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Fermi arcs formation in Weyl semimetals: The key role of intervalley interaction
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We propose an analytical model describing Fermi arc surface states observed in the recent investigations of
Weyl semimetals. The effective two-valley Hamiltonian is supplemented by the boundary conditions taking into
account both the intravalley and intervalley interfacial interactions. We demonstrate that the latter is crucial for
the formation of the surface states having the form consistent with the experimental data. Depending on the
magnitude and interplay between the intravalley and intervalley interactions, the Fermi arc connects two nearby
or distant valleys. Moreover, the emergence of additional Fermi contours (closed curves not intersecting the Weyl
points) can be understood in the simplest four-valley approximation. These results open up opportunities for
searching new effects in Weyl semimetals under an external field.
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Weyl semimetals have attracted considerable attention
recently as they extend the topological classification of matter
beyond the insulators and demonstrate exotic surface states.
The conduction and valence electron bands in these materials
touch each other at special points of the Brillouin zone (BZ),
called Weyl points, and the spectrum of quasiparticles is linear
near these points. The stability of a Weyl point, which is the
topological object due to a monopolelike structure of the Berry
curvature, can be quantified by the corresponding chiral charge
of this point [1].

Weyl semimetals demonstrate unusual surface states, the
so-called Fermi arcs, whose Fermi contours take the form of
arcs connecting two projections of the bulk Weyl points with
the opposite chiral charges in the surface BZ [2]. The nontrivial
topology of the Berry curvature also guarantees the existence
of Fermi arcs. Fermi arc states can lead to a new type of
quantum oscillations due to a peculiar path of electrons in real
and momentum space under an external magnetic field [3], spin
polarization textures [4], and unusual quantum interference
effects in tunneling spectroscopies [5]. During the past few
years, Weyl semimetals were intensively studied theoretically
[2,6–13], and recently both the surface Fermi arcs and the
bulk cones have been experimentally observed in the Weyl
semimetals TaAs and NbAs [14–17].

Even in the single-valley approximation the surface states
in Weyl semimetals can be quite peculiar: band bending near
the crystal boundary gives rise to a spiral structure of its Fermi
contours [18]. Li and Andreev in Ref. [18] suggested that
the Fermi arc may be understood in terms of the avoided
crossing of two spirals belonging to the close valleys. However,
according to the experimental data [14–17], the filling of both
the bulk and the surface states terminates near the neutrality
point, thus significant band bending is hardly present. Despite
the fact that first-principles calculations show the existence
of the Fermi arc surface states in TaAs and NbAs [13,15,19]
and these states were experimentally observed [14–17], there
still exists no simple analytical model of the Fermi arcs not
relying on additional mechanisms and taking into account
only the nontrivial topology of Weyl semimetals and sharp
discontinuity of the crystal potential at the sample surface.

In this Rapid Communication, we propose such a model.
The bulk spectrum with two Weyl points is described by the

effective two-valley kp Hamiltonian. To describe the surface
states, the Hamiltonian must be considered together with
the boundary conditions on the sample surface. We derive
the boundary conditions from general physical requirements.
Previously, such approach was successfully applied to the
description of the surface states in the materials with Dirac
spectrum [20], graphene [21–26], and topological insulators
[27,28]. Both the intravalley and intervalley interactions
arising due to the atomically sharp interfacial potential are
taken into consideration. Next, we analyze the surface states
spectra. In the case of noninteracting valleys, the Fermi
contours take the form of rays which can either intersect or not
(see Fig. 1). In the latter case, the presence of the intervalley
interaction above some threshold value leads to the linking of
the rays with the Fermi arcs formation, as shown in Fig. 2(a).
In the former case, the rays repel at the crossing point due
to the intervalley interaction also forming the Fermi arcs [see
Fig. 3(a)]. The Fermi contours which do not form arcs in
the two-valley approximation can nevertheless connect two
remote valleys. We consider this possibility qualitatively in
the four-valley approximation.

We start with the two-valley approximation in which the
electron wave function with the energy E obeys the Dirac-like
equation(

σ (p̂ + p0) �σx

�σx −σ (p̂ − p0)

)(
ψ

φ

)
= E

(
ψ

φ

)
, (1)

where ψ = (ψ1,ψ2)T , φ = (φ1,φ2)T are the two-component
pseudospinors, p = (p̂x,p̂y,p̂z) is the momentum operator,
σ = (σx,σy,σz) is the set of Pauli matrices, � characterizes
the intervalley interaction in the bulk, and p0 = (p0,0,0)
determines the position of the Weyl points without the bulk
intervalley interaction. We assume the Weyl velocity to be
v = 1.

We consider the semi-infinite (z � 0) system and introduce
the boundary condition in the following form:

(ψ + iĝφ)|z=0 = 0, (2)

where ĝ is an unknown matrix. Our next goal is to find
the matrix ĝ. The first constraint on it is imposed by the
requirement of the Hamiltonian Hermiticity in the bounded
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FIG. 1. The sketches of the (001) surface states’ Fermi contours
at E = 0 in the absence of the intervalley interaction (γ = 0) for
different intravalley boundary parameters α. The blue dots are the
projections of the bulk Weyl points.

region. Using this requirement we obtain the following
boundary condition for arbitrary effective wave functions:

(ψ†
λσnψν − φ

†
λσnφν)|z=0 = 0, (3)

where n is the unit vector normal to the boundary z = 0.
Combining it with (2), we obtain g+σng = σn.

To further reduce the number of parameters in g, we use
additional symmetry arguments. If only two closed valleys
connected by the Fermi arc are considered, then the experi-
mentally observed spectra of both the bulk and surface states
are symmetric with respect to the inversion px → −px or
py → −py , depending on the location of the valleys [14,15].
For the chosen position of the valleys, we assume the symmetry
x → −x to be present in the system. Due to the fact that the
operator Î corresponding to this symmetry commutes with the
Hamiltonian, i.e., [Ĥ ,Î ] = 0, it takes the form

Î =
(

0 σx

σx 0

)
îx→−x, (4)

where îx→−x is the operator of the replacement of x to −x.
The boundary condition (2) must be symmetric with respect
to the transformation Î , thus σxg

−1σx = −g.
Combining the two constraints for the matrix g, we write it

down in the form

g(α,γ ) = i√
γ

(
e−iα ∓i

√
1 − γ

±i
√

1 − γ eiα

)
, (5)

where α ∈ [0,2π ) and γ ∈ (0,1) are two phenomenological
parameters depending on the bulk band structure as well as
on the microscopic structure of the interface. Our boundary
condition differs from that derived in Ref. [18]. The values
of the boundary parameters can be extracted from comparison
with experiments, as was done for the edge states in graphene
[29]. The transition from the boundary condition where g is
taken with the upper sign to the boundary condition with the
lower sign is realized by shifting α by π . Further, for certainty

we consider only the upper sign in g, because α is a free
parameter.

In the limiting case γ → 0, the wave functions in the
different valleys are decoupled, and we obtain the single-valley
boundary conditions in the following form:

(φ1 + ei(α−π/2)φ2)|z=0 = 0, (6)

(ψ1 + e−i(α−π/2)ψ2)|z=0 = 0. (7)

We conclude that the parameter α determines the surface
state spectrum in the isolated valleys, while γ characterizes
the interfacial intervalley interaction. The boundary condition
similar to (6) was already derived in the single-valley approx-
imation [18,30]. However, in such approach the intravalley
boundary parameter in one valley is generally different from
the parameter in the other. We show that these parameters are
not independent.

Now we obtain the (001) surface states spectra. There are
two mechanisms of the intervalley interaction: bulk (described
by �) and interfacial (characterized by γ ). The bulk valley
coupling itself does not lead to the formation of a Fermi
arc. Aiming to analyze the influence of the abrupt (in the
atomic scale) interfacial potential we neglect �. Substituting
the solution of Eq. (1) with � = 0 into the boundary condition
(2) with the matrix g satisfying (5), we obtain the system of
dispersion equations

√
1 − γ [E(h̄κ− − h̄κ+) + 2pxpy]

− cos α[2Epx + (h̄κ− − h̄κ+)py]

+ sin α[h̄κ+(px − p0) + h̄κ−(px + p0)] = 0, (8)

√
1 − γ

(
E2 + h̄2κ−κ+ − p2

x + p2
0 + p2

y

)
− cos α[2Epy + h̄κ+(px − p0) − h̄κ−(px + p0)]

+ sin α[2Ep0 + (h̄κ+ + h̄κ−)py] = 0, (9)

where h̄κ± =
√

(p ± p0)2 − E2.
It is more illustrative to analyze not the spectrum, but the

surface states’ Fermi contours at different energies. First, we
consider in detail the zero energy Fermi surfaces. We introduce
the elliptic coordinates

px = p0 cosh u cos v, py = p0 sinh u sin v. (10)

The system (8)-(9) is equivalent to one equation,

sin v(
√

1 − γ cosh u + cos α) = − sin α sinh u, (11)

which couples the parameters u and v.
If γ = 0, which corresponds to the absence of the interval-

ley interaction, the Fermi contours of the surface states are
the rays emanating from the projections of the bulk Weyl
points on the surface BZ. The relative orientation of the
rays depends on the intravalley boundary parameter α (see
Fig. 1).

If the intervalley interaction is taken into account, the sur-
face states’ Fermi contours can be introduced parametrically.
In the case

√
1 − γ cosh u + cos α �= 0, the parameter v is

expressed via u from (11).
If α �= π and

√
1 − γ �= − cos α, all solutions are given

by Eq. (10), where v is determined by (11) and u is a free
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FIG. 2. (a) The evolution of the (001) surface states’ Fermi
contours as a function of the intervalley interaction γ for the fixed
intravalley parameter α corresponding to not intersecting rays (see
Fig. 1) in the limit γ = 0. The empty and solid blue circles show the
projections of the bulk Weyl points with the opposite chiral charges.
(b) The modification of the Fermi arc with varying energy. Here the
blue circles are the projections of the bulk Weyl cones and Weyl
points.

parameter. In the case α = π , apart from the solu-
tions with v from (11), there exists an extra solution
px = p0 cos v/

√
1 − γ , py = p0 sin v

√
γ /(1 − γ ), where v ∈

[0,2π ); if
√

1 − γ = − cos α the extra solution is px =
p0 cos v, py = 0, v ∈ [0,2π ).

The Fermi surfaces are presented in Figs. 2(a) and 3(a).
In Fig. 2(a) the intravalley boundary parameter α corresponds
to the case when in the absence of the intervalley interaction
the rays do not intersect (cos α � 0). Next, the modification
of the Fermi surfaces’ shape with increasing the intervalley
interaction γ is shown. The Fermi contours merge with each
other forming the Fermi arc at γ > cos2 α. The Fermi arcs
of such kind have been experimentally observed recently in
several Weyl semimetals [14,15,17].

In Fig. 3(a) the rays have the crossing point at px = 0
if γ = 0. The introduction of an arbitrarily weak intervalley
interaction leads to the anticrossing of the rays with the
formation of two branches, one of which is the Fermi arc
connecting two Weyl points.

Comparing our Eqs. (10) and (11) with the experimental
data presented in Fig. 3(b) of Ref. [17], where two Fermi
arcs connect two pairs of valleys with different kz, we obtain
the following values of the boundary parameters: α ≈ 5.64
radians, γ ≈ 0.88 for the larger Fermi arc and α ≈ 5 radians,
γ ≈ 0.44 for the smaller one.

FIG. 3. (a) The (001) surface states’ Fermi contours depending
on the intervalley interaction γ at fixed α, for which the Fermi rays
have the crossing point in the limit γ = 0. (b) The evolution of the
(001) surface states’ Fermi surfaces with varying energy E.

In the case of nonzero energy, the Fermi surfaces can
be obtained from simultaneous solution of (8) and (9). The
dependencies of the Fermi arcs’ shape on the energy for
different boundary parameters are presented in Figs. 2(b)
and 3(b).

In the two-valley approximation, apart from the Fermi
arclike solutions, there exist some decoupled Fermi surfaces.
The solutions which do not form an arc connecting two close
valleys also appear in the numerical simulations [13,19]. These
uncoupled solutions emerge because we considered only two
valleys located near the BZ center. In real materials the number
of Weyl points is greater than two, and these points can be
located close to the BZ edges [14–17,19]. For this reason, the
constant-energy curve emanating at one of the Weyl points
can terminate at the Weyl point located in another edge of BZ.
To demonstrate such possibility qualitatively, we consider the
model with two pairs of valleys located in the opposite edges
of BZ:

Ĥ =

⎛
⎜⎝

σ (p̂ + p1) 0 0 0
0 −σ (p̂ − p2) 0 0
0 0 −σ (p̂ + p2) 0
0 0 0 σ (p̂ − p1)

⎞
⎟⎠,

(12)

where p1 = (p0x, − p0y,0), p2 = (p0x,p0y,0), p0x � p0y .
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FIG. 4. The schematic view of the mutual orientation of the Fermi
contours at E = 0 in four-valley approximation.

The system is symmetric with respect to the inversions
x → −x and y → −y; the operators of the corresponding
transformations are

Îx =
(

I1 0
0 I1

)
îx→−x, I1 =

(
0 σx

σx 0

)
, (13)

Îy =
(

0 I2

I2 0

)
îy→−y, I2 =

(
σy 0
0 σy

)
. (14)

Exploiting the relation p0x � p0y , we assume that the
boundary condition mixes the envelope functions in each
pair of valleys, but does not mix functions of different pairs,
i.e.,

(ψ + iĝ1φ)|z=0 = 0, (ψ ′ + iĝ2φ
′)|z=0 = 0, (15)

where ψ , φ, ψ ′, and φ′ are the two-component pseudospinors
corresponding to the valleys, for which Weyl points are located
at −p1, p2, −p2, and p1, respectively.

From the requirement of the Hermiticity in the half-space
and symmetry with respect to the inversion x → −x, it follows
that g1 = g(α,γ ), g2 = g(α′,γ ′). Using the symmetry with
respect to the inversion y → −y we obtain α′ = −α, γ ′ = γ .
The possible mutual orientations of the Fermi surfaces are
shown in Fig. 4. Depending on the position of the Weyl points
in BZ and the value of the boundary parameters, the rays which
do not form a Fermi arc in the two-valley approximation can
interact in different ways. We note that the kp approximation is
valid just in the vicinity of Weyl points, and the demonstrated
Fermi arcs in the whole BZ can be considered as schematic
only. If α belongs to the second or third quadrant, then for each
pair of valleys there exists an unclosed branch, which does not
pass through the projections of the Weyl points. Such branches
can also interact in different ways forming the closed curve not
intersecting the Weyl points. These extra Fermi surfaces reflect
how the Weyl points can annihilate during the transition from
trivial to topological insulator (for details, see Ref. [13]).

Besides Weyl semimetals with pointlike Fermi surfaces
(type I) there exist type II Weyl semimetals with strongly tilted
Weyl cones [31]. It was shown recently that such semimetals
demonstrate not only topological, but also trivial Fermi arcs
[32]. Our results are not directly applicable to type II Weyl
semimetals, because the latter are described by a more general
Hamiltonian containing a unit matrix in addition to Pauli
matrices [31]. However, using the same methods one can derive
the boundary conditions and surface states spectra for the type
II case. We anticipate that such model would describe both
topological and trivial Fermi arcs, but this is a subject for
further studies.

In conclusion, we have developed an analytical model
demonstrating the key role of the intervalley interactions in
the formation of Fermi arc surface states in type I Weyl
semimetals. We have obtained the general boundary condition
for the effective wave functions on the surface of a Weyl
semimetal in the two-valley approximation. It contains two
real phenomenological parameters. One describes the intraval-
ley and the other one describes the intervalley interfacial
interaction. We show that the shape and connectivity of the
surface states are determined by the interplay between these
parameters. The interaction between two pairs of valleys has
been qualitatively analyzed in the four-valley approximation.
Our continuum model can be easily generalized for the
presence of electric, magnetic, etc., fields, and drastically
simplifies the analysis of their effect on the properties of Weyl
semimetals.

This work is supported by the Russian Science Foundation
(Project No. 16-12-10411).
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