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Fibonacci anyon excitations of one-dimensional dipolar lattice bosons
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We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density
matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average
filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian
Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves.
When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon
excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to
previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram
for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength
leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.
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I. INTRODUCTION

The large recent interest in non-Abelian topological phases
of matter is strongly motivated by the possibility of a
fault-tolerant topological quantum computation [1–6] based
upon non-Abelian anyons [7–10] that appear as quasiparticle
excitations for such exotic quantum phases of matter. The
errors caused by local interactions with the environment are
a basic obstacle for quantum computation. The main idea
behind topological quantum computation is that non-Abelian
anyonic quasiparticles can be used to encode and manipulate
information in a way that is resistant to errors, and therefore
to perform fault-tolerant quantum computation without loss of
information (decoherence).

The understanding of the origin and properties of non-
Abelian states of matter is also of fundamental importance
and is at the frontier of current theoretical and experimental
research [11–15]. The main objective is the investigation of
new models that have non-Abelian quasiparticle excitations,
or support non-Abelian defects, as a result of complex
interplay between topology and quantum mechanics [16,17].
The robustness against small local perturbations is due to the
topological nature of these states of matter, that therefore
can be used as building blocks for topological quantum
computation.

In this paper we study a system of ultracold dipolar bosons
trapped in a one-dimensional (1D) optical lattice and at an
average filling of 3/2 atoms per lattice site. The system can
be well described by an extended Bose-Hubbard Hamiltonian
with the on-site and nearest-neighbor interactions [18]. We
study the ground states and low energy elementary excitations
of the system in the regime of small tunneling between lattice
sites and identify the region of the parameter space where
the system supports non-Abelian, SU(2)3 Fibonacci anyon
excitations.

In 1D quantum statistics is not well defined. The inter-
change of two quasiparticles in one spatial dimension is im-
possible without one particle going through another. Therefore
the adiabatic exchange (braiding) of these quasiparticles is not
possible in the strictly 1D system that we have considered.
However, braiding can be achieved by connecting these 1D

systems with T junctions into a two-dimensional (2D) network
as suggested previously in the case of Majorana quantum wires
[19].

Our results show that the system supports Fibonacci anyon
excitations in the regime where (quasi)degenerate manifolds
of energy states are well defined, without crossings between
the energy levels within different manifolds. This regime
corresponds only to a part of the charge-density-wave (CDW)
region in the phase diagram of the system, while the system has
nontrivially (quasi)degenerate ground states in the whole CDW
region. As indicated in previous studies [18,20], Fibonacci
anyon excitations correspond to fractional domain walls
between different CDWs.

Also, contrary to previous calculations based on Gutzwiller
wave-function approach [18], our results demonstrate that the
supersolid (SS) phases are not present between the superfluid
(SF) and CDW regions of the phase diagram of the system for
the specific average filling of 3/2 atoms per lattice site con-
sidered throughout this paper. The system for arbitrary fillings
has also been considered by Batrouni et al. [21] where the SS
phases were observed at other higher fillings. Still at the partic-
ular value of ν = 3/2 the authors of [21] were unable to verify
the presence of the SS phases. We claim that instead, decreas-
ing the tunneling strength between the neighboring sites leads
to a direct, Berezinskii-Kosterlitz-Thouless (BKT), superfluid
(SF) to charge-density-wave (CDW) quantum phase transition.

The anyonic quasiparticles, which are neither fermions nor
bosons, are associated to systems in two spacial dimensions.
Namely, when two quasiparticles are exchanged in two
dimensions, the wave function of the system can gain any
phase factor eiα , which motivated the name anyons. On the
other hand in three spacial dimensions the only possible phase
factors are eiα = +1 or −1, which corresponds to bosons or
fermions.

If in addition there are m degenerate states ψi (i = 1,...,m)
for n quasiparticles at positions x1,...,xn, the result of the
quasiparticle exchanges is more than just a change of the
phase of the wave function. In that case an exchange of two
quasiparticles can rotate one of the degenerate states, ψi ,
into a different degenerate state ψj within a m-dimensional
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degenerate Hilbert space for n quasiparticles, ψi → Aijψj .
In general, exchange of other two quasiparticles will be
described by a different rotation matrix, ψi → Bijψj . For
two consecutive exchanges of the quasiparticles, the final
state of the system will depend upon the order in which
these exchanges were performed, since the matrices A and
B do not commute, that is AB �= BA. Such states and their
quasiparticle excitations are therefore called non-Abelian or
noncommutative.

This exotic non-Abelian statistical behavior allows fault-
tolerant manipulation of the quantum information stored in
m-dimensional Hilbert space of n non-Abelian quasiparticles.
Quantum computation is a process of initializing a controllable
quantum system to some known initial state |ψi〉, evolving the
system by a unitary transformation U (t) to some final state
|ψf 〉, and finally measuring the state |ψf 〉 at the end of the
computation. The quantum computational code is defined by
the unitary transformations, which can be engineered to be any
unitary transformations if there is sufficient control over the
underlying Hamiltonian of the system.

For a large class of non-Abelian states any unitary transfor-
mation can be generated only by braiding quasiparticles [2,3],
which consequently allows universal topological quantum
computation through braiding. An example of such non-
Abelian states are the states that support SU(2)3 Fibonacci
anyon quasiparticle excitations [2–4]. The final result of the
computation, that is the final state of the system after evolution
by a unitary transformation, can be obtained by a topological
measurement based on a non-Abelian generalization of the
Aharonov-Bohm effect [2–4].

Non-Abelian states were initially predicted in fractional
quantum Hall (FQH) systems [7,22–27] that are constrained
to two spacial dimensions, and subsequently in various similar
FQH-like systems in 2D [4,26,28–39]. However, analogous
states were also found to appear in various one-dimensional
(1D) models [40–50].

Whether in 1D or 2D, non-Abelian states of matter have
a global hidden order with constituent particles following a
global pattern that is not associated with breaking of any
symmetry. This hidden order is associated with organization of
particles in indistinguishable clusters [27,44,45,49,51]. Each
cluster corresponds to an underlying Abelian copy, and SU(2)k
non-Abelian states can be obtained from k such Abelian
copies by symmetrizing over the coordinates of the clusters
[27,44,45,49,51]. This symmetrization (indistinguishability)
can be achieved by applying a projection operator to a direct
product of the wave functions for k copies, which introduces
the possibility of topological degeneracy and non-Abelian
statistics in the space of quasiparticles.

The projection operator projects k local degrees of freedom
corresponding to k copies onto a new degree of freedom that
is symmetric under exchange of any of the k components and
leads to a topological degeneracy not related to simple sym-
metry considerations. This topological degeneracy is robust
against perturbations and interactions with the environment.

In our calculations we use exact diagonalization (ED)
and density matrix renormalization group (DMRG) [52–54]
methods to study low energy properties of the system for
system sizes up to 124 lattice sites and with periodic boundary
conditions.

The region of the parameter space where the system sup-
ports non-Abelian Fibonacci anyon excitations is determined
by calculating the overlaps between the exact wave functions
for the low-energy states of the Hamiltonian describing the
system at average filling of ν = 3/2 atoms per lattice site and
the corresponding ansatz wave functions which have SU(2)3

non-Abelian order by construction.
The ansatz states are constructed by applying a sym-

metrization projection operator to a direct product of the
corresponding wave functions for three Abelian copies at
filling fraction ν = 1/2 atoms per lattice site. The projection
operator introduces indistinguishability between the copies
(symmetrization over the coordinates of the clusters) which
leads to SU(2)3 non-Abelian order.

The paper is organized as follows. In Sec. II we consider
exactly solvable points in the parameter space of the underlying
extended Bose-Hubbard Hamiltonian and demonstrate that
Fibonacci anyon excitations correspond to fractional domain
walls between different degenerate CDW ground states of the
system. In Sec. III we present ED and DMRG results away
from the exactly solvable points. In Sec. IV we further char-
acterize the SF to CDW quantum phase transition. Protocol
for braiding fractional domain walls within a 2D T-junction
network is described in Sec. V. We draw our conclusions in
the final section, Sec. VI.

II. FIBONACCI ANYON EXCITATIONS AS FRACTIONAL
DOMAIN WALLS

The system of ultracold dipolar bosons in a 1D optical
lattice can be well described by an extended Bose-Hubbard
Hamiltonian of the form [18]

H = −t
∑

i

(a†
i ai+1 + a

†
i+1ai) + U

2

∑
i

ni(ni − 1)

+V
∑

i

nini+1, (1)

where t is the tunneling amplitude between the neighboring
sites, U is the on-site interaction, V is the nearest-neighbor
interaction, and the bosonic operators a

†
i /ai create/annihilate

a boson on site i. The operator ni = a
†
i ai denotes the number

of bosons on site i.
Previous studies showed that the Hamiltonian (1) near the

lattice filling ν = k/2 supports SU(2)k anyonic excitations
in the parameter regions where the system has nontrivially
degenerate CDW ground states [18,20]. In particular, at
average filling ν = 3/2 that we consider, the low energy
excitations are SU(2)3 Fibonacci anyons. To demonstrate
that the low-energy SU(2)k anyonic excitations correspond
to domain walls between different degenerate CDW ground
states we first consider exactly solvable points in the parameter
space, that is, the ground states and the low energy excitations
of the Hamiltonian (1) at t = 0 and U = 2V .

In general, for the filling fraction ν = k/2 at t = 0 and U =
2V , the ground state has nontrivial degeneracy. The ground
states are all CDW states with unit cells [l,k − l], where l =
0,1,...,k [18,20]. For ν = 3/2 there are four degenerate CDW
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ground states:

|030303...〉 ≡ [03]

|121212...〉 ≡ [12]
(2)|212121...〉 ≡ [21]

|303030...〉 ≡ [30].

The low energy quasiparticle/quasihole excitations correspond
to domain walls between degenerate CDWs with unit cells
[l,k − l] and [l ± 1,k − l ∓ 1] [18,20]. More precisely, fol-
lowing domain walls correspond to elementary excitations [20]

[k − l,l][k − l − 1,l + 1] for 0 < l < k,

[k − l,l][k − l + 1,l − 1] for 0 < l < k,
(3)

[k,0][k − 1,1],

[0,k][1,k − 1],

where [a,b][c,d] ≡ |...ababcdcd...〉. For the filling fraction
ν = 3/2 elementary quasihole and quasiparticle excitations
are [20]

|...21211212...〉 ≡ [21][12],

|...12122121...〉 ≡ [12][21],
(4)|...12120303...〉 ≡ [12][03],

|...21213030...〉 ≡ [21][30].

If the lattice bosons have a charge q, than the quasipar-
ticle/quasihole excitations have a fractional charge ±q/2
[18,20]. In other words, the states (4) have one boson more
or less at two sites where a domain wall is formed. Since the
states (4) have one particle more or less than the ground states,
for a system with a fixed number of particles the elementary
excitations are quasiparticle-quasihole pairs.

We further demonstrate that these fractional domain walls
are non-Abelian SU(2)3 Fibonacci anyons [10], similar to the
elementary excitations of the ν = 12/5 Read-Rezayi fractional
quantum Hall (FQH) state [24,25]. If a fractional domain wall
is a Fibonacci anyon then its quantum dimension is the golden
ratio dF = (1 + √

5)/2 [10,55,56]. The Fibonacci sequence is
a sequence with the property that each number in the sequence
is the sum of the previous two numbers in the sequence. The
non-Abelian anyons with quantum dimension equal to golden
ratio are named Fibonacci anyons because the ratio of any
number in the Fibonacci sequence to the previous number in
the sequence is approximately the golden ratio.

The quantum dimension for these fractional domain walls
can be found by considering an adjacency matrix for the
elementary excitations [55]. We first note that here charge
q/2 and charge −q/2 elementary excitations are topologically
equivalent excitations because they differ by a local operator
[55]. The adjacency matrix can then be obtained by considering
which pairs of ground states create a ±q/2 fractional domain
wall and is given by

A =

⎛
⎜⎝

0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, (5)

where the rows/columns 1,2,3, and 4 refer to the [21],[12],[30],
and [03] ground states, respectively.

The adjacency matrix (5) encodes fusion rules for the
elementary excitations [55,56]

i × j =
∑

k

(Ai)jkk, (6)

where Ai is the adjacency matrix of the quasiparticle i. These
fusion rules determine the number of ways that quasiparticles
i and j can fuse into quasiparticle k. For the Fibonacci anyons
τ the fusion rule is

τ × τ = 1 + τ. (7)

Due to the Fibonacci anyon algebra (7) the ground-state
degeneracy in the presence of n Fibonacci anyon excitations
satisfies the Fibonacci recursion relation [56]

G(n) = G(n − 1) + G(n − 2). (8)

In the large n limit the ground-state degeneracy grows as
[55,56]

log G(n) ∼ n log dF ... (9)

with dF being the Fibonacci anyon quantum dimension that
corresponds to the maximum eigenvalue of the adjacency
matrix (5) [55].

For a m-fold degenerate ground-state manifold the statistics
of anyons can be described by m × m unitary matrices that act
on the ground-state manifold. Since m × m unitary matrices
form a non-Abelian group (matrices A and B generally do not
commute, AB �= BA), these anyons are called non-Abelian
anyons.

In the parameter region where the system supports non-
Abelian elementary excitations the ground-state degeneracy
depends on the topology of the manifold on which the system
is defined. For the lattice filling ν = k/2 the ground state
will be k + 1-fold degenerate for periodic boundary condition
and nondegenerate for open boundary condition. In other
words, the system has nontrivial non-Abelian topological order
reflected in topological ground-state degeneracy [57,58]. We
also note that in general a topologically ordered state has
a quasidegenerate ground state manifold for a finite system
size that becomes exactly degenerate in the thermodynamic
limit. That will be the case away from the exactly solv-
able points (U = 2V , t = 0) as described in the following
section.

III. NUMERICAL RESULTS

To study properties of the system away from the exactly
solvable points (U = 2V , t = 0) we use ED and DMRG
[52–54] methods. Validity of our DMRG results is confirmed
by comparison with the ED results for smaller system sizes
(L � 14 lattice sites).

We primarily study the ground states and low-lying exci-
tations of the system with periodic boundary conditions for
U,V 	 t and for a fixed number of atoms, N = 3L/2. For
such states large occupation of a single site is improbable. This
allows the local Hilbert space truncation to single site Fock
states |ni〉 containing at most n = nmax atoms. For the lattice
filling ν = N/L = 3/2 it is sufficient to take nmax = 3, that is,
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the local Hilbert space of dimension four with ni = 0,1,2,3.
We first demonstrate that there is a parameter region

where the system supports non-Abelian excitations. For
those parameter values all (quasi)degenerate lowest energy
states have a high overlap (
1) with the corresponding
manifold of four ansatz states that have SU(2)3 non-Abelian
topological order by construction. We also show that ele-
mentary excitations above such states exhibit non-Abelian
statistics.

The four non-Abelian ansatz states for the lowest energy,
(quasi)degenerate manifold at filling fraction ν = 3/2 can be
constructed from the two lowest energy, (quasi)degenerate,
Abelian states at filling fraction ν = 1/2, |φ(k)

σ 〉t̄ (k = 1,2), by
orthonormalization of the following wave-functions subspace
[44,45,49,51]:

|ψ (l,m,n)〉(t̄ ,Ū ) = P(|φ(l)
↑ 〉t̄ ⊗ |φ(m)

↓ 〉t̄ ⊗ |φ(n)
◦ 〉t̄ ), (10)

where l,m,n = 1,2 and σ =↑ , ↓ ,◦ denotes three ν = 1/2
copies. The tunneling parameter and the on-site interaction
strength are denoted by t̄ = t/V and Ū = U/V , respectively.

Here the wave functions |φ(k)
σ 〉t̄ (k = 1,2) correspond to the

two lowest energy (quasi)degenerate states of the Hamiltonian

Hσ = −t
∑

i

(a†
σ,iaσ,i+1 + a

†
σ,i+1ai,σ ) + V

∑
i

nσ,inσ,i+1,

(11)

at average filling ν = 1/2 atoms per lattice site and with
periodic boundary conditions, nσ,i = a

†
σ,iaσ,i and a

†
σ,i/aσ,i

are hard-core boson creation/annihilation operators at site
i satisfying (a†

σ,i)
2 = 0 (that is, only allowed occupation

numbers are nσ
i = 0 or 1 bosons per site).

At t = 0 the wave functions |φ(k)
σ 〉t̄=0 (k = 1,2) are two

degenerate CDW states with unit cells [0,1] and [1,0] and
the low energy excitations of the Hamiltonian (11) are ±q/2
fractional domain walls that are Abelian anyons similar to
the quasiparticle and quasihole excitations of the ν = 1/2
Laughlin FQH state [59]. As illustrated in Fig. 1, the states
|φ(k)

σ 〉t̄ (k = 1,2) at some finite value of the parameter t̄ = t/V

are adiabatically connected to the states at t = 0, and therefore
have Abelian topological order.

The projection operator P has the form

P = P⊗L
i , (12)

with L being the number of lattice sites. Here Pi is the local
projection operator at a lattice site i,

Pi =

⎛
⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0

√
2

√
2

√
2 0

0 0 0 0 0 0 0
√

6

⎞
⎟⎟⎠, (13)

Pi maps eight-dimensional Hilbert space of three species
of hard-core bosons, ↑, ↓, and ◦, to the single-site four-
dimensional Hilbert space of four-hardcore bosons that obey
generalized exclusion principle—less than four bosons at any
site i, as illustrated in Fig. 2.

After orthonormalization of the wave-functions subspace
(10) we find four linearly independent ansatz states, denoted
here by |ψ (k)

Ansatz〉(t̄ ,Ū ). The number of linearly independent
ansatz states corresponds to the number of lowest energy,

FIG. 1. The ED results for the first five energy levels of the
Hamiltonian (11) at filling fraction ν = 1/2 and with periodic
boundary conditions, as functions of the tunneling parameter t/V

(with V being the nearest-neighbor interaction) and for the system
sizes L = 10 (red dotted lines), 12 (green dashed lines), and 14 (blue
solid lines) lattice sites. Here the energy values (per lattice site) are
in units of V.

(quasi)degenerate states of the Hamiltonian (1) that form the
ground state manifold of the Hamiltonian (1).

The states |ψ (k)
Ansatz〉(t̄ ,Ū ), (k = 1,2,3,4) form an orthonor-

mal basis within (quasi)degenerate manifold, which leads
to the following expression for the total overlap with
the exact lowest energy (quasi)degenerate states of the
Hamiltonian (1):

Oi,(t̄ ,Ū ) =
√√√√ 4∑

k=1

∣∣
(t̄ ,Ū )

〈
ψ

(i)
Exact

∣∣ψ (k)
Ansatz

〉
(t̄ ,Ū )

∣∣2
, (14)

where i = 1,...,4. The ED results for the overlaps (14) for
the system sizes L = 10,12, and 14 lattice sites are shown
in Fig. 3 and Fig. 4. The figures show overlaps for the four
lowest (quasi)degenerate states (ground state manifold) of
the Hamiltonian (1) for a range of values of the tunneling
parameter t/V and for two values of the on-site interaction
strength, U/V = 2 and U/V = 1.99.

For U = 2V and t = 0 (exactly solvable points) these states
are four degenerate CDWs with unit cells [03], [30], [12], and
[21], and the overlaps are exactly 1. This reflects non-Abelian

FIG. 2. Schematic of the local projection operator Pi at a lattice
site i. The operatorPi projects the three local degrees of freedom ↑, ↓,
and ◦, onto a new degree of freedom that is symmetric under exchange
of any of the three components. In other words, Pi maps the single
site 8-dimensional Hilbert space of three species of hard-core bosons
↑ (red spheres), ↓ (purple spheres), and ◦ (blue spheres) to the single-
site four-dimensional Hilbert space of four-hard-core bosons (green
spheres). These four-hard-core bosons obey generalized exclusion
principle—less than four bosons at any lattice site i.
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FIG. 3. The ED results for the total overlaps (14) of the four
lowest energy, (quasi)degenerate, exact ground states of the Hamil-
tonian (1) at average filling of ν = 3/2 atoms per lattice site and
with periodic boundary conditions [(a)–(d)], with the corresponding
orthonormalized ansatz states. Here t/V is the tunneling parameter
with V being the nearest-neighbor interaction, and the on-site
interaction strength is U/V = 2. The system sizes are L = 10, 12,
and 14 sites (red, green, and blue symbols, respectively).

nature of these states since the ansatz wave functions have non-
Abelian topological order by construction, and is in agreement
with the results discussed in the previous section. However, the
overlaps for all four states are 
1 for a range of values of the
tunneling parameter t/V , both at U = 2V (Fig. 3) and slightly
away from U = 2V (for example for U = 1.99V , Fig. 4).
This indicates non-Abelian nature of the states away from the
exactly solvable points.

Sudden decrease of the overlap, from 
1 to zero, for the
states (b) and (d) in Fig. 3 and Fig. 4, is related to a cross-
ing between the energy levels within the (quasi)degenerate,
ground state manifold, and the energy levels within the
(quasi)degenerate first excited manifold. That can be clearly

FIG. 4. Same as Fig. 3 for the on-site interaction strength U/V =
1.99.

FIG. 5. The ED results for the first ten energy levels of the
Hamiltonian (1) at filling fraction ν = 3/2 and with periodic
boundary conditions, as functions of the tunneling parameter t/V

and for the system sizes (a) L = 12 and (b) L = 14 lattice sites.
Here the on-site interaction strength is U/V = 2, with V being the
nearest-neighbor interaction.

seen in Fig. 5 and Fig. 6. For the states (a) and (c) in Fig. 3 and
Fig. 4 the overlaps start deceasing away from 
1 at some value
of t/V = t̄c(L). The value t̄c is characterized by a crossing
between the energy levels within the (quasi)degenerate, first
excited states manifold, and the energy levels within the
(quasi)degenerate, second excited states manifold. These level
crossings for the system sizes L = 10 and 12 are shown in
Fig. 7.

To confirm the non-Abelian nature of the states for
(t/V ) < t̄c, we further study elementary excitations above the
(quasi)degenerate ground state manifold. By construction, the
ansatz states (10) have a hidden global order associated with
the organization of the particles in three copies of ν = 1/2
states (↑,↓,◦). The elementary excitations can be constructed
by considering the elementary excitations of the three ν =
1/2 copies and symmetrizing [49,51]. Non-Abelian statistics
appears as a consequence of the symmetrization (introduced
with projection operator P) which leads to a topological
degeneracy in the subspace of elementary excitations and
non-Abelian algebra of exchanges of elementary excitations
(domain walls) [51].

The ansatz states for the first excited states manifold can
be constructed by orthonormalization of the following wave-
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FIG. 6. Same as Fig. 5 for the on-site interaction strength U/V =
1.99.

functions subspace [49,51]

|ψ̄ (l,m,n)〉(t̄ ,Ū ) = P(|φ(l)
↑ 〉t̄ ⊗ |φ(m)

↓ 〉t̄ ⊗ |φ̄(n)
◦ 〉t̄ ), (15)

where l,m = 1,2 and n = L(L/2 − 1) with L being the
number of lattice sites. Here the wave functions |φ(k)

σ 〉t̄ (k =
1,2) correspond to the two lowest energy (quasi)degenerate
states of the Hamiltonian (11) at average filling ν = 1/2, and
the wave functions |φ̄(n)

σ 〉t̄ correspond to the states within
the (quasi)degenerate, first excited states manifold of the
Hamiltonian (11) at ν = 1/2.

The elementary excitations of the Hamiltonian (11) at
ν = 1/2 and for a fixed number of particles are ±q/2
domain wall pairs (quasiparticle-quasihole pairs) of the type
[01][10]-[10][01]. The number of states in the first excited
manifold at ν = 1/2, N̄ = L(L/2 − 1) corresponds to the
number of different pairs of sites (i,j ) where the domain
walls can be created. In addition, there are three possible
choices of the two ground states in the ansatz (15): (l = 1,

m = 1), (l = 1,m = 2), and (l = 2,m = 2), which gives in
total N̄L = 3L(L/2 − 1) linearly independent ansatz states
for the first excited states manifold at ν = 3/2. These ansatz
states, denoted by |ψ̄ (k)

Ansatz〉(t̄ ,Ū ) (k = 1,2,...,N̄L), are obtained
after orthonormalization of the wave-function subspace (15).

The total overlap with the exact states within the first
excited, (quasi)degenerate manifold of the Hamiltonian (1)

FIG. 7. The energy levels of the Hamiltonian (1) at average filling
of ν = 3/2 atoms per lattice site, obtained by ED method for the
system sizes L = 10 [(a) and (c)] and L = 12 [(b) and (d)] lattice
sites and with periodic boundary conditions. Here on-site interaction
strength Ū = U/V = 2 [(a) and (b)] and Ū = U/V = 1.99 [(c) and
(d)], with V being the nearest-neighbor interaction. As explained
in the text the system supports Fibonacci anyon excitations in the
regime (t/V ) � 0.05 where (quasi)degenerate energy manifolds are
well defined and there is no level crossing between the states within
different manifolds.

is

Ōī,(t̄ ,Ū ) =
√√√√ N̄L∑

k=1

∣∣
(t̄ ,Ū )

〈
ψ̄

(ī)
Exact

∣∣ψ̄ (k)
Ansatz

〉
(t̄ ,Ū )

∣∣2
, (16)

where ī = 1,...,N̄L denotes the states |ψ̄ (ī)
Exact〉(t̄ ,Ū ) within the

first excited states manifold.

FIG. 8. The ED results for the total overlaps (16) of the
3L(L/2 − 1) exact, (quasi)degenerate states within the first excited
states manifold of the Hamiltonian (1) at average filling of ν = 3/2
and with periodic boundary conditions, with the corresponding
orthonormalized ansatz states. Here t/V is the tunneling parameter
with V being the nearest-neighbor interaction, and the on-site
interaction strength is U/V = 2 [(a) and (b)] and U/V = 1.99
[(c)and (d)]. The system sizes are L = 10 [(a) and (c)] and L = 12
[(b) and (d)] lattice sites.
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The ED results for the overlaps (16) are shown in Fig. 8 for
the system sizes L = 10 and 12. For the values of the tunneling
parameter t/V < t̄c(L,Ū ) the overlaps for all states within the
first excited states manifold are 
1. In other words, away from
the degeneracy point at U = 2V and t = 0, the nature and
fractional charge of the domain walls do not change if t/V <

t̄c(L,Ū ). This is of importance for actual experiments, where
there is always some finite possibility for atoms tunneling
between the lattice sites, and where the values of the on-site
and nearest-neighbor interaction strengths can be tuned away
from U = 2V .

Sudden decrease of the overlap for some of the excited
states at t/V = t̄c(Ū ,L) is related to the energy level crossings
between the states within the first and second excited states
manifolds (Fig. 7). Namely, as pointed out in Ref. [18], moving
away from the degeneracy point, where domain walls do not
interact, introduces interaction between domain walls via a
linear potential. The strength and sign of the potential depends
on the energy splitting between the CDW states that are
degenerate at U = 2V and t = 0. For t/V > t̄c(L,Ū ), some
states with two ±q/2 domain wall pairs are more energetically
favorable than some of the states with one ±q/2 domain wall
pair due to an attractive linear potential between the domain
walls which results in energy level crossings and sudden
decrease of the overlap for some of the states within the first
excited states manifold.

We also note that the overlaps (16) for |ψ̄ (ī)
Exact〉t̄ ,Ū (ī =

1,...,N̄L) taken to be the states adiabatically connected to the
states within the first excited states manifold at t = 0 (the
states with one domain wall pair), also decrease significantly
for some of these states when t/V > t̄c(Ū ,L), as shown
in Fig. 9. In other words, the fractional domain walls do
not have non-Abelian statistics for t/V > t̄c(Ū ,L), after the
crossing between the states within different (quasi)degenerate
manifolds.

In addition, for U < 2V increasing the tunneling strength
t/V induces the first order phase transition from [30] ([03])
to [21] ([12]) CDW state, as demonstrated previously using
the Gutzwiller ansatz wave function [18]. This first order
transition, characterized by an energy level crossing, can be
clearly seen in the fidelity metric [60–70]. If |ψ0(t̄)〉 and
|ψ0(t̄ + δt̄)〉 are two ground states corresponding to slightly
different values of the relevant parameter t̄ = t/V , the fidelity
between these two ground states is defined as the modulus of
the overlap between the two states:

F (t̄ ,t̄ + δt̄) = |〈ψ0(t̄ + δt̄)|ψ0(t̄)〉|. (17)

The fidelity (17) can further be rewritten as

F (t̄ ,t̄ + δt̄) = 1 − (δt̄)2

2
χF (t̄) + ..., (18)

where χF (t̄) is the fidelity susceptibility,

χF (t̄) = − lim
δt̄→0

2 ln F (t̄ + δt̄)

(δt̄)2
= −∂2F (t̄ + δt̄)

∂(δt̄)2
. (19)

The first order transition between two different CDW states
is characterized by a singular peak in the fidelity susceptibility.
Namely, since the overlap measures similarity between two
states, it equals to one if two states are the same and zero if
the states are orthogonal. Consequently, the fidelity shows a

FIG. 9. The overlaps (16) for |ψ̄ (ī)
Exact〉t̄ ,Ū (ī = 1,...,N̄L) taken to

be the states adiabatically connected to the states within the first
excited states manifold at t = 0 (the states with one domain wall pair)
and for the system size L = 10 lattice sites with periodic boundary
conditions. Here the on-site interaction strength is (a) U/V = 2 and
(b) U/V = 1.99, with V being the nearest-neighbor interaction.

very sharp decrease at points where there is a level crossing
between two orthogonal states, and decrease in the fidelity
corresponds to a singular peak in the fidelity susceptibility.
This singular peak can be clearly seen in Fig. 10 at t/V =
t̄CDW−CDW (Ū ,L) corresponding to the value of the tunneling
parameter t/V where there is an energy level crossing within
the (quasi)degenerate ground-state manifold (Fig. 6).

Further increase of the value of the tunneling strength t/V

leads to a CDW to SF quantum phase transition of the BKT
type, as will be described in more details in the following
section. This phase transition is characterized by a broader
peak in the fidelity susceptibility which becomes sharper and
sharper as the system size increases. This is clearly visible in
Figs. 10, 11, and 12.

The transition is related to a level crossing between the
states in the lowest energy, (quasi)degenerate manifold and
the states within the first excited, (quasi)degenerate manifold
at t/V = t̄CDW−SF (Ū ,L). The level crossings can be clearly
seen in Fig. 5 and Fig. 6 at values of t/V which coincide with
the positions of the broader peaks in the fidelity susceptibility.

Our results thus demonstrate that the system undergoes a
direct, BKT, CDW to SF quantum phase transition without
intermediate SS phases between the CDW and SF regions
of the phase diagram. This is in contrast with the results
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FIG. 10. The fidelity susceptibility χF (19) as a function of the
tunneling parameter t/V , obtained by ED method for the system
sizes L = 10, 12, and 14 lattice sites and with periodic boundary
conditions. Here the average filling is ν = 3/2 atoms per lattice site
and the on-site interaction strength is (a) U/V = 2 and (b) U/V =
1.99, with V being the nearest-neighbor interaction.

obtained previously within the Gutzwiller-ansatz wave func-
tion approach [18]. Namely, previous results predicted two
different SS phases, SS1 and SS2, separating CDW and SS
regions of the phase diagram for U = 1.99V . These SS phases
are partially melted CDW phases, with SS1 and SS2 having
different underlying CDW orders. The Gutzwiller-ansatz wave
function calculations [18] also predict CDW to SS1 and SS1
to SS2 transitions to be first order transitions, and SS2 to SF
transition to be a second order transition. If SS phases were
present in the phase diagram, these transitions would be clearly
visible in the fidelity susceptibility. However, we do not find
any signatures of such transitions and SS phases in our ED and
DMRG results.

We also note that the Gutzwiller-ansatz wave function
calculations were performed with the local Hilbert space
truncation to single site Fock states |ni〉 with at most ntr = 30
atoms at each lattice site (0 � ni � ntr), while our ED and
DMRG calculations were performed with ntr = 3. To check
that increasing the truncation number ntr does not change
qualitatively our results close to the CDW to SF transition,
we have performed additional calculations with ntr = 10 and
ntr = 15. The results, shown in Fig. 11 clearly demonstrate that
increasing the truncation number ntr introduces only minor
changes in the numerical values for the fidelity susceptibility

FIG. 11. The ED and DMRG results for the fidelity susceptibility
χF (19) as a function of the tunneling parameter t/V , for the system
size L = 14 lattice sites and with periodic boundary conditions, the
average filling ν = 3/2 atoms per lattice site, and with the local
Hilbert space truncation to single site Fock states with at most ntr = 3,
10, and 15 atoms at each lattice site. Here the on-site interaction
strength is (a) U/V = 2 and (b) U/V = 1.99, with V being the
nearest neighbor interaction.

FIG. 12. The DMRG results for the fidelity susceptibility χF (19)
as a function of the tunneling parameter t/V , for the system sizes
L = 40–124 lattice sites and with periodic boundary conditions, the
average filling ν = 3/2 atoms per lattice site, and with the local
Hilbert space truncation to single site Fock states with at most ntr = 4
atoms at each lattice site. Here the on-site interaction strength is
U/V = 2 with V being the nearest-neighbor interaction.
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and does not change our results qualitatively. We have also
additionally verified that increasing the truncation number
ntr to ntr � 10 introduces only minor changes in our DMRG
results for larger system sizes.

IV. SUPERFLUID TO CHARGE-DENSITY-WAVE
QUANTUM PHASE TRANSITION

To further describe the SF to CDW quantum phase
transition we calculate the density-density structure factor at
wave number k = π

Sπ = 1

N2

L∑
i,j=1

eiπ(i−j )〈ninj 〉, (20)

the single particle correlation function

�(|i − j |) = 〈a†
i aj 〉, (21)

and the associated system-size-dependent correlation length

ξL =
√√√√

∑L/2
i,j=1(i − j )2〈a†

i aj 〉∑L/2
i,j=1〈a†

i aj 〉
, (22)

for the system with L sites and N bosons and with periodic
boundary conditions.

We also calculate the von-Neumann block entanglement
entropy

SL(l) = −Tr[ρl ln ρl], (23)

where ρl is the reduced density matrix for the block of length
l. From 1 + 1 dimensional conformal field theory [71,72]
it follows that the von Neumann entanglement entropy at a
critical point has the form

SL(l) = c

3
ln

[
L

π
sin

(
πl

L

)]
+ s1 (24)

for a system with periodic boundary conditions, with s1 being a
nonuniversal constant and c the central charge of the associated
conformal field theory (CFT). Since DMRG calculations give
the most precise data for SL(l) when l = L/2 [72,73], the most
suited relation to determine the central charge is

c∗(L) ≡ 3[SL(L/2 − 1) − SL(L/2)]

ln [cos(π/L)]
, (25)

where c∗ = c when the system is critical. The central charge
provides definitive information about the universality class of a
(1 + 1)-dimensional system [74]. Our results show that c = 1
in the SF regime, where the low energy effective theory for
the system, obtained by the Abelian bosonization [75], is the
Tomonaga-Luttinger-liquid (TLL) Hamiltonian [76]. Within
the non-Abelian bosonization [77] the low energy theory of
the SF phase is the Wess-Zumino-Witten (WZW) theory with
topological coupling k = 1 (SU (2)1 WZW theory) [78] and the
conformal anomaly parameter (central charge) c = 3k/(2 +
k) = 1 [78].

The central charge can also be used to determine the
critical point between TLL and gapped (or ordered) phases
[73]. Namely the critical point corresponds to the maximum
of c∗ (25) as a function of t/V [73]. The position of the
maximum point, (t/V )c, is independent of the system size

FIG. 13. The DMRG results for the central charge c∗ (25) as a
function of the tunneling parameter t/V for several system sizes L

and with periodic boundary conditions. Here the on-site interaction
strength is U/V = 2 with V being the nearest-neighbor interaction.

for the model that we have considered (Fig. 13). A similar
result was obtained for 1D half-filled spinless fermions with
nearest-neighbor repulsion [73].

Our DMRG [54] results show that (t/V )c ≈ 0.162 (Fig. 13)
for U/V = 2. On the right-hand side of the maximum point c∗
approaches the value c = 1 with increasing system size, and
c∗ → 0 for the CDW gapped phase. In the DMRG calculations
of the central charge dimensions of the matrices in the matrix
product state (MPS) wave function were taken to be up to 2200
and ntr = 4.

To further characterize the nature of the SF to CDW
quantum phase transition we consider the finite-size scaling of
the fidelity susceptibility. Within the non-Abelian bosonization
approach it was shown that the fidelity susceptibility in the
vicinity of a BKT transition has the following logarithmic
finite-size scaling [79]

χL 
 χ0 − χ1

ln(L/a)
+ O

[
1

ln2(L/a)

]
, (26)

where a is the lattice cutoff. Also, the finite-size dependence
of the peak position in the fidelity susceptibility, that signals
the BKT transition, has the following form

t̄c 
 A + B/ ln2(L/a) + · · · , (27)

which can be obtained using scaling arguments on the gapped
side of the BKT transition [79]. Here t̄ = t/V . We fit our
DMRG data for the fidelity susceptibility to these predicted
finite size-scaling behaviors, and the results of these fits
demonstrate good agreement with the theory (Fig. 14). This
confirms that the SF to CDW quantum phase transition is of
the BKT type.

We also point out that t̄c(L → ∞) = A = 0.158 ± 0.004
which is consistent (within the error bars) with the value of
t̄c ≈ 0.162 obtained from the central charge. We have also
studied the scaling of the energy gap in the vicinity of the
transition [80]. The estimated transition point is then t̄c(L →
∞) = 0.16 ± 0.004 in agreement with t̄c obtained from the
fidelity susceptibility studies.

We finally calculate the structure factor (20) close to the
SF to CDW quantum phase transition to show that there is
a direct phase transition from the SF to CDW phase. The
nonzero structure factor characterizes the crystalline order,
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FIG. 14. The finite-size scaling of the peak position t̄c and
amplitude χL(t̄c) of the fidelity susceptibility. The lines correspond
to fits (26) and (27), where A ≈ 0.158, B ≈ −0.39, χ0 ≈ 37.5,
and χ1 ≈ −94.2. The data are for the system sizes L = 20–124
lattice sites and with periodic boundary conditions. Here the on-site
interaction strength is U/V = 2 with V being the nearest-neighbor
interaction.

and in the case of direct transition from the SF phase has the
form Sπ ∼ ξγ/ν�(ξ/L) close to the transition [81,82], where
� is a scaling function. For the case of a direct transition the
structure factor is governed by the correlation length ξ that
characterizes SF order and diverges in the SF phase [81,82],
which results in the mentioned form of the structure factor
close to the transition.

Also, the functional form of the structure factor can-
not be transformed to a power law behavior depending
on t/V since the correlation length diverges like ξ ∝
exp(const./

√
(t/V )c − (t/V )) at BKT type transition. Our

results for the structure factor are shown in Fig. 15 and
confirm that there is a direct SF to CDW transition without

FIG. 15. The structure factor Sπ as a function 1/ξ , where ξ is the
correlation length, at the BKT transition of the CDW phase (t/V ≈
0.158). The slope is ≈−0.78 and Sπ ∝ ξ−0.78. The data are for the
system sizes L = 20–124 lattice sites and with periodic boundary
conditions. Here the on-site interaction strength is U/V = 2 with V

being the nearest-neighbor interaction.

FIG. 16. Schematic demonstration how local changes in the
chemical potential can create robust SU(2)3 Fibonacci anyon frac-
tional domain walls which appear in a ground state configuration of
the system, as suggested previously in Ref. [18].

intermediate normal or supersolid phases. This is in agreement
with previous results found by other authors [21].

V. PROTOCOL FOR BRAIDING FRACTIONAL
DOMAIN WALLS

In order to use described fractional domain walls for
quantum computation, that is to realize topological quantum
gates, one needs to engineer states with robust fractional
domain walls in a geometry where these domain walls can
be interchanged in a controlled way (braided). To have robust
fractional domain walls it is necessary to achieve that these
domain walls appear in a ground state configuration of the
system. For a fixed filling fraction this can be achieved by
locally varying the chemical potential [18] as illustrated in
Fig. 16.

Namely, starting from the unperturbed initial configuration,
increasing/decreasing the chemical potential on two neigh-
boring sites creates +q/2/ − q/2 fractional domain walls
[18]. The domain walls illustrated in Fig. 16 are SU(2)3

Fibonacci anyons similar to elementary excitations of the
bosonic Read-Rezayi state [18,25,27]

ψRR = S

⎛
⎝ N/k∏

i1<j1

(zi1 − zj1 )2...

N/k∏
ik<jk

(zik − zjk
)2

⎞
⎠

N∏
i<j

(zi − zj )Me−(1/4)
∑

i |zi |2 , (28)

085102-10



FIBONACCI ANYON EXCITATIONS OF ONE- . . . PHYSICAL REVIEW B 95, 085102 (2017)

FIG. 17. A T junction which allows adiabatic exchange of two
fractional domain walls. In each step of adiabatic exchange a dashed
line represents a part of the junction which is disconnected from the
part of the junction represented by a solid line. Position of a domain
wall on a 1D lattice represented by a solid line can be changed by
an adiabatic change of the local chemical potential at corresponding
sites of the initial and final positions of the domain wall (Fig. 16).

with k = 3 and M = 0 and where S denotes symmetrization
over possible divisions of the atoms into k clusters of the same
size.

The adiabatic exchange (braiding) of the fractional domain
walls is not possible in the strictly 1D system that we have
considered. Therefore, to achieve controlled interchange of
these non-Abelian defects, and realize topological quantum
gates, several such 1D atomic quantum wires need to be com-
bined into a 2D network where 1D wires are connected with
T junctions, as proposed previously for Majorana quantum
wires [19]. A T junction which allows adiabatic exchange of
two fractional domain walls is illustrated in Fig. 17. A part
of the T junction which does not contain domain walls can
be connected to or disconnected from the part of the junction
with two domain walls by adiabatically switching on or off the
tunneling between the neighboring sites of the two parts of the
junction.

In Fig. 17 a part of the junction that is disconnected from
the rest of the junction in each step of the adiabatic exchange
of two fractional domain walls is represented by a dashed line.
A part of the junction which contains two domain walls is
represented in each step by a solid line. Position of a domain
wall on a 1D lattice represented by a solid line can be changed
by an adiabatic change of the local chemical potential at
corresponding sites of the initial and final positions of the
domain wall (for example in the step from 1 to 2 in Fig. 17).

We also point out that braiding of fractional domain walls
in a T-junction network requires only a few local operations
on relevant sites where the local chemical potential and the
tunneling strength between the two nearest-neighboring sites

needs to be adiabatically changed in each step of the adiabatic
exchange of these non-Abelian defects.

These adiabatic changes of the local chemical potential and
the tunneling strength between the two nearest-neighboring
sites can be achieved experimentally by using local site
addressing tools available in current experiments with cold
atoms and molecules [83–85]. In cold atom experiments these
local operations can be realized in a controllable way by
changing the intensity of tightly focused laser fields on the
corresponding site or link [83–85].

VI. CONCLUSIONS

We have studied low energy properties of a system of
dipolar lattice bosons trapped in a 1D optical lattice and at
average filling ν = 3/2 atoms per lattice site. The system
can be described by an extended Bose-Hubbard Hamiltonian
with the on-site and nearest-neighbor interactions. Using ED
and DMRG methods we have identified a region of the phase
diagram where the system supports SU(2)3 Fibonacci anyon
excitations. The SU(2)3 non-Abelian topological order of the
exact wave functions of the Hamiltonian was demonstrated by
calculating the overlaps with the ansatz wave functions which
have SU(2)3 topological order by construction.

Contrary to previous results obtained within the Gutzwiller
ansatz wave-function approach [18], our ED and DMRG
results demonstrated that for an average filling of 3/2 the
system undergoes a direct, BKT, CDW to SF quantum phase
transition when the tunneling strength between the nearest-
neighboring sites of the lattice is increased above a certain
critical value. We do not find any signatures of the SS phases
in the phase diagram of the system, found in Ref. [18] to
appear between CDW and SF regions in the parameter space.
However, the SS phases are predicted to appear at higher filling
fractions [21].

We have also discussed a protocol which would allow
creation of robust SU(2)3 fractional domain walls in a ground
state configuration of the system and their controlled adiabatic
interchange (braiding), with potential application for fault
tolerant, universal, topological quantum computation. The
domain walls can be introduced in a ground state of the system
by changing the local chemical potential on certain lattice sites
[18], and braiding can be achieved by combining 1D atomic
quantum wires into a 2D network where the 1D wires are
connected with T junctions, as previously proposed in the
context of Majorana quantum wires [19]. Both creation and
braiding of such domain walls are achievable with local site
addressing tools available in current cold atom experiments
[83–85].
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