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Triplet superfluidity on a triangular ladder with dipolar fermions
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Motivated by recent experimental progress in the field of dipolar-Fermi gases, we investigate the quantum
phases of dipolar fermions on a triangular ladder at half filling. Using density matrix renormalization group
method, in the presence of onsite repulsion and intersite attractive interaction, we find an exotic spin-triplet
superfluid phase in addition to the usual spin-density and charge-density waves. We examine the stability of the
spin-triplet superfluid phase by varying hopping along the rungs of the triangle. The possibility of fermionic
supersolidity has also been discussed, by considering three-body interaction in the Hamiltonian. We also study
the effect of spin-dependent hopping on the stability of the spin-triplet superfluid phase.
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I. INTRODUCTION

Recent experimental advancements in the field of dipolar
Fermi gases have given opportunity to explore the quantum
phases of strongly correlated fermionic systems with long-
range interactions [1,2]. The dipolar Fermi gas of 161Dy [3]
and fermionic polar molecules, 40K 87Rb [4], 23Na 40K [5],
with large dipole moments have experimentally been realized
in optical lattices. It has been found that the external electric
and microwave fields on optical lattices can control quantum
many-body interactions parameters of dipolar systems and
polar molecules [6–9]. It has been argued that the long range
and anisotropic characters of the dipolar interactions, in fact,
can provide various types of exotic phases like charge-density
wave (CDW; even though the density modulation is produced
by charge neutral atoms or molecules, it is called CDW in the
literature) [10–12], spin density wave [SDW; spin order for
pseudo-spin-1/2 of dipolar fermions, shown in the schematic of
Fig. 2(a)] [13,14], liquid-crystal [15,16], and conventional and
unconventional fermionic superfluids [17–22], to name a few.

Finding phases like triplet superfluidity and triplet super-
conductivity is always very challenging and interesting too
as these exotic phases have a connection to a number of
topological phases and quantum computation. Interestingly,
at low temperature, liquid 3He forms fermionic superfluids,
where 3He atoms (or quasiparticles) form pairs with p-wave
symmetry in the spin triplet state [23,24]. Chromium based
quasi-one-dimensional superconductors [25,26] and strontium
based oxide, Sr2RuO4, are considered to be good candidates
for triplet pairing [27,28].

Interestingly, ultra cold dipolar systems offer intriguing
possibilities to explore unconventional pairing mechanisms of
the condensed-matter system. For single component fermions,
a dominant pz-wave superfluidity has been proposed [17,18].
For two components fermions, it has been shown that there
is a possibility of formation of both singlet and triplet
superfluidity [29–31], as both singlet and triplet pairing
are allowed in such systems. In a two-dimensional dipolar
fermionic system, where dipoles are aligned with external
electric field, it has been shown that p-wave superfluidity
can be realized by varying anisotropy and geometry of the
system [20]. Unconventional spin-density waves [14] and
bond-order solids [32] have also been shown for the two-
dimensional dipolar systems.

On the other hand, more exotic phases, like the supersolid
phase, have been proposed for dipolar Fermi gas in a cubic
optical lattice system [33]. Interestingly, in this, it has been
shown that a p-wave superfluid is formed due to attractive
interaction along the z direction and a charge-density wave
in the XY plane due to electronic repulsions and together
with the intermediate values of dipolar interactions. For a two-
dimensional dipolar Fermi gas, coexistence of density-wave
and p-wave superfluidity has been shown [34,35]. In a recent
experimental study on ultra-cold three-dimensional optical
lattice systems, the effect of multibody interaction has been
demonstrated [36,37]. Furthermore, in a few numerical studies,
it was shown that dominant three body Coulombic interactions
can give rise to a host of interesting phases, like supersolid and
bond-order phases [38–41]. Interestingly, for polar molecules
in the optical lattice, the realization of three-body interactions
using a microwave field has been proposed [42–44], and since
then there have been various theoretical studies of microscopic
models with three-body interactions [45–49]. These studies
have shown that, with three body Coulombic interactions, the
ground state can be quite exotic displaying quantum phases
like topological phases, spin liquids, fractional quantum Hall
states, etc.

Quasi-one-dimensional systems are quite unique. Due to
strong quantum fluctuations, the true long range order is not
possible for continuous symmetry breaking phases [50]. In a
one-dimensional optical lattice, bosonization study has shown
triplet superfluid (TSF) phase for dipolar fermions [51]. TSF
phase is also found in two coupled one-dimensional systems
for quadrupolar Fermi gas [13]. Interestingly, mixture of triplet
and singlet superfluidity has also been shown in a quasi-one-
dimensional system with two component fermions [52]. A
recent DMRG study [53] has also found the TSF phase in a one-
dimensional dipolar Fermi gas. In the presence of attractive
head to tail arrangement of dipolar interactions, the one- and
two-dimensional dipolar fermions become unstable and they
undergo either collapse or phase separation. To overcome
these difficulties, the bilayer system has been proposed, where
dipoles are aligned perpendicular to the layers, giving more
stable paired phases [54,55].

In this paper, we consider dipolar fermions in a triangular
ladder system at half filling. We study the stability of
various exotic phases, like, spin-density wave, charge density
wave, and triplet-superfluid phases. In the ladder, the dipolar
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FIG. 1. Schematic of the triangular ladder with dipolar fermions
(arrows indicate the directions of polarization of fermionic dipoles).
There is onsite interaction U , attractive interaction Va , repulsive
interactions Vr , and Vd . The three-body interaction term is given
as W and the hopping along the legs and rungs are represented as t

and t ′.

fermions are considered to be polarized along the rungs of
the triangles (as shown in schematic of Fig. 1). The strength
and direction of polarization can be controlled by external
electric field or by varying distance between lattice sites. Due
to alignment of dipolar fermions along the rungs, attractive
interaction is generated on alternative rungs (odd rungs). It
is also possible to generate repulsive interaction in each of
the chains and diagonal rungs of the triangle, by alignment of
dipoles. In the presence of attractive dipolar interaction and
on-site Hubbard repulsion, a stable TSF phase gets generated.
We have checked the stability of the TSF phase thoroughly,
by tuning in the interchain hopping strength and the repulsive
interaction parameters. Additionally, We have also examined
the effect of spin-dependent interchain hopping on the stability
of the TSF phase. Interestingly, due to triangular geometry,
three-body interactions can also play an important role in
identifying a new quantum phase like the fermionic super-solid
phase of dipolar fermions [41].

The remaining part of the paper is organized as follows.
In Sec. II we have discussed the model Hamiltonian and the
method used to solve it. Subsequently, we have discussed the
results obtained from DMRG calculations. This is divided into
four subsections, where in each subsection the details of phase
and phase transition are discussed. In the last section, we have
summarized all our results.

II. THE MODEL

We consider two-component (pseudo-spin-1/2) dipolar
fermions on a two-leg triangular ladder at half filling. The
effective Hamiltonian of the system can be written as

H = −
∑
σ,i

(tc†σ,icσ,i+2 + t ′c†σ,icσ,i+1 + H.c.) + U
∑

i

n̂i,↑n̂i,↓

+
∑
〈i �=j〉

V (i,j )ñi ñj − W
∑

i

ñi ñi+1ñi+2,

where cσ,i is the annihilation operator with spin σ = ↑,↓ at
site i. Here ↑ and ↓ states refer to two hyperfine states of
dipolar atoms or molecules. ñ = (n − 〈n〉), where n is the
number operator and 〈n〉 = 1. t and t ′ are the hopping terms
and U is the onsite interaction term between the fermion
with opposite spins; V (i,j ) is the two-body nearest-neighbor
intersite interaction term. The last term in the Hamiltonian,
W , represents attractive three-body interactions between the
fermions, which act on the fermions belonging to the same
triangle (as shown in the Fig. 1). The two-body interaction

term depends on direction and distance between the dipoles.
When the two dipoles are parallel to each other, the interaction
becomes repulsive, while when they align to each other along
the rungs, interaction becomes attractive. The most dominating
interactions arise from the nearest-neighbor terms [56,57],
and also in optical lattice by adjusting the distance between
sites, one can make other subdominating interactions quite
smaller [57]. Thus, we restrict ourself to only nearest-neighbor
terms of V (i,j ) in the Hamiltonian [41]. The two-body
nearest-neighbor term, V (i,j ), can be described as

V (i,j ) =
⎧⎨
⎩

Vr Intersite repulsive term on each chain.
Vd Intersite repulsive term for even rungs.
−Va Intersite attractive term for odd rungs.

Since the dipolar interaction depends on angle and distance
between the dipoles, it allows tuning of magnitude and sign
of these interaction parameters to a wide range to explore
rich quantum many-body phases. The dipolar interactions can
be tuned by external electric field or changing the distance
between sites. The above Hamiltonian preserves U (1) and
SU (2) symmetry, which is related to conservation of total
charge and spin degrees of freedom. Note that, for nonzero
next nearest neighbor terms, t and W , the Hamiltonian does
not have particle-hole symmetry.

To solve the above Hamiltonian and to find quantum phases
in the parameter space, we have used the density-matrix renor-
malization group (DMRG) [58,59] method. We have used open
boundary conditions and vary the DMRG cutoff (max = m)
from 300 to 600, for consistency in results. Most of the results
presented in the paper are obtained using max = 520, unless
otherwise stated. To calculate the error, we have checked the
truncation error, e = 1 − ∑

i ρi , where ρi is the eigenvalues
corresponding to the reduced density matrix. We found that
depending upon the interaction parameters and system size,
truncation error e varies from 10−5 to 10−6. We have verified
energy and excitations for some parameters with those from
exact diagonalization for smaller system sizes. To characterize
different phases, namely SDW, TSF, and CDW phases, we have
calculated corresponding correlation functions and also spin
and charge density profiles. For showing plots of correlation
functions, unless stated explicitly, we have considered system
size L = 128. To determine phase boundary between different
phases and to minimize the finite size effect, we have done
finite-size scaling of order parameters, of the system with size
(L) up to 160.

III. RESULTS

A. SDW to TSF to CDW transition

We first consider a simple case, where t ′ = 0, the intersite
repulsive dipolar term, Vr = 0, Vd = 0, and the three-body
term, W = 0. Due to the long range of dipolar interactions,
two chains of triangular ladder can couple through attractive
dipolar interaction Va even though the tunneling between
the chains remain zero [51]. For finding the TSF phase, we
take onsite Hubbard interaction U = 2, and vary the attractive
interaction Va (0 to 4) along the rungs (odd rungs). For U = 2
and lower vales of Va , we find that to minimize repulsive onsite
interaction, fermions stay put in each site and form spin density
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FIG. 2. (a) Schematic of the SDW, TSF, and CDW phases on a
triangular lattice (here arrows indicate electronic spins of fermions).
(b) Plot of spin-density 〈sz

i 〉 with site index i, for Va = 1.6 (triangle)
and Va = 2.5 (star). (c) Plot of charge density 〈ni〉 for Va = 2.4 (star)
and Va = 3.2 (square).

wave, |↑,↑,↓,↓,↑,↑,↓,↓,↑,↑...〉 [as shown in schematic of
Fig. 2(a)]. In order to show the spin density profile of the
system, in Fig. 2(b) we have plotted the spin-density 〈sz

i 〉 of
the system, with site index i. With an increase in attractive
interaction, Va , the fermions form intersite pairs along the
rungs of the ladder, where the electronic spins form triplet
symmetry (|sz = 0〉 = |↑↓〉 + |↓↑〉) [60]. This phase remains
so for moderate values of Va . For a large value of attractive
interaction, fermions with up and down spin prefer to sit
together and form the CDW phase, where the state appears
like, |↑↓,↑↓,0,0,↑↓,↑↓,0,0...〉 [as shown in the schematic of
Fig. 2(a)]. To show this, in Fig. 2(c), we have plotted charge
density profile of fermions, 〈ni〉, with site index i. Interestingly,
this CDW phase appears even without any intersite-repulsive
terms. Thus is precisely due to the triangular geometry and
the attractive interaction along leg direction [61]. However, in
the strictly one-dimensional case, for large values of attractive
interaction, the system goes to either phase-separated phase or
it collapses [53].

In order to characterize SDW, TSF, and CDW phases and
their boundaries, we vary Va with fixed value of U = 2, and we
look into the behavior of corresponding correlation functions.
For SDW phase, we have calculated correlation function,
S(r) = 〈sz

i s
z
i+r〉, where r (even distances) is the distance from

the middle site of the ladder to the one end of the ladder.
We found that with increase in r , fluctuations appears in
the correlation function (Appendix Fig. 15). To reduce these
fluctuations, we have calculated average correlation function,
S(r) = 1/N (r)

∑
r |〈sz

i s
z
i+r〉|. Here, we have summed over all

the correlations, which are separated by the same distance r
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FIG. 3. (a) Plot of correlation function S(r), (b) correlation
function P (r), for U = 2 and varying Va < 2.3. (c) Plot of correlation
function P (r), (d) correlation function C(r), for U = 2 and varying
Va (2.3 to 2.9).

from sites i and divided by the numbers N (r) of such same
distances correlations [62] . As shown in Fig. 3(a), for lower
values of Va , the correlation function S(r) decays algebraically,
while for larger values of Va � 2.0, it decays exponentially.

With an increase in attractive attraction along the rungs of
the triangle, interchain fermions form bound pairs along the
rung, giving rise to interchain spin-triplet superfluid phase,
which is quite interesting. In general, the TSF phase can be
characterized by pair correlation function [63–65] P (r) =
〈�+

l �l+r〉, where �†(l) = (c†i,↑c
†
i+1,↓ + c

†
i,↓c

†
i+1,↑) creates a

fermionic pair in spin triplet state on a rung (labeled l) and r

(even distance) is the distance from the rung l (near to the center
of the triangular ladder). This correlation function P (r), is also
called pz-wave-like superfluid correlation function, because
of spin triplet pairing along the z direction. For P (r) also,
fluctuations appear with increase in r . To smooth out these
fluctuations, we have calculated average correlation function,
P (r) = 1/N(r)

∑
r |〈�+

i �i+r〉|, where we have summed over
the correlations which are separated by the same distances r

from rung l, divided by the numbers, N (r), with such same
distances correlations.

To characterize the phase boundary accurately between
SDW and TSF phases, we have calculated the exponent
of the correlation function, S(r). The exponent K can be
obtained by fitting the correlation function with algebraic
decay function of the form, S(r) ∼ cos(2kF r)(1/r)1+K [as
shown in Fig. 4(c)] [66,67]. To get rid of short range correlation
functions and the finite size effects, we have fitted the
correlation function S(r) from distance r = 10 to 70, for
system size length L = 160. We find that the correlation
function S(r) fits very well in the SDW phase, however,
near the phase boundary close to the TSF phases, the fitting
error increases. From Luttinger liquid theory, for K < 1, the
SDW phase dominates, while for K > 1, the TSF phase
dominates [66–69]. The transition point for SDW to TSF
phase is expected to be at K = 1. As shown in Fig. 4(b), at
Va = 1.9 ± 0.06, the exponent K of the correlation function
S(r) takes the value K ∼ 1, which signifies the transition from
SDW phase to TSF phase.
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FIG. 4. Finite-size scaling of (a) order parameter Op and (b)
exponent K of the correlation function S(r), at U = 2 and different
values of Va . (c) Power law fitting of S(r) at Va = 1.6, on a log-log
scale for system size L = 128. (d) Phase diagram for fixed value of
U = 2 with varying Va .

To characterize the CDW phase, we have calculated the
correlation function, C(r) = 〈(n(i) − n̄)(n(j ) − n̄)〉, where r

is the distance from the middle site of the ladder to another on
one side of the ladder. As shown in Fig. 3(d), the correlation
function C(r) for Va > 2.5 has nearly long range order,
while P (r) decays exponentially [as shown in Fig. 3(c)].
Thus, for Va > 2.5, the system is in the CDW phase. To
calculate the phase boundary between T SF and CDW phase,
we have done finite size scaling of the order parameter,
Op = (1/L)

∑L
r=1 |C(r)|. In the density wave phase order

parameter Op takes nonzero values in the thermodynamic
limit [70]. To obtain the thermodynamic value of Op, we have
done finite-size scaling for systems with length L up to 160, by
fitting the finite-size Op values with a function, Op + O1/L +
O2/L

2. As shown in Fig. 4(a), TSF to CDW transition occurs
at Va = 2.55 ± 0.05 as Op takes finite nonzero values for
Va = 2.55 ± 0.05. As shown in the schematic of Fig. 4(d),
for fixed values of onsite interaction, U = 2 and by varying
Va , we found SDW phase for Va � 1.9, TSF phase for
1.9 � Va � 2.55, and CDW-phase for Va � 2.55.

B. Effect of onsite repulsive interaction

To find the role of onsite interaction U in the triplet pairing
and formation of other phases, we varied the U values from
(U = 0.0 to 3.0), for fixed values of attractive interaction Va =
1.8. As shown in Figs. 5(a) and 5(b), initially for lower values
of U , the correlation function C(r) shows nearly long range
order, while P (r) decays exponentially, indicating CDW phase
in the system. On the other hand, for U � 1.1, the correlation
function P (r) shows algebraic decay behavior, displaying TSF
phase in the system. To find out the phase boundary between
the CDW and TSF phase, we have done finite size scaling of
order-parameter Op. As shown in Fig. 6(a), Op takes finite
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FIG. 5. (a) Plot of correlation function C(r), (b) correlation
function P (r), for Va = 1.8 and varying U < 1.5. (c) Plot of
correlation function P (r), (d) correlation function C(r), for Va = 1.8
and varying U (1.5 to 3.0).

nonzero values for U = 1.1 ± 0.05, indicating the transition
from CDW phase to TSF phase.

As shown in Figs. 5(c) and 5(d), with increase in U ,
initially P (r) shows power law behavior, while S(r) decays
exponentially. On the other hand, for large values of U , S(r)
shows power law behavior, while P (r) decays exponentially.
For moderate values of U , TSF and SDW phases compete
with each other. To find the phase boundary between TSF and
SDW phase, we have done finite size scaling of exponent
of correlation function S(r), as discussed in the previous
section. Figure 6(b) shows transition from TSF to SDW phase
at U = 1.9 ± 0.06, as the exponent of S(r) takes the value
K = 1. As shown in the schematic of Fig. 6(d), we find
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FIG. 6. Finite-size scaling of (a) order parameter Op and (b)
exponent K of the correlation function S(r), at Va = 1.8 and different
values of U . (c) Power law fitting of S(r) at U = 2.2, on a log-log
scale, for L = 128. (d) Phase diagram for fixed value of Va = 1.8
with varying U .
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FIG. 7. (a) Plot of correlation function S(r). (b) Plot of correlation
function P (r), as a function of r , at U = 2, Va = 1.6, and varying
t ′ (on a log-log scale). In the inset, charge density 〈ni〉 is shown for
t ′ = 1.2 (circle), 1.6 (square), and 2.4 (diamond).

the CDW phase for U � 1.1, TSF phase for 1.1 � U � 1.9,
and SDW phase for U � 1.9, for a fixed value of attractive
interaction, Va = 1.8.

C. Effect of interchain hopping

Here, we study the effect of interchain hopping, t ′ on the
triangular ladder. We find that, as the interchain hopping is
turned on, the SDW phase becomes unstable and disappears
quickly with increase in t ′. On the other hand, TSF phase
becomes prominent with nonzero t ′ values, however, as the
t ′ becomes larger, the prominence decreases. The spin triplet
pairs formed due to Va term along the rung, get higher stability
with the introduction of t ′, as it promotes the antiferromagnetic
exchange between the electrons on the rungs. This results in
increase in pair correlation, P (r). Interestingly, for large values
of attractive interaction, Va , when the system is in the CDW
phase, it gets hardly affected by the interchain hopping term, as
the charge ordered state arrests the effective hopping between
the chains. However, close to the phase boundary between
TSF and CDW phases, when the system is near the CDW
phase boundary, for finite values of t ′, the system can again
make the transition to the TSF phase.

Now, using DMRG, we demonstrate the effect of t ′ by
considering two values of Va , 1.6 and 2.8, and for a fixed
value of U = 2. These Va values correspond to SDW and
CDW phases, respectively, without any interchain hopping
term t ′. As we turn on t ′, we look at the variation in SDW and
CDW phases. As shown in Fig. 7(a), for Va = 1.6, the spin-
spin correlation function S(r) starts decaying exponentially for
t ′ � 0.1 [Fig. 7(a)], whereas the pair correlation function P (r)
initially increases with t ′, for even small values of it. It clearly
shows that the system makes the transition from SDW phase
to TSF phase in the presence of interchain hopping t ′. On the
other hand, as we increase the t ′ value, for larger values of
t ′ (t ′ ∼ t), the pair correlation function P (r) starts decreasing
[Fig. 7(b)]. Interestingly, there the system shows a density
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FIG. 8. (a) Plot of correlation function P (r) as a function of r (on
a log-log scale). (b) Plot of correlation function C(r), as a function
of r , at U = 2.0, Va = 2.8 with different values of t ′.

profile, 〈n(i)〉, which is oscillatory in nature [as shown in the
inset of Fig. 7(a), for t ′ = 1.2 and 1.6]. In fact, at very large
values of t ′ (t ′ � 2.0), the system enters into a metallic phase,
where the density becomes homogeneous and takes values
around one [see inset of Fig. 7(a), for t ′ = 2.4].

We find that the CDW phase is quite robust against the
interchain hopping term t ′. As shown in Fig. 8(a), the charge-
charge correlation function C(r) shows nearly long range order
for t ′ � 0.5. On the other hand, as shown in Fig. 8(b), the
pair correlation function P (r) decays exponentially for lower
values of t ′ � 0.5, while it shows power law behavior for
t ′ > 0.5. Such behavior of the correlation functions indicate a
phase transition from CDW phase to TSF phase for t ′ 	 0.55 ±
0.05. For moderate values of t ′, the P (r) shows power law
behavior, while for larger values of t ′ � 1.2, it starts decaying
exponentially and the system again enters into a density wave
phase. For large values of t ′ (t ′ ∼ 2.0), the density wave phase
enters into a metallic phase. For Va � 3, the CDW phase is
quite stable and it requires a really large value of t ′ to destroy
the CDW phase.

D. Effect of intersite repulsive interactions

When the dipolar fermions are aligned along the rungs
of the triangle, repulsive interactions can be generated along
each chain direction (Vr ) as well as along the diagonal (Vd )
of the triangular ladder (as shown in schematic Fig. 1). For
demonstrating the effect of repulsive interactions, Vr and Vd ,
we chose interaction parameters U = 2, t ′ = 0.4, Va = 1.8
and vary the intersite repulsive parameters Vr and Vd . As
discussed in the previous section, in the absence of repulsive
intersite interactions, for these parameter values, the system
remains in the TSF phase. On the other hand, with an
increase of intersite repulsive interactions, the fermions try
to avoid each other and form a CDW state with structure, like
|2,0,0,2..〉.

In Fig. 9, we have shown the effect of intersite repulsive
interaction Vd , on the TSF phase keeping Vr = 0. As shown
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FIG. 9. (a) Plot of correlation function P (r), as a function of r , at
U = 2.0, t ′ = 0.4, Va = 1.8, and different values of Vd . Inset shows
finite size scaling of Op with 1/L. (b) Plot of correlation function
C(r), with distance r at U = 2.0, t ′ = 0.4, Va = 1.8, and different
values of Vd .

in Fig. 9(a), for lower values of Vd < 0.8, correlation function
P (r) shows power law behavior. For larger values of Vd ,
correlation function C(r) shows nearly long range behavior
[Fig. 9(b)]. To find the phase boundary between TSF and CDW,
we have done finite size scaling of Op. As shown in the inset of
Fig. 9(a), Op takes a small finite value for Vd ∼ 0.7. In some
cases, due to slow nature of transition and finite size effect,
Op can take very small nonzero values. So from the plot of the
correlation function C(r) [Fig. 9(b)] and finite size scaling of
Op, we have estimated the transition from TSF to CDW phase
at Vd = 0.75 ± 0.06.

In the presence of attractive interaction Va , along the rungs
of the triangles, the fermions in each of the chains become
correlated with each other. We also found that in the presence
of Vd , small values of repulsive interaction Vr are enough
to produce a CDW phase [71]. As shown in Fig. 10(a), the
pair correlation function P (r) shows power law behavior
up to Vr ∼ 0.24, while for larger values of Vr , it decays
exponentially. On the other hand, the charge charge correlation
function C(r) shows nearly long range behavior for Vr � 0.24
[Fig. 10(b)]. To find the phase boundary, we have done finite
size scaling of order parameter Op. As shown in the inset of
Fig. 10(a), Op takes a finite value for Vr = 0.24 ± 0.02, which
clearly shows the phase transition from the TSF phase to the
CDW phase at Vr = 0.24 ± 0.02.

E. Effect of three-body interaction

Due to triangular geometry and dipolar interactions, an
additional three-body interaction term may appear in each of
the triangular plaquettes, as suggested by others on similar
grounds [39,44]. The three-body term can break the particle
hole symmetry of the Hamiltonian. In optical lattices, the
three-body and two-body interactions can be tuned inde-
pendently [42,43]. Here, we demonstrate the consequences
of attractive three-body interaction [37,72], W , along with
two-body interactions and ask whether the three-body term

(a)

(b)

FIG. 10. Plot of correlation function (a) P (r) as a function of r .
(b) C(r) as a function of r at U = 2.0, t ′ = 0.4, Va = 1.8, Vd = 0.3,
and different values of Vr . Inset shows finite size scaling of Op with
1/L.

can generate new phases or combine several phases. To
show the effect of three-body interactions, we choose the
system parameters, U = 2, Va = 1.8, Vd = 0.3, Vr = 0.1, and
t ′ = 0.4 and varied the W . Without the W term, the system
exists in TSF phase for these parameters. As we turn on
the attractive three-body interaction, W , both TSF and CDW
phases coexist and the system remains so up to moderate values
of W .

As shown in Fig. 11, the triplet pair correlation function
P (r), with an increase in W , shows power law behavior, with
slight changes in exponent. Additionally, with an increase in
W , a periodic modulation appeared in the charge correlation
function C(r). To see the appearance of CDW order in the
thermodynamic limit, we have done finite size scaling of order
parameter Op. As shown in the inset of Fig. 12, Op takes
finite nonzero values for W = 0.6 ± 0.1. Periodic modulation
in density correlation C(r) and algebraic decay of P (r) gives
a signature of fermionic supersolid phase in the system for
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r

0.0001

0.001

0.01

P
(r

)

W = 0.0
W = 0.4
W = 0.8
W = 1.2
W = 1.6

0 10 20 30 40 50 60
i

0

0.5

1

1.5

2

<
n

(r
)>

W = 1.8W = 1.8

FIG. 11. Plot of correlation function P (r) as a function of r ,
for interaction parameters U = 2.0, Va = 1.8, Vr = 0.1, Vd = 0.3,
t ′ = 0.4, and different values of W . Inset shows density profile of
fermions 〈ni〉, with site index i, for W = 1.9.
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FIG. 12. Plot of correlation function C(r) as a function of r ,
for interaction parameters, U = 2.0, Va = 1.8, Vr = 0.1, Vd = 0.3,
t ′ = 0.4, and different values of W . Inset shows finite size scaling of
Op with 1/L.

0.6 � W � 1.7, where both CDW and TSF phases coexist.
This supersolid phase is different from the supersolid phase
formed due to coexistence of onsite pairing of fermions
(s-wave superfluid) and a charge density wave of the system.
Here, fermions form pairs in the spin-triplet state (pz-wave
superfluid), which coexist with the CDW phase of the system.
For large values of W � 1.7, the system becomes unstable
and thereby become phase separated. In the phase separated
state, density distribution is inhomogeneous, while correlation
function P (r) decay exponentially. Note that, in the phase
separated state, there is generally a convergence problem,
which we found for W � 2.0. In the inset of Fig. 11, plot
of charge density profile 〈ni〉 has been shown for W = 1.8,
with site index i (also see in Appendix Fig. 16, the plot of 〈ni〉,
for different values of W ).

F. Effect of spin-dependent hopping

In this section, we analyze the effect of spin dependent
hopping on the TSF phase. We apply spin dependent hopping
along the rungs of the triangle. We considered the up-spin
hopping term to be stronger than the down-spin hopping
term [73]. The corresponding change in hopping term in the
Hamiltonian can be written as

Htσ =
∑

i

(t ′↑c+
i,↑ci+1,↑ + H.c.) + (αt ′↓c+

i,↓ci+1,↓ + H.c.),

where α is an anisotropic term [α = 1 make the Hamiltonian
the same as Eq. (1)]. The spin dependent hopping term
breaks the spin rotational symmetry SU (2) and also the time
reversal symmetry of the Hamiltonian [50,74]. As the SU (2)
symmetry is broken, the ground state is no more in the
sz
tot = 0 sector, while the number sector is still fixed. In such a

situation, we have checked our DMRG results with those from
exact diagonalization results with the same setup for smaller
system sizes. As the results compare fairly well, we have
set up DMRG calculations with a fixed number of particles
without considering the sz

tot quntum number. Since the matrix
dimension in each of the DMRG iterations increases quite
considerably (∼106), we have carried out DMRG calculations
with max = 450 and for system length L = 96. We have
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FIG. 13. (a) Plot of correlation function P (r). (b) Correlation
function S(r), as a function of r , at U = 2, Va = 2.0, Vr = 0.1, Vd =
0.2, and t ′ = 0.4, with varying α. Inset shows plot of spin density
〈Sz

i 〉 with site index i, for α = 1 (circle) and α = 0.4 (diamond).

verified the results for α = 1 by running DMRG calculations
with sz

tot = 0 and without considering sz
tot quantum number

up to L = 96 with max = 450 and found the results compare
quite well. We thus have carried out DMRG calculations with
the parameters, U = 2, Va = 2, Vr = 0.1, Vd = 0.2, t ′ = 0.4
with varying α values. Note that for these parameter values
with α = 1, the system is known to be in TSF phase [see
Fig. 13(a)].

With spin-dependent hopping, we find that the TSF phase
is suppressed, while the SDW phase starts dominating. As
shown in Fig. 13(a), the pair correlation function P (r) decays
algebraically for α � 0.6 ± 0.1, showing clearly that the TSF
phase is sustained by spin dependent hopping, while for
α � 0.6 ± 0.1, the pair correlation decays exponentially. With
lower values of α, spin-spin correlation function S(r) has
nearly quasi-long-range order for α � 0.6 ± 0.1 [Fig. 13(b)].
In the inset of Fig. 13(a), we show spin density profile, 〈sz

i 〉
with site index i. As can be seen, the 〈sz

i 〉 takes finite values for
α = 0.4, however, it vanishes for α = 1.0. For lower values of
α, the down spin becomes reluctant to hop between legs of the
triangle, thus promoting SDW phase while suppressing TSF
phase in the ladder system.

IV. CONCLUSION

In summary, we have investigated the SDW, TSF, and CDW
phases of dipolar fermions, at half filling, on a triangular
ladder. In the presence of moderate values of repulsive onsite
interaction and attractive intersite interactions, the fermions
form an exotic spin triplet superfluid phase. In the presence of
intersite attractive interactions and onsite repulsive interaction,
a charge density wave phase is found even without any intersite
repulsive interactions. We have demonstrated the stability of
the spin triplet phase, by introducing interleg hopping, which
effectively enhances the spin triplet superfluid phase region
by replacing the spin density wave phase. In the presence of
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FIG. 14. Plot of truncation error with max values m, for interac-
tion parameters U = 2, Va = 1.8 (other parameters are kept zero).

repulsive interactions, we show the transition between TSF
phase and a CDW phase. We also have looked at the effect of
three-body interactions on the TSF and CDW phases. We find
that the three-body term can introduce a fermionic supersolid
phase, where both TSF and CDW coexist. We strongly believe
that our study, which unravel the rich physics of exotic phases
of dipolar-fermionic systems in ultra-cold systems would show
inroads for further experiments.
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APPENDIX

To check the accuracy of our DMRG calculations, we
have calculated the truncation error of the system. In DMRG,
the effective basis is truncated by keeping the m largest
eigenvectors of the reduced density matrix corresponding to
the m largest eigenvalues. The error caused by the truncation
can be measured by calculating e = 1 − ∑

i ρi , where ρi is
the eigenvalues corresponding to the reduced density matrix.
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m = 520
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FIG. 15. Plot of correlation function P (r) as a function of r , at
U = 2, Va = 1.8 (other parameters are kept zero), with different max
values.
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FIG. 16. Plot of correlation functions for interaction parameters
U = 2, Va = 1.8 (other parameters are kept zero). (a) S(r) and (b)
P (r), in two different ways, one from the center of the lattice (square)
and the second by taking an average (circle) for system size L = 128.

Figure 14 shows a plot of the truncation error with max values
m, for system size L = 128 and for interaction parameters
values U = 2, Va = 1.8, keeping all the other parameters, t ′,
Vr , Vd , and W as zero. With increase in max value m > 420,
the truncation error changes very slowly.

To check the behavior of correlation function P (r) with
max values, we have calculated the correlation function with
different max values (Fig. 15). As shown in the inset of
Fig. 15, P (r) almost overlaps for m = 450 and m = 520. This
proves that m value of 450 is large enough to obtain accurate
correlation function P (r).

We have used open boundary conditions for our calculations
in DMRG. To remove the edge effects, we have computed
correlation functions from a central site to one side of the
triangular ladder. In case of correlation functions S(r) and
P (r), we found that with an increase in distance r , rapid
fluctuations appeared in correlation functions.
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FIG. 17. Plot of charge density 〈ni〉, for interaction parameters,
U = 2.0, Va = 1.8, Vr = 0.1, Vd = 0.3, t ′ = 0.4, and different values
of W .
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As shown in Fig. 16, to smoothen these fluctuations,
we have calculated average correlation function, S(r) =
1/N (r)

∑
r |〈sz

i s
z
i+r〉|, where we took the sum over the cor-

relations, which are separated by the same distance r from the
sites i from the other side of the ladder. This is then divided
by the number, N (r), of such same distance correlations.
While averaging, we excluded lattice sites within a distance
L/4 from both the ends of the ladder (of system size, L).
We have calculated the average correlation function, P (r) =
1/N (r)

∑
r |〈�+

l �l+r〉|, by summing over the correlations,
which are separated by the same distance r and dividing the
sum by N (r).

As discussed in Sec. III E, for large values of W � 1.7,
the system enters into a phase separated state. In Fig. 17,
the plot of charge density profile 〈ni〉 has been shown, for
interaction parameters, U = 2.0, Va = 1.8, Vr = 0.1, Vd =
0.3, t ′ = 0.4, and three different values of W . For W = 1.7,
the system shows a periodic density modulation, while for
W = 1.8, an inhomogeneous feature appears in the density
profile. Interestingly, for W = 1.8, the 〈ni〉 takes the maximum
possible values (∼2) near the center of the ladder, and for
W = 1.9, it shifts to one side of the ladder. For W � 2.0, we
found a convergence problem.
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