. 5).
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FIG. 9. Classical configuration of an infinite chain of static
dipoles (dipole in the layer j ∗ positioned at r = 0): dipoles in adjacent
top and bottom layers are shifted by a vector ±r01 = ±(x0,0),
respectively, in order to minimize the potential energy vcl(x0) (see
text). Fluctuations around this classical configuration are introduced
by allowing one dipole, say in layer j ∗, to move freely to any in-plane
position r.

ignored. This crossover region is plotted in the right panel of
Fig. 8 (kF d = 1.2): Here, the X-STLS results are likely to be
inaccurate. For this reason, in Figs. 4 and 5, we have grayed out
the parts of the stripe boundaries that lie within the bound-state
regime.

B. Bound chain in the limit N → ∞
For multiple layers with one dipole per layer, the prob-

lem quickly becomes intractable for large N . Therefore, to
proceed further, we consider the limit N → ∞ and apply a
semiclassical approximation: First we approximate the chain
as classical, where the kinetic energy of the dipoles is neglected
and the system simply minimizes the potential energy; then
we estimate the size of the fluctuations around this state by
allowing one of the dipoles to be mobile while keeping all the
remaining dipoles fixed.

A classical infinite chain of static dipoles for a generic
tilt angle θ is expected to arrange such that dipoles in
adjacent top and bottom layers are shifted by a vector
±r01 = ±(x0,0), respectively (see schematic Fig. 9). This
configuration minimizes the potential energy felt by one dipole
due to all the other dipoles:

vcl(x0) = 2ζ (3)D2(
x2

0 + d2
)3/2

[
1 − 3

(x0 sin θ + d cos θ )2

x2
0 + d2

]
,

with Riemann zeta function ζ (3) = ∑∞
j=1 j−3 � 1.202. While

a classical chain of dipoles arranges vertically when θ = 0,
for a finite tilt angle, the chain slope x0/d minimizing the
classical potential vcl(x0) is an increasing function of θ , and
approximately x0/d ∼ tan(θ/2) at small angles.

We now allow one single dipole, say in the layer j ∗, to
fluctuate and move freely to any position r (see Fig. 9). In real
space, the effective potential felt by the dipole in the j ∗th layer
due to all the other dipoles is given by

ṽeff(r) =
∞∑

j=2

[
vθ

j1(r − r0j ) + vπ−θ
j1 (r + r0j )

]
,

where r0j = (x0j,0), vθ
ij (r) = vθ

ji(−r), and:

vθ
1j (r) = D2 x2 + y2 + (dj )2 − 3(x sin θ + dj cos θ )2

[x2 + y2 + (dj )2]5/2
.

Clearly, we have ṽeff(r = 0) = vcl(x0). By considering the
Fourier transform of ṽeff(r), we obtain the following equation
for the momentum-space wave function of the mobile dipole
in layer j ∗:

Eψ∞(k) = εkψ∞(k) +
∑

k′
veff(k − k′)ψ∞(k′), (24)

where the effective potential it experiences is

veff(q) = 2
∞∑

j=2

Re[eiqx0(j−1) cos ϕvj1(q)]

= −4πD2q Re

[
ξ (θ,ϕ) + i sin 2θ cos ϕ

eq(d−ix0 cos ϕ) − 1

]
.

In this case, we define |ψ∞(k0,ϕ = π/2)|2 = 1
2 |ψ∞(0)|2. Note

that, in contrast to the bilayer case, the direction where the
chain bound state is most tightly bound (i.e., has the largest
k0) is ϕ = π/2. This is because the anisotropy of the static
dipole chain creates a shallower potential along the ϕ = 0
direction. We expect our semiclassical approach to provide
an upper bound on k0, since we have suppressed the kinetic
energy of all the other dipoles. Thus, it will likely overestimate
the size of the bound-state region in the phase diagram.

Like for the dimer case, we plot in the left panel of Fig. 8 the
rescaled bound-state size k0d as a function of the interaction
strength Ud . We find that long chains have a larger binding
energy per dipole and are more strongly bound than dimers,
in agreement with Ref. [42]. As a consequence, the crossover
boundary to the “bound-state regime” for a given tilt angle
θ occurs at smaller values of the interaction strength U for
N → ∞ than for N = 2 (right panel of Fig. 8). We thus
conclude that the behavior at small tilt angles is likely to be
dominated by the creation of dipolar bound chains rather than
stripe formation (see shaded region top left panel of Fig. 5
where kF d = 1.2). This circumstance is avoided when kF d is
sufficiently large, as shown in Fig. 7 and in the bottom panels
of Fig. 5 at kF d = 2.

VII. CONCLUDING REMARKS

In this work, we have analyzed the density instabilities
of dipolar Fermi multilayer systems that are driven by the
attractive part of the dipolar interaction. We have argued
that such instabilities are dominated by exchange correlations
and can thus be described using a simplified exchange-only
STLS approach, provided that the interlayer correlations are
sufficiently weak. We find that the attraction-driven ϕ = 0
stripe phase expands to fill the phase diagram with an
increasing number of layers N . However, at the same time,
the stripe wave vector decreases so that the stripe phase is
eventually replaced by collapse as N → ∞. For the case
θ = 0, the infinite N limit resembles a 3D dipolar gas with
a Fermi surface deformation that can be tuned by varying the
interlayer distance dkF .
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Our predicted stripe phases should be accessible in ex-
periments on polar molecules with sufficiently large dipole
moments. Even though recent experiments have demonstrated
the possibility to trap atoms in uniform potentials [53], we
do not expect a sufficiently slowly varying harmonic potential
to affect qualitatively our results, as far as the local density
approximation can be applied. One also needs to consider
the issue of losses in experiments when strong interactions are
involved. The restricted motion in the 2D geometry reduces the
possibility of head-to-tail collisions between dipoles, which
underlies the dominant loss process in dipolar gases, but such
collisions are not necessarily suppressed when we have a
large dipole tilt. However, we expect that chemically stable
molecules such as 23Na 40K [18] will make it possible to probe
this regime of parameter space.

In the future, it would be interesting to extend our results
to finite temperature, where the proliferation of topological
defects can melt the stripe phase [54]. Furthermore,
one could investigate the effects of pairing using more
sophisticated approaches to the multilayer system such as the
Euler-Lagrange Fermi-hypernetted-chain approximation [55].
In particular, it would be intriguing to assess the fate of the
stripe phase for finite N , as well as the collapse region when
N → ∞, by analyzing the instabilities of the “bound-state
regime” where the dipoles preferentially form tightly bound
chains. Finally, there is the intriguing question of how our
predicted phase diagram connects with other instabilities such
as nematic phases or collapse within the stripe phase. These
themes clearly go beyond the scope of the present work and
are left for future investigations.
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APPENDIX: NONINTERACTING STATIC
STRUCTURE FACTOR

We start with the general expression for the noninteracting
static structure factor in two dimensions [48]:

S(0)(q) = 1 − 1

n

∫
dk

(2π )2
nknk+q, (A1)

q

kF

θ

FIG. 10. Two identical circles of radius kF , where the centers
are separated by a distance q in k space. The area of the shaded
overlapping region corresponds to the integral in Eq. (A1), defining
the noninteracting static structure factor in 2D.

where n is the 2D density and nk = �(kF − k) the zero-
temperature Fermi distribution function. Here, the integral
simply corresponds to calculating the area A of the overlap
region between two identical circles of radius kF , as shown in
Fig. 10. Due to the symmetry of the problem, we only need to
consider half of the overlap region as follows.

Assuming q < 2kF , we first determine the segment area
spanned by the angle 2θ in the left circle of Fig. 10:

Aseg = k2
F θ,

where cos θ = q/2kF . Next, we determine the area of the left
triangle obtained by drawing a line through the points where
the circles intersect:

A� = 1

2
kF q sin θ = 1

2
kF q

√
1 −

(
q

2kF

)2

.

Then we obtain:

A = 2(Aseg − A�)

= 2k2
F arccos

(
q

2kF

)
− kF q

√
1 −

(
q

2kF

)2

. (A2)

Inserting (A3) into (A1), and using the fact that arcsin
x = π/2 − arccos x, we finally recover Eq. (6) in the main
text.
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[52] L. Świerkowski, D. Neilson, and J. Szymański, Phys. Rev. Lett.
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