
PHYSICAL REVIEW B 95, 085122 (2017)

Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids
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We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet
well-understood experiments that have shown two-dimensional polymer films to be promising materials for
thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems,
each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong
interactions within each one-dimensional chain and weak coupling between them is the “quasiatomic limit.”
We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal
conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger
liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the
Fermi liquid value by a factor between γ 2 and γ 4, where γ � 1 is a measure of the electron-electron interaction
strength in the system.
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I. INTRODUCTION

Recent experiments on thin films of doped polymers such as
PEDOT-PSS, PEDOT-Tos, and PBTTT have found both high
conductivity and a large thermopower [1–4]. There are some
possible explanations for the source of conductive behavior in
polymers [5,6], but they are not yet definitive; in this paper
we will bypass this question and instead analyze a different
facet of the problem. Namely, since we take for granted the
conductive nature of individual polymers, we can describe
each polymer as a Luttinger liquid, and we look for possible
signatures of the Luttinger liquid behavior that survive even
when the one-dimensional systems are coupled to form a quasi-
two-dimensional material.

The Luttinger liquid model [7,8] represents a one-
dimensional electron gas modified by interaction between the
electrons and can therefore be viewed as the one-dimensional
analog of the more well-known Fermi liquid model, though
the generic behavior of the system is quite different. In the
Fermi liquid theory for two- and three-dimensional systems,
the interacting system actually behaves very much like the
corresponding noninteracting electron gas—the excitations
are fermionic quasiparticles which behave qualitatively like
electrons even if specific properties like mass are renormalized
to new values.

By contrast, in one dimension interactions between elec-
trons have a strong qualitative effect on the behavior of the
system. Schematically, one can picture electrons in higher-
dimensional systems having space to “go around” each other
and thus they still remain roughly independent (noninter-
acting), while in one dimension this is impossible, and so
electrons will move together, forming collective (bosonic)
excitations. The Luttinger liquid theory and the technique of
bosonization make this intuitive idea concrete.

There are numerous convincing experimental results on
one-dimensional systems that confirm various predictions of
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the Luttinger liquid theory. For instance, Luttinger liquids are
expected to exhibit spin-charge separation, where charge and
spin degrees of freedom act independently [8]; spin-charge
separation has been convincingly observed via photoemission
experiments in artificially created one-dimensional structures
[9]. Likewise, the density of states around the Fermi level is
predicted to show a distinctive power law behavior [10]; this
was also observed in an artificially created 1D chain [11]. Other
observations of Luttinger liquidlike behavior, however, have
been made not on actual one-dimensional chains but rather
on two-dimensional collections of one-dimensional systems
such as in the polymer films that motivated this work [1] or on
highly anisotropic three-dimensional crystals [12–14]; it is not
immediately clear that the results of these experiments should
be directly compared to theories of single Luttinger liquids.
Rather, the coupling of 1D chains to form a quasi-2D material
may modify or destroy altogether the distinctive signatures
of Luttinger liquid behavior. A theory of coupled Luttinger
liquids would thus be very helpful.

While the theory of weakly coupled Luttinger liquids
has been considered in the past by many different authors,
there are very few results for thermal transport in a system
of infinitely many coupled chains. Some results deal with
“ladders” consisting of just two coupled chains [8,15], while
some of the most well-known treat coupling two half-infinite
chains at their ends as a way of modeling an impurity in the
Luttinger liquid [16–18]. Both electrical and thermal transport
have also been computed for many impurities on a single
chain [19]. Papers that do consider an infinite array of weakly
coupled Luttinger liquids have mostly focused only on the
electrical conductivity [12,20,21] and not on any kind of
thermal transport. There is one recent paper on the off-diagonal
terms of the thermopower tensor for infinitely many coupled
chains [22], but we are not aware of any existing results for the
thermal conductivity or Lorenz number in the type of model
we consider. This is the gap we intend to fill.

In this paper we consider a model of coupled one-
dimensional systems in which each 1D chain is treated as
a (spinless) Luttinger liquid, and the individual chains are
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coupled by a perturbatively weak interchain hopping. We refer
to this situation of strong interactions within 1D chains and
weak, incoherent coupling between them as the “quasiatomic
limit.” The approximations and assumptions inherent in this
model, as well as some justifications of their validity, are
discussed in Sec. II.

We consider two somewhat different versions of the model,
which incorporate Luttinger liquid behavior at different stages
of the calculation. In both cases, we calculate transport
coefficients using the Kubo formalism. In the first model,
discussed in Sec. III, the electronic system is initially assumed
to be noninteracting so that the state of the system can
be described by occupation of single-particle orbitals; we
introduce Luttinger behavior via the electronic density of
states. In the second model (Sec. IV), we use the full Luttinger
liquid correlation functions. In Sec. V, we summarize our key
results and their applicability to experimental systems, and we
further discuss the comparison between the two models.

We find that both models predict the same power law
dependence on temperature for the transport coefficients,
σ ∝ T 2γ−3 and κ ∝ T 2γ−2, where γ is a measure of interaction
strength as defined in equation (11), but that the precise
values of the transport coefficients (as measured by the Lorenz
number) vary with electron-electron interaction strength more
strongly in the second, more complete, calculation. In the
generalized noninteracting model (Sec. III) we find that the
Lorenz number is larger than the value predicted by the
Wiedemann-Franz law by a factor between γ 2 and γ 2.4.
In the full Luttinger liquid model (Sec. IV), we find an
even larger violation, with the Lorenz number augmented by
as much as γ 3.6.

II. ASSUMPTIONS AND APPROXIMATIONS: THE
QUASIATOMIC LIMIT

In the Hubbard model, the “atomic limit” is the limit as the
hopping between lattice sites vanishes while electron-electron
interaction is held constant [23,24]. We study the problem of
weakly coupled chains with a similar approach, in which we
do a perturbative calculation to lowest order in the interchain
hopping while treating each one-dimensional chain as a single
coherent quantum system. This limit of full coherence in one
direction (along chains) and weak incoherent hopping in the
other direction (between chains) we call the “quasiatomic
limit” [25].

To be more precise, we make the following assumptions:
(1) There is no electron-electron interaction between the

1D chains.
(2) The different chains are perturbatively coupled through

a weak hopping of electrons between adjacent chains.
(3) The 1D chains are located at evenly spaced points along

a one-dimensional line, meaning that electrons may hop from
one polymer to adjacent ones on either side of it and that the
hopping strength between any pair of adjacent polymers is the
same.

We will briefly justify the applicability of these assumptions
to real physical systems, beginning with assumption (2). To
measure transport properties for a macroscopic object (like
a polymer film) we really want to use not the microscopic

model of the system but rather an effective theory that results
from a renormalization group flow. At zero temperature, any
coupling between chains is a relevant perturbation in the
renormalization group sense, but fortunately this is not the
case at finite temperature [15,26,27]. This means that, so long
as the temperature is much higher than the energy scale of
the interchain coupling, the atomic limit will be valid. For any
particular material, this sets a lower bound on the temperature
regime in which our results are applicable.

In this temperature regime of validity, the thermalization
time within each chain (proportional to 1/T ) will be much less
than the interchain hopping time (proportional to the inverse
hopping strength), so that each individual one-dimensional
chain will thermalize between hopping events. We can there-
fore intuitively think of the interchain hopping as incoherent,
though we do not explicitly use that fact anywhere in our
calculations.

Assumption (3) is an accurate description for the case
of anisotropic crystals. The application to polymer films is
less direct, as they are known to have regions where the
polymers are relatively aligned in some organized array (as
in assumption 3), as well as amorphous regions [3,28,29].
In the latter regions, which may account for a significant
fraction of the overall film, as long as the polymers form a
single two-dimensional layer and do not cross, at a sufficiently
small scale the polymers should still form a neat array and our
assumption will apply. We can therefore approximately treat
the film as consisting of a collection of randomly oriented
domains, each of which individually satisfies the assumption.
We discuss this further in Sec. V.

III. GENERALIZED NONINTERACTING MODEL

The first version of our model is intended to capture the key
Luttinger liquid behavior while still being simple enough to
provide helpful physical intuition about the system we study.
We thus use a noninteracting model for most of the calculation,
finally substituting the Luttinger liquid density of states at the
end.

To be precise, we add two more simplifying assumptions
to those given in Sec. II above:

(4) Each individual 1D chain can be described by a set
of noninteracting single-particle orbitals, given by the Fourier
modes of the localized on-site orbitals; the orbitals’ energies
are distributed according to the tunneling density of states of
a Luttinger liquid, and each chain’s orbitals are the same.

(5) Electrons hop from a well-defined single-particle
eigenstate on one chain to an eigenstate with approximately
the same energy and momentum on an adjacent chain. The
hopping strength is sharply peaked in |k − k′| where k and
k′ are the wave numbers on the two chains, and the value at
k = k′ is independent of k. (In practice, we assume the hopping
is Gaussian in k − k′, but this assumption is only needed when
we compare the two versions of our model, see Appendix C.)

The five assumptions above lead to a specific interpretation
of the standard tight-binding Hamiltonian

H =
∑
j,k

Ekc
†
jkcjk −

∑
jkk′

tkk′c
†
j,kcj+1,k′ + H.c. (1)
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The index j labels 1D chains, while k and k′ label extended
(Fourier state) orbitals on each chain. c† and c are the usual
fermion creation and annihilation operators, while Ek is the
single-particle energy corresponding to the orbital k.

In the noninteracting limit, the Ek are just the energies of a
one-dimensional tight-binding model H0 = −t//

∑
i c

†
i ci+1 +

H.c.; if the lattice spacing is a, the energy levels are Ek =
−2t//cos(ka), which are then linearized around the Fermi
points k = ±kF . When interactions are introduced, there are
no longer well-defined single-particle orbitals, so we cannot
give an explicit formula for the energies Ek . Instead, we will
derive an expression for the transport coefficients in which
the energy spectrum only appears via the density of states, for
which we can use the well-defined single-particle tunneling
density of states of a Luttinger liquid.

A. Calculation of transport coefficients

We calculate the transport coefficients in this model using
the Kubo formalism. For consistency with standard references,
we use the conventions of Ref. [30], in which case the electri-
cal conductivity, thermal conductivity, and thermopower are
given by

σ = e2

T
L(11) (2a)

κ = 1

T 2

[
L(22) − (L(12))2

L(11)

]
(2b)

S = − 1

eT

L(12)

L(11)
. (2c)

In a two-dimensional material, each of these coefficients is
actually a 2 × 2 matrix; the diagonal entries give the response
in the direction of an applied field, while the off-diagonal
entries give the response in a perpendicular direction (e.g.,
the Hall conductivity). We will specifically focus on the
longitudinal response in the interchain direction.

The L(il) coefficients in the transport coefficient formulas
are defined by Eqs. (3.487) and (3.488) of Ref. [30]

J = − 1

T
L(11)∇(eV ) + L(12)∇

(
1

T

)
(3a)

JE = − 1

T
L(21)∇(eV ) + L(22)∇

(
1

T

)
, (3b)

where J is the particle current, or electrical current divided
by the charge per particle, and JE is the energy current. Note
that L(12) = L(21). In practice, we find the L(il) coefficients in
terms of current-current correlation functions as [31]

L(il) = lim
ω→0

lim
δ→0

1

ω

[ −i

�β

∫ β

0
dτeiωnτ 〈Tτ jl(τ )ji(0)〉

]
iωn→ω+iδ

,

(4)

where j1 is the particle current operator J and j2 is the energy
current operator JE . Both are the current operators for the
interchain direction. � is the volume of the system. Because
we calculate the transport coefficients at finite temperature,
we perform the calculation using the Matsubara formalism. τ

is the imaginary time, ωn = 2πn/β for n = 0,1,2, . . . are the

discrete (bosonic) Matsubara frequencies, and iωn → ω + iδ

indicates analytic continuation from the positive imaginary
axis to just above the positive real axis. In practice we will take
only the real part of L(il), since we are interested specifically
in transport.

The current operators we find using [24]

J = lim
k→0

1

k

∑
j

[Nj,H ]eikacj (5a)

JE = lim
k→0

1

k

∑
j

[Hj,H ]eikacj (5b)

in units where h̄ = 1. Here ac is the distance between 1D
chains and Nj is the total number operator on chain j , Nj =∑

k c
†
jkcjk . Hj is the part of the Hamiltonian associated with

chain j , which includes both the on-chain portion

hj =
∑

k

Ekc
†
jkcjk (6a)

and the hopping portion

h′
j = −1

2

∑
kk′

tkk′(c†j,kcj+1,k′ + c
†
j−1,kcj,k′ ) + H.c. (6b)

This leads, after some algebra, to the expressions

J = iac

∑
jkk′

tkk′c
†
j−1,kcj,k′ − t∗kk′c

†
j,k′cj−1,k (7a)

JE = iac

∑
jkk′

[(
Ek + Ek′

2

)
(tkk′c

†
j−1,kcjk′ − H.c.)

]
. (7b)

From these current operators and equation (4), we derive (see
Appendix A) the expression

Re[L(il)] = Aact
2vβ−nil

2π4

∫
g2(y/β)ynil

(1 + ey)(1 + e−y)
dy, (8)

where nil = i + l − 2 (e.g., 0 for L(11)), v is the (possibly
renormalized by interactions) Fermi velocity, A is a dimen-
sionless number, t is the peak value of the interchain hopping
t = tkk , β as usual is 1/T (we use units of kB = 1), and
g(E) is the electronic density of states. The integral over the
dimensionless variable y = βE runs from −∞ to ∞.

The form of the integrand can be intuitively understood
from a semiclassical perspective. If a particle is hopping from
an orbital at energy E on one chain to an orbital at energy E on
another, then the number of ways that can happen is the number
of orbitals at that energy on the first chain, g(E), multiplied by
the fraction that are occupied, (1 + eβE)−1, times the number
of orbitals at that energy on the second chain, g(E), multiplied
by the fraction that are unoccupied, (1 + e−βE)−1. Multiplying
all of these factors and integrating over the energy gives∫

g2(E)

(1 + eβE)(1 + e−βE)
dE. (9)

This should be proportional to the hopping rate, and therefore
to the electrical conductivity. Indeed, equation (9) looks
just like the integrand in equation (8) for L(11), which is
proportional to the electrical conductivity. The fact that a
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semiclassical picture is helpful in understanding equation (8)
is not too surprising given that our weak hopping assumption
is only valid when the temperature is high enough for the
interchain hopping to be incoherent.

This is the point in the calculation where the fact that each
1D chain is a Luttinger liquid becomes important. The density
of states for a Luttinger liquid is given by Eq. (61) of Ref. [10]
as

gLL(E) = 2
|E/W |γ−1

2πv�(γ )
, (10)

valid for E 
 W , where W = v/a is proportional to the Fermi
energy (EF ∝ k2

F /m = (kF /m)/k−1
F ∝ v/a) or bandwidth of

the underlying 1D model and γ is a measure of interaction
strength in the Luttinger liquid defined by

γ = K + K−1

2
. (11)

K is the usual Luttinger liquid interaction parameter, as defined
for the Luttinger liquid Hamiltonian below [equation (23)].
(Note that using K for this parameter is a relatively standard
convention, used for instance in the book by Giamarchi [8],
though some authors refer to it as g or K2 [16–18,32].) K = 1
corresponds to noninteracting electrons, while K < 1 corre-
sponds to repulsive interactions and K > 1 corresponds to
attractive interactions. We have introduced the new parameter
γ , which is symmetric in K and K−1 and thus is independent
of whether the interactions happen to be attractive or repulsive.
It always satisfies γ � 1, and γ = 1 if and only if the system
is noninteracting.

Substituting equation (10) into equation (8) and using that
result in equations (2), we find the following results for the
transport coefficients:

σ = ace
2t2

vT

(
T

W

)2(γ−1)

× A

2π6�(γ )2

×
∫

y

|y|2(γ−1)

(1 + ey)(1 + e−y)
dy (12a)

κ = act
2

v

(
T

W

)2(γ−1)

× A

2π6�(γ )2

×
∫

y

y2|y|2(γ−1)

(1 + ey)(1 + e−y)
dy (12b)

S = 0. (12c)

Both the thermopower and the second term of equation (2b) for
the thermal conductivity vanish because L(12) is 0 when the
density of states is particle-hole symmetric. Mathematically
this follows because the integrand in equation (8) is odd when
g(E) is an even function.

B. Correction for nonzero thermopower

To model a real material and get nonzero thermopower, we
can introduce an asymmetry in the band structure. In particular,
the Tomonaga-Luttinger model begins by linearizing a typical
1D band structure around the Fermi points, so we adopt the
picture that the Luttinger liquid arises from adding interactions
to a 1D electron gas with a typical dispersion E = h̄2k2

2m
∝ k2.

In that case, the density of states is dk/dE ∝ E−1/2. In our
calculations above we have set the Fermi level to E = 0, in
which case the noninteracting density of states becomes

g1D(E) ∝ (EF + E)−1/2. (13)

The Fermi energy is proportional to v/a, so for consistency
with equation (10) we can write it as EF = b W for a
dimensionless constant b. Using this 1D density of states as a
correction to the Luttinger liquid one gives

g(E) = gLL(E)√
1 + E/(b W )

≈ gLL(E)

(
1 − 1

2

E

b W

)
. (14)

This density of states is a phenomenological way of capturing
the real physical behavior of the system which should be
accurate enough to find how the thermopower depends on
temperature. The most important features are the violation of
particle-hole symmetry by the introduction of a bandwidth and
the preservation of the density of states to lowest order in E/W

when E is small (near the Fermi energy).
If we calculate L(12) with equation (14) replacing equation

(10) as the density of states, we find for the thermopower

S = k2
BT

We
×

∫
y2|y|2(γ−1)

(1+ey )(1+e−y )dy

b
∫ |y|2(γ−1)

(1+ey )(1+e−y )dy
, (15)

where Boltzmann’s constant has been restored to get the
correct final units.

Note that in principle we could also use the same correction
for the conductivities, equations (12), but any additional terms
would be higher order in kBT /W than those given above.
kBT /W must be small, otherwise the Tomonaga-Luttinger
model, which is based on a linearized band structure (i.e.,
W → ∞), would not be applicable at that temperature.

C. Lorenz number

The expressions for the conductivities, equations (12),
are clear and understandable, but they do contain material-
dependent parameters like ac, v, and W . To find a robust result
that can be tested experimentally, we would like a quantity in
which these material-dependent quantities do not appear. One
such parameter is the Lorenz number,

L = κ

σT
. (16)

This is a particularly useful quantity to consider, since the
Wiedemann-Franz law states that for a noninteracting system
or for a Fermi liquid, the Lorenz number should take a specific
value, namely

L0 = π2

3

(
kB

e

)2

. (17)

The Lorenz number for our model can be found by dividing
the results from equations (12) to get

L = k2
B

e2

∫
y2|y|2(γ−1)

(1+ey )(1+e−y )dy∫ |y|2(γ−1)

(1+ey )(1+e−y )dy
. (18)

As expected from the Wiedemann-Franz law, in the nonin-
teracting limit of γ = 1 we get precisely L0. At γ > 1, this
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FIG. 1. Lorenz number L as calculated in the generalized nonin-
teracting (GN) and Luttinger liquid (LL) models. The Lorenz number
is plotted as a function of the interaction strength γ in units of L0, the
value expected from the Wiedemann-Franz law. For both models, we
find that L = L0 in the noninteracting case γ = 1. Electron-electron
interactions (γ > 1) lead to a violation of the Wiedemann-Franz law;
the violation is stronger in the LL model than in the GN model. The
Lorenz number is evaluated at discrete points in the LL model; error
bars indicate the precision of numerical results as described in the
text. Lines connecting the data points for the LL model show linear
interpolation between adjacent points, and the dashed line below
γ = 1.005 in the inset shows extrapolation to γ = 1.

expression for L can be evaluated via numerical integration.
With interactions, γ > 1, we find that L > L0, violating the
Wiedemann-Franz law. The Lorenz number is plotted as a
function of the interaction strength γ in the lower curve in
Fig. 1.

The Lorenz number should scale approximately as γ 2 in
this model, since the extra two powers of y in equation
(8) that appear for L(22) (and therefore κ) but not for L(11)

(and therefore σ ) become derivatives with respect to x if the
expression is rewritten via Fourier transform; these derivatives
act on the Green’s function that looks roughly like f (x)−γ and
thus pull down two factors of γ . To test that it is indeed the
case that L ≈ L0γ

2, we define a(γ ) by L = L0γ
a(γ ) in which

case

a(γ ) = log(L/L0)

log(γ )
. (19)

This quantity is plotted in Fig. 2. From the plot we see that the
exponent a is between 2.35 and 2 for all interaction strengths
γ . For large γ , the scaling of the Lorenz number is close to
γ 2; for small γ , expanding around γ = 1 gives

a(γ ≈ 1) = 1 − 2 log(π ) + 6

π2

(
γ1

′
(

1

2

)
− γ1

′(1)

)

≈ 2.3432, (20)

where γ1(ν) is a generalized Stieltjes constant [33,34].

D. Summary of generalized noninteracting model

Our most robust predictions are those that do not depend on
any material-dependent parameter but the interaction strength.
These are (a) the power law dependencies of σ , κ , and S on

FIG. 2. The Lorenz number scales as L/L0 = γ a(γ ). For the
generalized noninteracting model we find 2 < a(γ ) < 2.35 for all
γ , with L ≈ L0γ

2 for large γ .

temperature and (b) the Lorenz number. We find that

σ ∝ T 2γ−3 (21a)

κ ∝ T 2γ−2 (21b)

S ∝ T (21c)

and

L = k2
B

e2

∫
y2|y|2(γ−1)

(1+ey )(1+e−y )dy∫ |y|2(γ−1)

(1+ey )(1+e−y )dy
≈ L0γ

2. (22)

In the noninteracting case, γ = 1, the Lorenz number agrees
with the usual Wiedemann-Franz Law. With either attractive
or repulsive interactions, the Wiedemann-Franz law is violated
as shown in Fig. 1.

IV. LUTTINGER LIQUID MODEL

In the second version of our model, we introduce Luttinger
liquid physics much earlier in the analysis. To do so, we
replace assumptions (4) and (5) with two new, corresponding
assumptions:

(4′) Each individual 1D chain is described by the Luttinger
liquid Hamiltonian [8],

H = 1

2π

∫
dx

[
vK(∇θ )2 + v

K
(∇φ)2

]
, (23)

where again we have set h̄ = 1. As above, K is a parameter
that measures interaction strength and v is the renormalized
Fermi velocity. φ and θ are bosonic field operators related to
the fermion operators by [8]

ψα(x) = Uα lim
a→0

1√
2πa

eiαkF xe−i(αφ(x)−θ(x)) (24a)

ψ†
α(x) = U †

α lim
a→0

1√
2πa

e−iαkF xei(αφ(x)−θ(x)), (24b)

where α can be R or L (labeling right-movers versus left-
movers) when used as an index and 1 or −1, respectively,
when used as a multiplicative factor. The Ur operators are
called Klein factors and are included to make sure that the
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fermion operators anticommute and that they do not conserve
particle number.

(5′) Electrons hop between real-space localized orbitals.
The hopping strength is sharply peaked in |x − x ′|, where x

and x ′ are the locations along the two chains, measured from
the same “center” point (so that all the “x = 0” points lie on a
line perpendicular to the chains). In the thermodynamic limit,
a delta-function hopping in real space is consistent with the
sharply peaked hopping in Fourier space from assumption (5)

from the first version of our model (see Appendix C). We also
assume that right-movers on one chain can only hop to right-
movers on the adjacent chain and the same for left-movers;
this is needed for consistency with the approximate momen-
tum conserving hopping in the generalized noninteracting
model.

Including both on-chain and hopping terms, the Hamilto-
nian for this second version of our model is:

H =
∑

j

Hj =
∑

j

hj + h′
j

hj = 1

2π

∫
dx

[
vK(∇θj )2 + v

K
(∇φj )2

]

h′
j = −1

2

∑
αβ

∫
dx dx ′[tαβ(x − x ′)

(
ψ

†
jα(x)ψj+1,β (x ′) + ψ

†
j−1,α(x)ψjβ(x ′)

) + H.c.
]
. (25)

A. Calculation of transport coefficients

As in the generalized noninteracting model, to find the transport coefficients we first find operators for the electrical and
energy currents. This can be done using equations (5) just as before, but with the new definitions for hj and h′

j . The results (for
some details of the calculation, see Appendix B) are

J = −iac

∑
j

∑
αβ=R,L

∫
tαβ(x − x ′)[ψ†

j,α(x)ψj−1,β (x ′) − ψ
†
j−1,α(x)ψj,β(x ′)]dx dx ′ (26a)

JE = − iacv

2

∑
jαβ

∫
tαβ(x − x ′)

[(
[∇j ]αx + [∇j−1]βx ′

)
ψ

†
jα(x)ψj−1,β (x ′) − (

[∇j−1]αx + [∇j ]βx ′
)
ψ

†
j−1,α(x)ψjβ (x ′)

]
dx dx ′, (26b)

where
[∇j ]αy = αK∇θj (y) − K−1∇φj (y). (27)

Unlike in the generalized noninteracting model, we do not find a single simple formula like equation (8) that gives all the
transport coefficients. Instead, the particularly nice expressions that we find are for the current-current correlators in terms of the
Green’s function for a single Luttinger liquid:

〈J (τ )J 〉 = −2NcL

(
act

2π

)2∑
α

∫
dx Gα(x,τ )Gα(−x, − τ ) (28a)

〈JE(τ )JE〉 = −2NcLγ 2

(
acvt

2π

)2 ∑
α

∫
dx [(kF + iα∂x)Gα(x,τ )][(kF − iα∂x)Gα(−x, − τ )] (28b)

〈JE(τ )J 〉 = 2vγNcL

(
act

2π

)2 ∑
α

∫
dx Gα(x,τ )(kF − iα∂x)Gα(−x, − τ ). (28c)

For the Green’s function we use the expression [10,32]

Gα(x,τ ) = −eiαkF x

2πa

[
−ia

vβ

π
sinh

(
x−ivτ
vβ/π

)
] γ−α

2
[

ia
vβ

π
sinh

(
x+ivτ
vβ/π

)
] γ+α

2

(29)

and we are then able to perform the integration over x exactly, getting results in terms of the Appell hypergeometric function F1

as defined in §16.13 of Ref. 35 [36]. As an example, the result for 〈J (τ )J 〉 is

〈J (τ ′)J 〉 = 4NcL

(
act

2π

)2 2a

(2πa)2

(
2πa

vβ

)2γ−1

[2f (γ,τ ′,1,1) − cos(2τ ′)(f (γ,τ ′,0,1) + f (γ,τ ′,2,1))], (30)

where τ ′ is a scaled version of the imaginary time, τ ′ = τπ/β, and

f (γ,τ,n,m) = F1(γ + n; γ + m,γ + m; γ + n + 1; e2iτ ,e−2iτ )

γ + n
. (31)
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The analogous expressions for the other two current-current
correlators are longer and more complex and thus proportion-
ally less enlightening. We present them in Appendix B for the
edification of the interested reader.

The next step is to evaluate each of the L(il) coefficients
using equation (4). In the previous model it was possible to per-
form the Fourier transform and analytic continuation analyti-
cally, but here we must perform the τ integrals of the current-
current correlators numerically for each Matsubara frequency
and then numerically perform the analytic continuation and
limits. The procedure we follow is discussed further in Ap-
pendix B and in great detail in the Supplemental Material [37].

For each transport coefficient, we get a numerical part from
the procedure mentioned above and a prefactor that contains all
the dimensionful quantities, notably the dependence on tem-
perature. Including for now only the dimensionful quantities,
we find

σ ∝ aca q2t2

v2

(
a

vβ

)2γ−3

(32a)

κ ∝ act
2

v

(
a

vβ

)2γ−2

(32b)

S = 0. (32c)

Recalling that the energy scale W introduced in the
Luttinger liquid density of states, equation (10), was
W = v/a, the dependence of the transport coefficients on
the material-dependent parameters ac, a, and v in this model
(equations (32)) precisely matches what we found in the
generalized noninteracting model (equations (12)).

In the generalized noninteracting model, we introduced
a correction to the density of states to find a nonzero
thermopower. Due to the complexity of the full Luttinger liquid
model, we consider the equivalent correction here to be beyond
the scope of this paper.

B. Lorenz number

The numerical analytic continuation has not yet been
needed for the results presented above. We would like,
however, to evaluate the Lorenz number numerically as
a function of the interaction strength, γ , just as in the
generalized noninteracting model. For that calculation, the
full numerics are needed.

To compute the precise transport coefficients, for each
interaction strength γ we must separately evaluate the Fourier
transform of the current-current correlation functions at a
number of Matsubara frequencies, fit an analytic function to
these results, analytically continue the function, and then take
the limits as the frequency ω and the infinitesimal parameter δ

go to 0. (For details, see Appendix B.)
Due to the complexity of the correlation functions (for

instance equation (30)), the calculation of each Fourier
transform, and thus the calculation of transport coefficients for
each interaction strength γ , is very computationally expensive.
We therefore evaluate the Lorenz number for a limited number
of values of the interaction strength, with a higher density
around γ = 1 to make sure that the results in the noninteracting
limit are reliable. The results are shown for γ in the range 1
to 3 by the discrete data points in Fig. 1 (connected by linear

interpolation for visual clarity). An inset shows a detail of
γ ∈ [1,1.05]; from the inset it is clear that in the noninteracting
limit the Lorenz number approaches the expected value from
the Wiedemann-Franz law.

The error bars on the Luttinger liquid model data in Fig. 1
indicate the numerical precision of the Lorenz number for
each γ . We compute the numerical integral for each Fourier
transform with a relative precision of 10−10, and allowing the
values of the Fourier transforms to vary within this range and
recomputing the Lorenz number gives a distribution of possible
values of L. The error bars in the figure show one standard
deviation of this distribution for each interaction strength γ .

Comparing the results of the full Luttinger liquid model
with the corresponding results for the generalized nonin-
teracting model, as shown in the upper and lower curves,
respectively, in Fig. 1, we see that the full Luttinger liquid
model exhibits a stronger violation of the Wiedemann-Franz
law with increasing interaction strength. We argued that in
the generalized noninteracting model the Lorenz number
should scale as γ 2 because the two extra factors of energy
for L(22) relative to L(11) in equation (8) act, in a real-space
representation, as derivatives of the Green’s function. For the
full Luttinger liquid model, we can make a similar argument
that L/L0 ≈ γ 4. There are indeed two derivatives acting on
the Green’s function in the expression for 〈JE(τ )JE〉, equation
(28b), that are not present in the expression for 〈J (τ )J 〉,
equation (28a), giving rise to the same two factors of γ as
in the generalized noninteracting model.

There are additionally two factors of γ in the prefactor
in the expression for 〈JE(τ )JE〉, which come from the [∇j ]αx
operators in the expression for the energy current operator,
equation (26b), and are thus missing from the generalized
noninteracting model because there the energy current operator
was derived in the noninteracting limit where γ = 1. With
these two additional factors of γ included, we find that the
Lorenz number should scale approximately as L/L0 ≈ γ 4.

This argument neglects the full complexity of the corre-
lation functions, so to find more precisely how the Lorenz
number scales with γ we again introduce the function a(γ )
defined by equation (19), L/L0 = γ a(γ ). This is plotted
in Fig. 3. We find that L/L0 satisfies γ 3.2 < L/L0 < γ 3.7

FIG. 3. Exponent a in L/L0 = γ a(γ ) for the Luttinger liquid
model. The dependence on γ is stronger than in the generalized
noninteracting model. Lines are given by linear interpolation between
adjacent data points, and error bars are omitted for clarity.
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for γ � 3. This is a slightly weaker dependence than the
predicted γ 4, but it is still a much stronger violation of the
Wiedemann-Franz law than L/L0 ≈ γ 2 from the generalized
noninteracting model.

C. Summary of Luttinger liquid model

As in the generalized noninteracting model, it is useful to
summarize those results that do not depend on any material-
dependent parameter apart from the interaction strength. For
the dependence of the conductivities on temperature, we find
the same power laws as in the generalized noninteracting
model, namely σ ∝ T 2γ−3 and κ ∝ T 2γ−2. For the Lorenz
number we find a stronger violation of the Wiedemann-
Franz law than in the generalized noninteracting model. We
analytically estimate that

L ≈ L0γ
4 (33)

and numerically observe that

L0γ
3.2 < L < L0γ

3.7. (34)

The precise dependence of the Lorenz number on the inter-
action strength is shown in Fig. 1. In the noninteracting case,
γ = 1, the Lorenz number is L0, the expected value from the
Wiedemann-Franz Law.

V. DISCUSSION AND ANALYSIS

We have analyzed two different models for weakly coupled
Luttinger liquids, finding in both cases the electrical and
thermal conductivity. In terms of the interaction parameter
γ , the conductivities scale in both models as σ ∝ T 2γ−3

and κ ∝ T 2γ−2. In both cases we find a violation of the
Wiedemann-Franz law with increasing interaction strength;
for the generalized noninteracting model L ≈ L0γ

2 as shown
in Figs. 1 and 2, while for the Luttinger liquid model L ≈
L0γ

3.2 as shown in Figs. 1 and 3. This type of violation
of the Wiedemann-Franz law as a power of the interaction
strength is similar to the result of Kane and Fisher [18],
although the precise dependence is of course different since our
models describe a different physical system. In the generalized
noninteracting model we also find a nonzero expression for
the thermopower if we correct the density of states to account
for particle-hole symmetry breaking, in which case S ∝ T .
This linear dependence of thermopower on temperature, which
matches the expected behavior in a Fermi liquid, was also
found by Kane and Fisher in their coupled chain model [18].

The violation of the Wiedemann-Franz law that we ob-
serve in both models is an indication that Luttinger liquid
behavior survives when 1D chains are coupled to form a
two-dimensional material. Just how large is the violation in
practice? Experimental measurements [38] and theoretical
calculations [39–43] have found Luttinger parameters in a
typical range of about 0.2 through 1.5, corresponding to values
of γ up to about 3. In both our models, γ = 3 would lead to
a large violation of the Wiedemann-Franz law by an order of
magnitude or more, an easily measurable effect that could be
observed in experiments.

The results summarized here are all independent of any
material-dependent parameters apart from the Luttinger liquid
interaction parameter, which makes them good candidates
for experimental testing and verification on any system with

strong anisotropy that might lead to quasi-one-dimensional
behavior. One very direct application of our theory would be
to highly anisotropic crystals, as they typically have electron
hopping strength along one axis which is at least an order
of magnitude stronger than the hopping along the other two
axes [38]. For temperatures between the two hopping scales,
it would be reasonable to treat the system as a collection of
weakly coupled 1D chains as we have done here, and by the
nature of the crystal they form an ordered array, again matching
our model. Such anisotropic crystals are known to show strong
violations of the Wiedemann-Franz law, especially in the Hall
direction in a magnetic field [13]. By comparing the measured
violations of the Wiedemann-Franz law in these systems with
our predictions, it should be possible to estimate the effective
Luttinger parameter K for the constituent one-dimensional
chains. Conversely, if K is independently known then such
measurements would serve as a verification of our predictions.

Applying our theory to polymer films, the original mo-
tivation of the work, requires some additional work since
the films are partially amorphous. One approach would be
to treat the polymer film as a polycrystal, consisting of
randomly oriented grains; within each grain, the polymers
form an ordered array to which our theory directly applies.
The overall transport properties of the polymer film could then
be found by averaging using methods like those discussed in
Ref. [44]. The precise level of alignment of polymers can also
vary significantly between films [3,28,29], and more work is
needed to properly take this into account. One experimental
result on polymer films which is clearly consistent with our
calculations is the fact that some polymers show conductivity
increasing with temperature, while others show the opposite
behavior [3]. We find that σ increases with temperature if the
interaction strength is large enough, γ > 3/2, but decreases
with increasing temperature for 1 � γ < 3/2.

Numerical studies of transport and other dynamical prop-
erties in quasi-one-dimensional systems have made great
progress since the advent of matrix product state algorithms
for time dependence [45–47]. In the case of a single chain, it is
possible to see the characteristic power laws of Luttinger liquid
behavior [48], and while coupled chains are considerably
more demanding, it has been possible to access at least
some excited-state properties [49]. Coupled-chain numerical
studies could in principle provide a more precise and tunable
“numerical laboratory” to test our predictions than current
polymer experiments.

There are a number of ways that our models could be
extended for future work. We have dealt only with spinless
Luttinger liquids, so a spin sector could be added. Due to
the spin-charge separation in Luttinger liquids, this would
be a relatively simple change and would just result in extra
additive contributions to some L(il) coefficients. The models
could also be made more complete via the addition of disorder
and by going to higher order in the perturbation theory in
the interchain hopping strength. The latter two corrections
would be potentially quite difficult, though disorder could be
added at a relatively late stage in the calculation by modifying
the density of states as used in equation (8) or the Green’s
function in equations (28).

To implement these or other extensions of our model,
if the goal is only to find how transport properties depend
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on temperature then it will apparently be sufficient to use
a noninteracting model for most of the calculation as in
Sec. III; if the precise values of the transport coefficients are
needed, such as for calculating the Lorenz number, then a more
complete calculation, as in Sec. IV, will be required.
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APPENDIX A: DETAILS OF GENERALIZED
NONINTERACTING MODEL

In the main body of the paper, we focused on the key results
of our work and restricted discussion of the calculations to the
general formalism that we used. In this appendix and the ones
that follow, we discuss key steps of the calculations, especially
those in which we use one of our assumptions. We also
provide some intermediate results such as the current-current
correlation functions for the Luttinger liquid model in terms
of the hypergeometric function F1. For a reader interested
in seeing more details, we have made our full calculations
available in the Supplemental Material [37].

1. Current operators

The computation of the particle and energy current op-
erators, as given in equations (7a) and (7b), from equations
(5) involves computing the commutators [Nj,H ] and [Hj,H ],
respectively. In each case, the best way to proceed with the
calculation is to break the Hamiltonian into the on-chain and
interchain coupling pieces, H = ∑

i hi + h′
i . As the on-chain

Hamiltonian conserves the total number of electrons on the
chain, it must commute with the number operator on each
chain, so that [Nj,H ] = ∑

i[Nj,h
′
i]. Similarly, the on-chain

Hamiltonians for different chains all commute so that

[Hj,H ] =
∑

i

[hj ,h
′
i] + [h′

j ,hi] + [h′
j ,h

′
i]. (A1)

We also neglect the last term as it contains two powers of the
interchain hopping strength and thus is not lowest order in our
perturbative calculation. The remainder of the derivation of the
current operators consists of computing the commutators and
then observing that half the terms can have their index shifted
by 1 in the sum over j from equations (5), in which case the
limit as k → 0 gives

1 − eikac

k
→ −iac. (A2)

For further details, see the Supplemental Material [37].

2. Finding L(i l)

The first step in finding the transport coefficients is to find
the time evolution of the current operators. In imaginary time
τ = it , the time evolution is given by

J (τ ) = eHτJ e−Hτ . (A3)

In general this would be a very difficult calculation, but it is
made much easier by the fact that we do the calculation only
to lowest order in the interchain hopping, which allows us to
drop the hopping terms entirely from the Hamiltonian used for
the time evolution,

H → H0 =
∑

i

hi . (A4)

This means that the time evolution operator acts separately on
each creation and annihilation operator in equations (7a) and
(7b). The resulting time-dependent current operators are

J (τ ) = iac

∑
jkk′

eτ (Ek−Ek′ )tkk′c
†
j−1,kcj,k′ − eτ (Ek′−Ek )t∗kk′c

†
j,k′cj−1,k (A5a)

JE(τ ) = iac

∑
jkk′

[(
Ek + Ek′

2

)
(eτ (Ek−Ek′ )tkk′c

†
j−1,kcj,k′ − eτ (Ek′−Ek )t∗kk′c

†
jk′cj−1,k)

]
. (A5b)

We then calculate the current-current correlators. In this appendix we show only the calculations for 〈J (τ )J 〉, as the others are
quite similar. The brackets 〈·〉 indicate a thermal expectation value defined as usual by

〈O〉 = Tr[e−βHO]/Tr[e−βH ] = Tr[e−βHO]/Z. (A6)

As with the time evolution, the lowest order result in the interchain hopping can be found by simply dropping the interchain
hopping terms from H in the thermal density matrix, e−βH → e−βH0 , in which case the expression for the current-current
correlator can be written in terms of expectation values on single chains,

〈J (τ )J 〉 = a2
c

∑
jkk′

|tkk′ |2(eτ (Ek′−Ek )(1 − 〈nj−1,k〉)〈nj,k′ 〉 + eτ (Ek−Ek′ )〈(1 − 〈nj,k′ 〉)〈nj−1,k〉), (A7)

where as usual the number operator is given by n = c†c. The expectation value of each number operator is just given by the
Fermi-Dirac distribution and is independent of the chain number j so this becomes

〈J (τ )J 〉 = Nca
2
c

∑
kk′

|tkk′ |2
[

eτ (Ek′−Ek )

(1 + e−βEk )(1 + eβEk′ )
+ eτ (Ek−Ek′ )

(1 + eβEk )(1 + e−βEk′ )

]
(A8a)
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= Nca
2
c

(
L

2π

)2 ∫
kk′

|t(k,k′)|2
[

eτ (E(k′)−E(k))

(1 + e−βE(k))(1 + eβE(k′))
+ eτ (E(k)−E(k′))

(1 + eβE(k))(1 + e−βE(k′))

]
dk dk′ (A8b)

= 2Nca
2
c

(
L

2π

)2 ∫
EE′

|t(E,E′)|2g(E)g(E′)

[
eτ (E′−E)

(1 + e−βE)(1 + eβE′)
+ eτ (E−E′)

(1 + eβE)(1 + e−βE′ )

]
dE dE′ (A8c)

= 4Nca
2
c

(
L

2π

)2 ∫
EE′

|t(E,E′)|2g(E)g(E′)

[
eτ (E−E′)

(1 + eβE)(1 + e−βE′ )

]
dE dE′, (A8d)

where in successive steps we have (1) rewritten the sum over
k as an integral over a continuous variable, (2) converted
to an integral over energy E, with t(E,E′) defined by
t(E(k),E(k′)) = t(k,k′) for all k and k′, also getting a factor
of 2 for the two branches of the dispersion, and (3) recognized
that the two terms are the same if, as we assume, t(E,E′) =
t(E′,E).

In the continuum case, the hopping t(k,k′) becomes a Dirac
delta function. Thus one factor of t(E,E′) collapses the two
integrals into one, leaving t(E,E) ∝ δ(0). The appearance of
the apparently infinite quantity δ(0) is not a problem because
when we do the conversion from a sum over k to an integral,
tkk′ (which we initially viewed as a sharply peaked, perhaps
Gaussian, function) becomes

tkk′ = te−(k−k′)2L2/π → t(k,k′) = t

L
δ(k − k′) (A9)

with δ(0) = L. (The precise form of tkk′ that we use here
is discussed in Appendix C and more thoroughly in the
Supplemental Material [37].) This means that t(E,E) is
actually just equal to t , a constant. Using this form for t(E,E′)
gives

〈J (τ )J 〉 = 4NcLv(act)2

(2π )2

∫
g2(E)

(1 + eβE)(1 + e−βE)
dE.

(A10)

The corresponding expressions for 〈JE(τ )JE〉 and 〈JE(τ )J 〉
are quite similar but with extra factors of E in the integrand.
The most noteworthy aspect of this expression from a
calculational perspective is that it does not depend on the
imaginary time τ at all. Then when we calculate the Fourier
transform in the equation for L(il), equation (4), the integral
over τ is just ∫ β

0
eiωnτ dτ = β δn0, (A11)

proportional to a Kronecker delta in the Matsubara frequency.
The analytic continuation of this function is not well defined,
so it is not immediately obvious how to convert the Matsubara
correlation function to a retarded one. This problem, however,
arises only when the interaction strength is precisely 0, since
otherwise the τ dependence would not have vanished. Thus this
should be regularized by some small amount of interaction (or
by disorder or some other mechanism) in any realistic system.
We thus convert to the dimensionless variable τ ′ = τπ/β and
let

A = Re

(
lim
n→0

lim
δ′→0

−i

n

[∫ π

0
e2inτ ′

dτ ′
]

in→n+iδ′

)
. (A12)

This constant corresponds to Fα(0) in equation (3) of Ref. [21].
Rewriting the expression for L(il) from equation (4) in
terms of τ ′ and then substituting both the current-current
correlator from equation (A10) (and the corresponding results
for 〈JE(τ )JE〉 and 〈JE(τ )J 〉) and the definition of A, we
get equation (8), our final result for L(il) in the generalized
noninteracting model.

APPENDIX B: DETAILS OF LUTTINGER LIQUID MODEL

The calculations for the Luttinger liquid model are sub-
stantially more complex. Here we highlight some interesting
features particularly of the calculation of the thermal current
operator and the correlation function 〈JE(τ )JE〉. We also
present expressions for 〈JE(τ )JE〉 and 〈JE(τ )J 〉 in terms of
the hypergeometric function F1, and we discuss the method
we use for numerical analytic continuation to get the transport
coefficients from the correlation functions.

1. Thermal current operator

We calculate the current operators in the full Luttinger
liquid model using the same approach as in the generalized
noninteracting model. The additional complication in the
calculation comes from the more complete Hamiltonian
(equation (25)) and in particular from the on-chain part. As
with the calculation of the thermal current operator in the
previous model as discussed in Appendix A, the commutator
[Hj,H ] from equation (5b) has only two pieces that are neither
0 nor negligible in the atomic limit,

[Hj,H ] →
∑

i

[hj ,h
′
i] + [h′

j ,hi] =
∑

i

[h′
j ,hi] − [h′

i ,hj ].

(B1)

Terms in the commutator [h′
i ,hj ] look like

[ψ†
i+1,α(x)ψiβ(x ′),(∇θj (x̃))2]. To compute these kinds

of terms, we need the canonical commutation relations
between the bosonic field operators φ and θ , which are given
by [8]:

[φi(x),∂x ′θj (x ′)] = iπδij δ(x ′ − x) (B2a)

[φi(x),θj (x ′)] = i
π

2
δij sign(x ′ − x) (B2b)

[φi(x),φj (x ′)] = [θi(x),θj (x ′)] = 0. (B2c)

We then write out the Fermionic operators ψ and ψ† in terms of
φ and θ using equations (24) and use the bosonic commutators
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from equations (B2) to show

[ψiα(x),∇θj (x ′)] = απδij δ(x − x ′)ψi(x) (B3a)

[ψ†
iα(x),∇θj (x ′)] = −απδij δ(x − x ′)ψ†

i (x) (B3b)

[ψiα(x),∇φj (x ′)] = −πδij δ(x − x ′)ψi(x) (B3c)

[ψ†
iα(x),∇φj (x ′)] = πδij δ(x − x ′)ψ†

i (x). (B3d)

Combining these commutators with the rule [AB,C] = A[B,C] + [A,C]B, we additionally find that

[ψ†
iα(x̃)ψi+1,β (x),(∇θj (x ′))2] =

[
2π∇θj (x ′)(βδ(x − x ′)δi+1,j − αδ(x − x̃)δij )

+π2(βδ(x − x ′)δi+1,j − αδ(x − x̃)δij )2

]
ψ

†
iα(x̃)ψi+1,β (x) (B4a)

[ψ†
iα(x̃)ψi+1,β (x),(∇φj (x ′))2] =

[
−2π∇φj (x ′)(δ(x − x ′)δi+1,j − δ(x − x̃)δij )

+π2(δ(x − x ′)δi+1,j − δ(x − x̃)δij )2

]
ψ

†
iα(x̃)ψi+1,β (x) (B4b)

and hence

[ψ†
iα(x̃)ψi+1,β (x),hj ] = v

[
δi+1,j (βK∇θj (x) − αK−1∇φj (x)) − δij (K∇θj (x̃) − K−1∇φj (x̃))

+π
2 (K + K−1)δ(0)(δi+1,j + δij )

]
ψ

†
iα(x̃)ψi+1,β (x). (B5)

There are four terms of this type in [h′
i ,hj ], and another four

in [h′
j ,hi]. Adding them all and summing over i, then using

the trick of shifting the chain index j in half the terms before
taking the limit k → 0 as in equation (A2), gives the thermal
current operator, equation (26b).

2. Thermal current-current correlator

The thermal expectation value 〈JE(τ )JE〉 looks like
P

∫
dxdx ′ ∑

j 〈· · · 〉 where P is some (dimensionful) pref-
actor, four integrals over real-space coordinates have been
reduced to two by assuming t(x − x ′) ∝ δ(x − x ′) (see Ap-
pendix C), and the expectation value is a sum of terms of the
form

〈[∇i]xψ
†
j (x)ψj (x)[∇i ′]x ′ψ

†
j ′ (x ′)ψj ′(x ′)〉, (B6)

where the [∇] operators are defined in equation (27). The
indices satisfy j ′ = j ± 1, with i and i ′ related to j and j ′ in
one of four possible ways; these four cases are: (1) i = i ′ = j ,
(2) i = i ′ = j ′, (3) i = j and i ′ = j ′, and (4) i = j ′ and i ′ = j .
As in the generalized noninteracting model, the fact that we
work only to lowest order in the interchain hopping allows us
to drop the hopping terms from the Hamiltonian appearing in
the density matrix used in the calculation of the expectation
values, e−βH → e−βH0 , and likewise for the time evolution,
so that the expectation values for each term of the type in
equation (B6) splits up into a product of expectation values
on two individual chains. Cases (1) through (4) lead to eight
different types of two-point functions on the individual chains,

as follows:

(1) → 〈[∇]ψ†[∇]ψ〉〈ψψ†〉 (B7a)

(2) → 〈ψ†ψ〉〈[∇]ψ[∇]ψ†〉 (B7b)

(3) → 〈[∇]ψ†ψ〉〈ψ[∇]ψ†〉 (B7c)

(4) → 〈ψ†[∇]ψ〉〈[∇]ψψ†〉. (B7d)

Both 〈ψα(x,τ )ψ)†α(0,0)〉 and 〈ψ†
α(x,τ )ψα(0,0)〉 can be written

simply in terms of the single-chain Green’s function, being
−Gα(x,τ ) and Gα(−x, − τ ), respectively; these are the only
two that appear in the calculation of 〈J (τ )J 〉 and therefore in
the calculation of the electrical conductivity.

The other six types of two-point functions we compute by
writing them in terms of derivatives of the Green’s function.
The first step is to separate the [∇] operator into two pieces,
proportional to αφ − θ and −αφ − θ ,

[∇j ]αy = −α∇y[γ (αφj − θj ) + γ̃ (−αφj − θj )], (B8)

where γ = (K + K−1)/2 as usual and γ̃ = (K − K−1)/2.
This operator only appears in expectation values with ψα and
ψ†

α , which according to equations (24) contain αφ − θ but
not −αφ − θ . Then when [∇] is split up inside an expectation
value and the expectation values of the two terms are calculated
separately, all of the −αφ − θ terms vanish. (See further
discussion of this point in the Supplemental Material [37].)

A factor of α∇φ − ∇θ is pulled down by every derivative
of ψα or ψ†

α , so that for instance

〈
[∇]αx,τψα(x,τ )ψ†

α(x ′)
〉 = αγ 〈ieiαkF x∇x(e−iαkF xψα(x,τ ))ψ†

α(x ′)〉 = −iαγ eiαkF x,τ∇x(e−iαkF xGα(x − x ′,τ )). (B9)

The remaining five two-point functions are calculated in a similar manner. For cases (1) through (4) we find

〈[∇]ψ†[∇]ψ〉〈ψψ†〉 = γ 2
[
(αkF )2Gα(x − x ′,τ ) + 2iαkF ∂xGα(x − x ′,τ ) − ∂2

xGα(x − x ′,τ )
]
G̃α(x − x ′,τ ) (B10a)

〈ψ†ψ〉〈[∇]ψ[∇]ψ†〉 = γ 2
[
(αkF )2G̃α(x − x ′,τ ) − 2iαkF ∂xG̃α(x − x ′,τ ) − ∂2

x G̃α(x − x ′,τ )
]
Gα(x − x ′,τ ) (B10b)
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〈[∇]ψ†ψ〉〈ψ[∇]ψ†〉 = γ 2[(kF − iα∂x)G̃α(x − x ′,τ )] × [(kF + iα∂x)Gα(x − x ′,τ )] (B10c)

〈ψ†[∇]ψ〉〈[∇]ψψ†〉 = γ 2[(kF − iα∂x)G̃α(x − x ′,τ )] × [(kF + iα∂x)Gα(x − x ′,τ )] (B10d)

for G̃(x,τ ) = −G(−x, − τ ). We have omitted indices and
coordinates on the left-hand side for clarity. The last two terms
are clearly the same, but the first two appear to be different.
In fact, all of these expressions are inside an integral over x

and x ′, so we apply integration by parts to move derivatives in
the first two terms; the result is that all four terms are equal.
These expressions, for instance in equation (B10c), are now

quite reminiscent of equation (28b) for 〈JE(τ )JE〉 in the main
paper.

To finish the calculation, we change variables in the
integration from x and x ′ to x − x ′ and (x + x ′)/2. The
integrand does not depend on the center of mass coordinate
and thus the integral over (x + x ′)/2 just provides a factor of
the length of the 1D chain. The result is equation (28b).

3. Correlator results in terms of F1

By substituting the Luttinger liquid Green’s function, equation (29), into the current-current correlators, equations (28), and
integrating over the position x from −∞ to ∞, we find expressions for the correlators that are functions only of the imaginary
time τ . In practice we write the results in terms of the dimensionless parameter τ ′ = τπ/β because that makes it easy to separate
the dimensionful parts of the transport coefficients as given in equations (32) from the purely numerical parts that we need only
for finding the Lorenz number.

The expression for 〈J (τ ′)J 〉 is given in equation (30) in the main paper. The corresponding expressions for the remaining two
correlators are

〈JE(τ ′)JE〉 = NcLγ 2

(
acvt

2π

)2 1

2a3π2

(
2πa

vβ

)2γ+1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4(2 + γ 2 − 2 cos(4τ ′))f (γ,τ ′,3,3)

+ cos(2τ ′)(2 + γ 2 − 2 cos(4τ ′))(f (γ,τ ′,2,3) + f (γ,τ ′,4,3))

+2(1 + γ 2 − cos(4τ ′))(f (γ,τ ′,1,3) + f (γ,τ ′,5,3))

−γ 2 cos(2τ ′)(f (γ,τ ′,0,3) + f (γ,τ ′,6,3))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(B11a)

〈JE(τ ′)JE〉 = 2vγNcL

(
act

2π

)2 1

a2π2

(
2πa

vβ

)2γ

sin(2τ ′) ×

⎛
⎜⎜⎜⎝

−2
(
1 + γ

2

)
f (γ,τ ′,2,2)

+ cos(2τ ′)(f (γ,τ ′,1,2) + f (γ,τ ′,3,2))

+ γ

2 (f (γ,τ ′,0,2) + f (γ,τ ′,4,2))

⎞
⎟⎟⎟⎠. (B11b)

The function f (γ,τ,n,m) can be written in terms of the Appell
hypergeometric function F1 as in equation (31) in the main
paper, and it also has a nice integral representation,

f (γ,τ,n,m) =
∫ 1

0
tγ+n−1(1 − 2t cos(2τ ) + t2)−(γ+m) dt,

(B12)

which is derived in the Supplemental Material [37] from a
representation of this type for F1.

4. Numerical Fourier transform and analytic continuation

Computing the L(il) coefficients involves evaluating the
expression

lim
ω→0

lim
δ→0

1

ω

[∫ β

0
eiωnτ 〈jl(τ )ji〉 dτ

]
iωn→ω+iδ

. (B13)

The first step is to write anything that cannot be computed
analytically in terms of dimensionless quantities, which we do
by the transformation τ → τ ′. This results in

lim
n→0

lim
δ′→0

β2

2π2n

[∫ π

0
e2inτ ′ 〈jl(τ

′)ji〉 dτ ′
]

in→n+iδ′
. (B14)

In principle we would now find a unique analytic function f (n)
such that

∫
e2inτ ′ 〈j (τ ′)j 〉dτ ′ = f (n) for every n = 0,1,2, . . .,

but there is no general formula for the Fourier transforms, and
the integrals must therefore be computed individually for each
value of n. This provides a limited set of points (n,f (n)) to
use in fitting an analytic function.

Two standard approaches to this function-fitting problem
are the maximum entropy method [50,51] and the Padé
approximation [52,53]. The maximum entropy method is more
robust to numerical errors, but it does depend quite strongly
on an initial assumption of the form of the function. In our
case, we do not a priori have any strong assumptions about
what the function f (n) should look like, and our data comes
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from numerical integrals for which we can bound the error by
requiring a fixed level of precision, with no statistical errors
like those that appear in quantum Monte Carlo calculations.
We therefore use the Padé approximation and fit a rational
function to the calculated Fourier transforms at Matsubara
frequencies.

If we evaluate the Fourier transform at 2N points, we can
find an exact fit for a rational function with 2N parameters,
namely

f (x) =
∑N

n=1 anx
n∑N+1

n=0 bnxn
. (B15)

This has only 2N parameters because f (0) is just the integral
of the current-current correlation function so that b0 �= 0, and
therefore we can assume without loss of generality that b0 = 1.
Our method for finding f from the 2N points is discussed
further in the Supplemental Material [37] and is very similar
to the method described in Ref. [53].

A major benefit of writing f (x) as a rational function is that
the analytic continuation can be accomplished simply by the
replacement n → δ′ − in. We make this substitution, divide
by n [from equation (B14)], and take the imaginary part to get
only the real part of L(il); letting both n and δ′ go to 0, we find
in the case that the correlation function 〈jl(τ ′)ji〉 is even about
τ ′ = π/2 the very simple expression

lim
n→0

lim
δ′→0

(
Im

[
f (δ′ − in)

n

])
= a0b1 − a1, (B16)

which is just minus the derivative of f (x) evaluated at x = 0.
(Note that under some assumptions about f , this follows from
the Cauchy-Riemann equations.) If the correlation function is
odd about τ ′ = π/2, then we get 0.

It turns out that the function f (γ,τ,n,m) is even about
τ ′ = π/2, which implies that both 〈J (τ )J 〉 (equation (30))
and 〈JE(τ )JE〉 (equation (B11a)) are even, while 〈JE(τ )J 〉
(equation (B11b)) is odd. This is the mathematical explanation
for why the thermopower vanishes in our calculation for the
Luttinger liquid model, although of course this result was
expected due to particle-hole symmetry.

There are two complications that must be addressed. First,
the form of the function f (x) and hence the calculated value
for the numerical part of L(il) depends on the number of points
used to fit the function. With a small number of points, the
function is highly underdetermined and thus the derivative at
the origin is inaccurate. Conversely, finding the parameters
in f involves inverting a matrix that quickly becomes ill-
conditioned as N grows, which for a given precision of the
numerical integrals sets an upper bound on how many data
points we can use. In practice, we compute the transport
coefficients for every value of N from 1 through Nmax, confirm
that the resulting numerical series converges, and use the limit
of the sequence for the value of the transport coefficient.
We use Nmax = 40 because that value empirically gives good
convergence for all transport coefficients that we calculate.

The second complication is that the functions f (γ,τ,n,m)
are divergent at τ = 0 and π . We regulate the divergence by

introducing a cutoff ε at both bounds of the integral in equation
(B14), integrating from ε to π − ε instead of 0 to π . We
compute the transport coefficients for values of ε that vary
over an order of magnitude (from 0.1 to 0.01) and confirm that
the results for the transport coefficients converge as ε → 0.
The numerical error grows as ε → 0, so all the numerical
results for the Luttinger liquid model shown in Figs. 1 and 3
are for ε = 10−1.5, for which the results are converged and the
error is guaranteed to be small. See the Supplemental Material
[37] for details.

APPENDIX C: CORRESPONDENCE BETWEEN THE
TWO MODELS

In the main text of the paper we have compared the results
of our two models, implicitly assuming that the results they
give should match at least in the noninteracting limit. In this
appendix we confirm that the two models match in that limit,
first by showing that the hopping terms in the two models are
equivalent and second by explicitly rewriting the Fourier-space
expression for 〈J (τ )J 〉 from the generalized noninteracting
model in a real-space representation and showing that the result
matches the noninteracting limit of equation (28a) from the
Luttinger liquid model.

1. Correspondence of hopping terms

The correspondence between the Fourier-space operators
ck that appear in the Hamiltonian in equation (1) and the
real-space operators ψα(x) that appear in the Hamiltonian in
equation (25) is given by a Fourier transform,

ckα = 1√
L

∫
e−ikxe−iαkF xψα(x)dx (C1a)

ψα(x) = eiαkF x

√
L

∑
k

eikxckα, (C1b)

where the chiral Fourier-space operator c
†
kα creates a fermion

that has wave vector k relative to the Fermi point αkF . We can
then find the correspondence between the hopping strength
tkk′ from equation (1) and tαβ(x − x ′) from equation (25)
by substituting equation (C1b) into the hopping term of the
Luttinger liquid Hamiltonian and matching the result to the
corresponding term in the noninteracting Hamiltonian. To
simplify the calculation, we rewrite the hopping part of the
Luttinger liquid with only two terms, as

∑
αβ

∫
dx dx ′[tαβ(x − x ′)ψ†

jα(x)ψj+1,β (x ′) + H.c.]. (C2)

In fact, it is sufficient to match just the first term of this to
the first term in the hopping part of the noninteracting Hamil-
tonian, since their Hermitian conjugates will automatically
match as well.
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Making the substitution with equation (C1b), we have:

∑
αβ

∫
dx dx ′ tαβ(x − x ′)ψ†

jα(x)ψj+1,β (x ′) =
∑
αβ

∫
dx dx ′

[
tαβ(x − x ′)

[
e−iαkF x

√
L

∑
k

e−ikxc
†
jkα

][
eiβkF x ′

√
L

∑
k

eikx ′
cj+1,kβ

]]

(C3a)

= 1

L

∑
kk′

∑
αβ

∫
dx dx ′[tαβ(x − x ′)e−ikF (αx−βx ′)[e−ikxeik′x ′

]c†jkαcj+1,k′β]. (C3b)

We can compare this with the equivalent term for the
generalized noninteracting model, which looks like∑

kk′
tkk′c

†
j,kcj+1,k′ =

∑
kk′

∑
αβ

tkk′δαβc
†
jkαcj+1,k′β. (C4)

For the two to be equal, we must have tαβ(x − x ′) = δαβt(x −
x ′) and

tkk′ = 1

L

∫
dx dx ′[t(x − x ′)e−iαkF (x−x ′)e−ikxeik′x ′

]. (C5)

The inverse relation is

t(x − x ′)e−iαkF (x−x ′) = L

(2π )2

∫
dk dk′ tkk′eikxe−ik′x ′

. (C6)

From these relations, we can verify the consistency of the
hopping strengths that we used in our calculations, namely

t(k,k′) = (t/L)δ(k − k′) from equation (A9) and t(x − x ′) ∝
δ(x − x ′). Starting from t(k,k′) and using equation (C6), we
find

t(x − x ′) = t

2π
δ(x − x ′). (C7)

Note that the factor of L−1 in t(k,k′) is necessary to cancel
the factor of L in equation (C6), so that the hopping strength
t(x − x ′) between localized sites does not depend on the chain
length; such a dependence would be unphysical.

The factor of L−1 in front of the delta function in t(k,k′)
appears because the width of the Gaussian describing tkk′

is proportional to L−1. We assume the specific form of the
hopping tkk′ given in equation (A9) specifically to achieve the
cancellation of factors of the length of the system in t(x,x ′).
This ensures that both t(x − x ′) and tkk′ are physically valid,
while also being compatible with each other according to
equations (C5) and (C6).

2. Real space representation of current-current correlator in generalized noninteracting model

In the noninteracting limit, γ → 1, the results of our two models should precisely agree. We confirm that explicitly by writing
〈J (τ )J 〉 as calculated in the generalized noninteracting model in a real-space representation. We begin from equation (A8d), first
converting back into an integral over k to get

〈J (τ )J 〉 = 2Nca
2
c

(
L

2π

)2 ∑
α

∫
kk′

|t(k,k′)|2
[

eτ (Eα(k)−Eα (k′))

(1 + eβEα (k))(1 + e−βEα (k′))

]
dk dk′, (C8)

where on each branch (α = R,L), k is measured from the Fermi point αkF . Putting in the linear dispersion Eα(k) = αvk and
substituting equation (C5) for t(k,k′), this becomes

〈J (τ )J 〉 = 2Nca
2
c

(2π )2

∑
α

∫
dx1 dx2

dx3 dx4
[t(x1 − x2)e−iαkF (x1−x2)][t(x3 − x4)∗eiαkF (x3−x4)]

×
[∫

dk
eατ ′βvk/πe−ik(x1−x3)

1 + eαβvk

][∫
dk′ e−ατ ′βvk′/πeik′(x2−x4)

1 + e−αβvk′

]
. (C9)

Substituting t(x − x ′) = (t/2π )δ(x − x ′) and computing the integrals over k and k′ gives

〈J (τ )J 〉 = 2Nca
2
c t

2

(2π )4

∑
α

∫
dx dx

[
− iπ

vβ
csch

(
π

vβ
(x ′ − x − iτ )

)][
iπ

vβ
csch

(
π

vβ
(x − x ′ + iτ )

)]
(C10)

= −4NcLa2
c t

2

(2π )4

(
π

vβ

)2 ∫
dx

[
csch

(
π

vβ
(x + iτ )

)]2

. (C11)

085122-14



ELECTRICAL AND THERMAL TRANSPORT IN THE . . . PHYSICAL REVIEW B 95, 085122 (2017)

This result can be compared with the noninteracting (γ = 1) limit of 〈J (τ )J 〉 in the Luttinger liquid model, as given by equation
(28a). The noninteracting Green’s function is found by substituting γ = 1 into equation (29) to get

lim
γ→1

Gα(x,τ ) = −eiαkF x

2π

⎡
⎣ iα

vβ

π
sinh

(
x+iαvτ
vβ/π

)
⎤
⎦, (C12)

and substituting this into equation (28a) gives

〈J (τ )J 〉 = −2NcLa2
c t

2

(2π )4

(
π

vβ

)2 ∑
α

∫
dx

[
csch

(
π

vβ
(x + iατ )

)]2

. (C13)

The integral does not actually depend on α since all terms containing α are odd in x and integrate to 0. We can therefore let
α → 1 in the integrand, in which case the sum over α becomes just a factor of 2 and the result precisely matches the real-space
representation of the correlator from the generalized noninteracting model, equation (C11).
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