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One-step model of photoemission from single-crystal surfaces
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In this paper, we present a three-dimensional one-step photoemission model that can be used to calculate the
quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces
close to the photoemission threshold. Using Ag(111) as an example, we show that the model can not only
calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also
provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction
with other band structure and wave function calculation techniques can be effectively used to screen single-crystal
photoemitters for use as electron sources for particle accelerator and ultrafast electron diffraction applications.
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I. INTRODUCTION

Over the past few decades photoemission based tools
such as photoelectron spectroscopy (PES) and angle-resolved
photoelectron spectroscopy have proven extremely successful
in studying the chemical and electronic structure of solid
state materials and surfaces [1]. As a result, physics of the
photoemission phenomena has been well investigated with
regard to explaining the angle-resolved electron energy spectra
obtained using UV and x-ray light sources.

More recently, photoemission has gained popularity as
a source of electrons for several applications such as free
electron lasers (FELs) [2] and ultrafast electron diffraction
(UED) [3] experiments. The quantum efficiency (QE) and the
transverse (to the normal on the photoemission surface) mo-
mentum spread or the rms transverse momentum are the most
critical figures of merit of the photoemission based electron
sources (or photocathodes) that limit the performance of such
applications [4]. For example, the transverse coherence length
of the electron beam in UED which limits the largest lattice
size that can be studied is inversely proportional to the rms
transverse momentum of electrons emitted from the cathode
[5]. The transverse momentum spread also limits the smallest
possible electron beam emittance which defines the shortest
possible lasing wavelength of an FEL [6]. The QE determines
the drive laser power needed to obtain the electron bunch
charge required for the particular application; a low QE can
imply high drive laser power often making the drive laser
system prohibitively complex and expensive [7]. High drive
laser power can also limit the smallest possible rms transverse
momentum through ultrafast laser heating of the electron gas
[8]. Hence a high QE is required.

Despite the technological importance of solid state photoe-
mission as an electron source, the physics that governs the
relevant photoemission properties of QE and rms transverse
momentum is not well understood. Spicer followed the three-
step model to first calculate the electron yield from silver
and copper surfaces [9]. The first theories to model the rms

transverse momentum from photocathodes were formulated by
Flottmann [10] and by Jensen et al. [11] and followed a three-
step photoemission model. Dowell and Schmerge refined these
theories and put them on a better foundation [12]. The Dowell
and Schmerge formulation successfully explained the QE and
rms transverse momentum obtained from polycrystalline or
disordered cathodes but did not model photoemission very
close to the threshold accurately. An extension to this theory
was developed recently, to model photoemission near the
threshold [13]. It showed that the smallest possible rms trans-
verse momentum from polycrystalline surfaces is thermally
limited by the temperature of the lattice. However these models
did not include the effects of band structure, polarization,
and angle of incident light (the vectorial photoelectric effect
[14,15]) and did not model emission from single-crystal
surfaces of metals. A technique to estimate the rms transverse
momentum spread from single-crystal faces of metal cathodes
using the band structure calculated from density functional
theory was developed by Li et al. [16]. However, this technique
does not estimate the QE and assumes uniform probability of
photoemission from any given electron state which is generally
not true.

In this paper, we present a scheme to calculate the QE
and transverse momentum spread accurately using an one-step
photoemission model. Our model is a three-dimensional (3D)
expansion of the one-dimensional (1D) photoemission model
developed by Miller et al. [17,18] to explain ultraviolet
photoemission spectra obtained from single-crystal surfaces
of noble metals. Photoemission is modeled as a one-step
process of the transition of electrons from the initial bulk or
surface state (ss) inside the metal to a time-reversed low-energy
electron-diffraction (LEED) -like free electron state under the
influence of the electromagnetic field of the incident light. We
obtain the rate of such a transition using the Fermi golden
rule to calculate the QE and the rms transverse momentum
of emitted electrons. This photoemission model takes into
account the effects of band structure, polarization, and angle
of incident light.
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Using the (111) surface of silver as an example, we show
that our model predicts the QE near threshold accurately and
explains the effects of polarization of incident light and angle
of incidence quantitatively. We show that the emission from
an Ag(111) surface at threshold, at an angle of incidence
near 60◦ is dominated by the electrons emitted from the
Shockley surface state [19] resulting in a QE of greater than
5 × 10−5 very close to the photoemission threshold. We also
calculate the rms transverse momentum of electrons emitted
from the Ag(111) surface. We show that the Ag(111) surface
can simultaneously provide a high QE and a low rms transverse
momentum very close to the thermal limit [13] and hence can
be used as an excellent electron source.

The dependence of QE on the polarization of incident light
and angle of incidence is called the vectorial photoelectric
effect and has been investigated experimentally, but has
been modeled only empirically [14,15]. Using our scheme
to calculate the QE we show that the vectorial photoelectric
effect results from the variation of the overlap integral with the
angle of incidence and polarization of incident light and can
be modeled without use of any empirical data [20].

II. THE ONE-STEP MODEL

A. Basic formalism

We assume that the normal to the solid-vacuum interface
is along the z direction and the classical interface is located at
z = 0, with z > 0 being the vacuum side. The Hamiltonian of
the photon-electron interaction is given by

H = 1

2me

(
�p − e

c
�A
)2

− p2

2me

(1)

≈ − eh̄

mec
�A · �∇ − eh̄

2mec
( �∇ · �A), (2)

where �p is the momentum operator, �A is the vector potential
of the incident light, e is the unit charge, c is the speed of light,
and me is the mass of a free electron in vacuum.

The vector potential of incident light inside the metal
surface can be given by �A = A0e

([z−z0)/dl ]�ε, where A0 is the
magnitude of the incident vector potential just outside the
surface, �ε is the polarization vector inside the surface, dl

is the decay length of the incident light in the metal, and
z0 is the location of the interface adjusted to account for the
spilling over of the electron cloud into vacuum [17,18] due to
the surface state. For the Ag(111) surface z0 is determined by
wave function matching of the Shockley surface state at the
solid-vacuum interface as shown in Sec. III B. Note that the
magnitude of polarization vector �ε is not unity and takes into
account the reflection at the surface as given in Sec. II B. The
incident photon flux per unit area is given by

F = 2ε0|A0|2ω
h̄c

cos (θi), (3)

where ω is the frequency of incident light, ε0 is the dielectric
constant of vacuum, and θi is the angle of incidence [21].

For ultraviolet light, the wavelength is long enough that the
�∇ · �A term in Eq. (2) can be ignored everywhere except at the
metal-vacuum interface. At the metal-vacuum interface, there

is a sharp discontinuity in �A in the z direction and �∇ · �A results
in a delta function at z = z0. The Hamiltonian is then given by

H = −eh̄A0e
z′H (−z′)/dl

mec
[�ε · �∇ + Cεzδ(z′)], (4)

where εz is the z component of �ε, H (z) is the Heaviside
function, z′ = z − z0, and C is a constant that depends only on
the photon energy and the properties of the solid. The constant
C can be obtained by fitting the calculations of the 1D model
to the photoemission electron spectroscopy data [17,18].

Photoemission from single-crystal surfaces can be modeled
as a transition process of an electron between an initial bulk
or surface state (ss) inside the lattice with wave function φi

to a time-reversed LEED-like free electron state in vacuum
with wave function φf under the influence of incident light
[1,22–24]. The total transition rate of this process is given by
Fermi’s golden rule as

R =
∑

i

∑
f

4π

h̄
|〈φf |H|φi〉|2δ[Ef − (Ei + h̄ω)]f (Ei), (5)

where the summations are over all possible initial and final
states (Ei and Ef are the energies of the initial and final
states, respectively), the δ function enforces the conservation
of energy, and f (Ei) = [1 + exp( Ei

kBT
)]−1 is the Fermi-Dirac

distribution. kB is the Boltzmann constant and T is the
temperature of the lattice. Note that we have assumed the Fermi
level to be 0. The expression for the transition rate includes a
factor of 2 to account for the two possible electron spins.

We work within the box approximation to assume that the
volume under consideration extends from −L/2 to L/2 in all
directions and L → ∞. Within this assumption we can convert
the summations in Eq. (5) to integrals and rewrite the transition
rate as

R = 4π

h̄

(
L

2π

)6 ∫
d3 �ki

∫
d3�kM2δ[Ef − (Ei + h̄ω)]f (Ei),

(6)

where M = |〈φf |H|φi〉| is the overlap integral or the matrix el-
ement. �ki = kix x̂ + kiy ŷ + kizẑ is the wave vector of electrons
in their initial state and �k = kxx̂ + kyŷ + kzẑ is the wave vector
of the emitted electron. If the work function of the emission
surface is W , the energy of the final state, Ef , can be written as

Ef = h̄2k2
z

2me

+ h̄2k2
r

2me

+ W, (7)

where kr =
√

k2
x + k2

y is the wave number of the emitted
electron in the transverse direction (x-y plane). The delta
function in Eq. (6) can then be written as

δ[Ef − (Ei + h̄ω)] =
√

me

h̄
√

2X
δ(kz − kz0), (8)

where kz0 =
√

2meX

h̄
, X = Ei + h̄ω − h̄2k2

r

2me
− W . We assume

that the electric field in vacuum is small enough that it has
no significant impact on the barrier and that the system is in
the steady state. Hence the assumption of a step barrier with
height W at the solid-vacuum interface is valid.
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The QE can simply be calculated as

QE = R

FL2
. (9)

As will be shown in the following section, the QE is
independent of L as the matrix element is proportional to
1/L2 owing to the normalization of the wave functions within
the bounding box.

The transverse momentum spread or the rms transverse
momentum can be calculated as√〈

p2
r

〉 =
[∫

d3ki

∫
d3kfh̄

2k2
r M

2δ[Ef −(Ei+h̄ω)]f (Ei)∫
d3ki

∫
d3kf M2δ[Ef −(Ei+h̄ω)]f (Ei)

]1/2

.

(10)

One can obtain the QE and the rms transverse momentum
by calculating the matrix elements M and evaluating the
integrals in Eq. (6). Calculation of the matrix elements
cannot be generalized further and requires the knowledge
of the band structure, wave functions, and the orientation
of the photoemitting surface. In the next section, we calculate
the matrix elements and perform the integrals to obtain the QE
and the rms transverse momentum for the Ag(111) surface as
an example.

Here, we would like to note that this model is based
on the single independent electron picture of photoemission
and does not include many body effects. For low kinetic
energy (<1 eV) electrons, image charge potentials of the
single emitted electrons and the break down of the sudden
approximation may become significant. These effects have
been ignored in our model. Despite these, the model is
successful at explaining the QE from the Ag(111) surface.

B. Refraction of light at the solid-vacuum interface

In order to calculate the matrix elements, one needs to
obtain the polarization vector (�ε) for incident light inside the
solid surface. Expressions to obtain �ε are briefly summarized
[25].

We assume the x-z plane to be the plane of incidence. The
complex angle of transmission is given by Snell’s law as

θt = arcsin

(
1

n
sin (θi)

)
, (11)

where n = nr + ini is the complex index of refraction and θi

is the angle of incidence.
The angle of the light wave vector inside the metal with

respect to the z axis can be given by

θ ′
t = arctan

[
sin θi

q(nr cos γ − ni sin γ )

]
(12)

and the optical decay length for the fields can be given by

dl = c

ωq(ni cos γ + nr sin γ )
, (13)

where

q =
⎧⎨
⎩

[
1− n2

r − n2
i(

n2
r + n2

i

)2 sin2 θi

]2

+
[

2nrni(
n2

r + n2
i

)2 sin2 θi

]2
⎫⎬
⎭

1/4

(14)

and

γ = 1

2
arctan

2nrni sin2 θi(
n2

r + n2
i

)2 − (
n2

r − n2
i

)
sin2 θi

. (15)

For p-polarized light the polarization vector of the vector
potential is

�ε = Tp sin θt ẑ + Tp cos θt x̂, (16)

where

Tp = 2 cos θi

cos θt + n cos θi

. (17)

For s-polarized light the polarization vector of the vector
potential is

�ε = Tsŷ, (18)

where

Ts = 2 cos θi

n cos θt + cos θi

. (19)

III. PHOTOEMISSION FROM Ag(111)

In this section, we demonstrate the use of the formalism
developed above to obtain analytic expressions for the QE
and rms transverse momentum from a Ag(111) surface. The
calculated QE matches the experimental values showing the
effectiveness of the formalism developed above.

A. Band structure of Ag(111)

We use a two-band fit to the nearly-free-electron-like Ag
sp band dispersion model around the L point [26]. The total
energy (Ei,f ) can be divided into the longitudinal part (Ezi,zf )
and the transverse part (Eri,rf ) and can be written as

Ei,f = Ezi,zf + Eri,rf . (20)

1. Band structure of bulk states

Within the framework of the nearly-free-electron model,
the dispersion relations for the two bands in the longitudinal
direction ([111] or z direction) are given by [27]

Ezi,zf = Ev + V + h̄2k2
zi,zf

2mi,f

∓
(

h̄4p2k2
zi,zf

m2
i,f

+ V 2

)1/2

, (21)

where Ezi,zf are the longitudinal energies of the electrons in the
lower and upper sp bands, respectively, Ev is the valance band
maximum, V is the absolute value of the pseudopotential form
factor and equals one-half of the gap at the zone boundary, p

is the magnitude of the wave vector at L point and is equal to√
3π
a

(a being the lattice constant), and mi,f are the effective
mass parameters of the lower and upper sp bands, respectively.
It should be noted that mi,f represent higher order corrections
from multiband effects and do not correspond to the curvature
of the dispersion relations. The subscripts i and f represent
the lower and upper sp bands, respectively. The Fermi level is
assumed to be 0. The scale for kzi,zf is chosen such that the
zero lies at the L point.

The dispersion relation in the transverse directions (x-y
plane) is assumed to be cylindrically symmetric and can be
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FIG. 1. Band structure of Ag (within the nearly-free-electron
model) projected onto the [111] direction. The pink shaded region
is the lower sp bands filled with electrons. The region shaded in blue
is the upper sp bands, which is unoccupied. The solid red line is
the surface state (ss). The solid blue curves are contours of constant
Ezi,zf or correspondingly constant kzi,zf . The green curve is the “free
electron parabola” corresponding to a photon energy of h̄ω. The
conservation of energy and transverse momentum allow only the
occupied states above this parabola to be emitted.

modeled by nearly parabolic bands given by

Eri,rf = h̄2k2
ri,rf

2mri,rf

+
6∑

n=3

ηni,nf kn
ri,rf , (22)

where Eri,rf are the transverse energies of the electrons in the
lower and upper sp bands, respectively, and k2

ri,rf = k2
xi,xf +

k2
yi,yf and mri,rf are the transverse effective masses of the

lower and upper sp bands, respectively. The coefficients ηni,nf

are higher order correction coefficients obtained by fitting the
band structure of silver [28].

Figure 1 shows the band structure of Ag projected along
the [111] direction. The pink shaded region is the lower
sp bands filled with electrons. The states of this band that
extend beyond the Fermi level are unoccupied and not shown.
The region shaded in blue is the upper sp bands, which is
unoccupied. The solid blue curves are contours of constant
Ezi,zf or correspondingly constant kzi,zf . The shape of these
contours is nearly parabolic and given by Eq. (22) with an
offset of Ezi,zf .

Values of all parameters used for modeling the bulk band
structure are given in Table I and were obtained by fitting the
band structure of silver [28].

2. Band structure of surface state

Ag(111) exhibits a Shockley surface state [19] within the
band gap at the L point with energy Es . The surface state has
Ezi = Es . Since the surface state is located within the band
gap, kzi obtained from Eq. (21) is imaginary for the surface
state [29]. The dispersion relation in the transverse direction
is parabolic and given by

Eri = h̄2k2
ri

2ms

. (23)

The effective mass of the surface state has been measured
to be ms = 0.40me [30]. The energy of the surface state Es can
change significantly with the sample and surface preparation
methods and is sensitive to the strain in the crystal. At room
temperature it has been reported to range between −20 meV
and −120 meV [31,32]. Here, we use it as a fitting parameter
and obtain the best fit for QE at Es = −100 meV. This is
significantly higher than the most commonly accepted value of
∼−60 meV [33,34], but still lies within the range of measured
values previously reported in the literature.

B. Wave functions

Close to the L point, the x and y dependent parts of
the initial and final wave functions can be expressed as
plane waves. Thus the initial and final wave functions can
be expanded as φi = φzie

ikxixeikyiy and φf = φzf eikxf xeikyf y ,
respectively. In order to match the transverse part of the final
wave functions at the boundary we require kxf = kx and kyf =
ky . Below we give the z dependent parts of the wave functions.

1. Initial bulk states

The z dependent part of the initial wave functions
for the bulk states inside the Ag(111) surface can be given
by the combination of two Bloch states (kzi + p and kzi − p)
of the lower sp band and outside the surface can be given by
an exponential decay [27]. Thus for z < z0

φzi = N{ei(kzi+p)z + ψie
i(kzi−p)z

+ c1[e−i(kzi+p)z + ψie
−i(kzi−p)z]}, (24)

and for z � z0

φzi = Nc2e
−κiz

′
, (25)

where κi = √
2me(W − Ezi)/h̄.

The normalization constant N can be obtained by normal-
izing the wave function. Constants c1 and c2 are obtained by
matching the wave function and its derivative at z = z0. The
expressions for ψi , N , c1, and c2 are given in the Appendix.

2. Initial surface states

For the surface state Ezi = Es , kzi = kzs , φzi = φzs , and
ψi = ψs . The energy of the surface state (Es) lies within the
L gap. Hence, from Eq. (21) we see that the value of kzs is
imaginary causing the surface state to decay into the bulk.

We can define a decay length for this wave function as
dw = 1/|kzs |. In this work, the value of dw has been calculated
to be 2.1 nm using the dispersion relation in Eq. (21). This is
close to the value obtained experimentally by perturbing the
wave function of the surface state [35]. However, recently, ab

initio fits to the resonances of the surface state photoemission

075439-4



ONE-STEP MODEL OF PHOTOEMISSION FROM SINGLE- . . . PHYSICAL REVIEW B 95, 075439 (2017)

TABLE I. List of symbols and values used to model the band structure of the Ag(111) surface.

Symbol Description Value

mi Longitudinal effective mass parameter of the lower sp band 0.80me

mf Longitudinal effective mass parameter of the upper sp band 0.90me

mri Transverse effective mass of the lower sp band 0.35me

mrf Transverse effective mass of the upper sp band 2.60me

ms Effective mass of the surface state 0.40me

η3i Third order correction coefficient for the lower sp band − 0.8×10−3 eV nm3

η4i Fourth order correction coefficient for the lower sp band − 1.0×10−3 eV nm4

η5i Fifth order correction coefficient for the lower sp band − 3.5×10−5 eV nm5

η6i Sixth order correction coefficient for the lower sp band 12.5×10−6 eV nm6

η3f Third order correction coefficient for the upper sp band 2.2×10−3 eV nm3

η4f Fourth order correction coefficient for the upper sp band − 6.5×10−4 eV nm4

η5f Fifth order correction coefficient for the upper sp band − 5.6×10−5 eV nm5

η6f Sixth order correction coefficient for the upper sp band 20.8×10−6 eV nm6

Es Energy of the surface state −100 meV
Ev Valance band maximum at the L point −178 meV
V Pseudopotential form factor (equals one-half band gap at the L point) 2.1 eV
W Work function of Ag(111) 4.45 eV
a Unit cell length 0.409 nm

peak have suggested nearly a factor of 3 smaller value of this
decay length [36]. We find that the QE is insensitive to the
decay length and varies by only 20% for large (factor of 3)
changes in the decay length of the wave function.

For z < z0 the wave function of the ss is given by

φzs = Ns[e
i(kzs+p)z + ψse

i(kzs−p)z], (26)

and for z > z0 it is given by

φzs = Nscse
−κsz

′
, (27)

where κs = √
2me(W − Es)/h̄. Ns is the normalization con-

stant and can be obtained by normalizing the wave function.
cs and z0 can be obtained by matching the wave function and
its derivative at z = z0. Expressions for Ns and cs are given in
the Appendix. An explicit expression cannot be obtained for
z0 and its value needs to be calculated numerically to satisfy
the continuity conditions of the wave functions as given in the
Appendix.

3. Final states

The final state wave functions are not the free electron
wave functions of the emitted electron, but are time-reversed
LEED states as required by the one-step photoemission theory
[1,24]. Inside the Ag(111) surface they can be given by the
combination of two Bloch states (kzi + p and kzi − p) of the
upper sp band along with an exponential decay to account for
the various scattering mechanisms that prevent emission of
excited electrons. The final wave functions outside the surface
are plane waves. Thus for z < z0

φ∗
zf = t∗pk{e[−i(kzf +p)+kd ]z + ψf e[−i(kzf −p)+kd ]z}

√
2

L
, (28)

where kd = s/de-e is the exponential decay constant that takes
into account the scattering mechanisms that prevent emission
of excited electrons. de-e is the electron-electron scattering
length, which is the dominant scattering mechanism in metals.

The scattering parameter s is used as a fitting parameter in the
calculation.

For z � z0

φ∗
zf = [e−ikzz

′ + r∗
pke

ikzz
′
]

√
2

L
, (29)

whereh̄kz = √
2me(Ef z − W ) is the momentum of the emitted

electron in the z direction. Constants t∗pk and r∗
pk are obtained

by matching the wave function and its derivative at z = z0.
Expressions for ψf , t∗pk , and r∗

pk are given in the Appendix.
Note that the normalization of the final states is such that the
outgoing plane wave representing the emitted photoelectron is
normalized to unity.

Figure 2 shows an example of the real component of the
z dependent part of the initial bulk, surface, and final wave
functions.

C. Calculation of the matrix elements

For p-polarized light, using the Hamiltonian from Eq. (4),
the matrix elements M = |〈φf |H|φi〉| from Eq. (6) can be
written as

M = eh̄|A0Tp|
mec

×
∣∣∣∣〈φf 1| sin θt

∂

∂z
+ cos θt

∂

∂x
+ sin θtCδ(z′)|φi〉

∣∣∣∣,
(30)

where φf 1 = φf ez′H (−z′)/dl .
Using the wave functions given in the previous section and

integrating over the box one can calculate M2 for p-polarized
light as

M2 = 4K1|Tp|2
L4

k2
z |(Id + CIs) sin θt + ikxiI cos θt |2

×h(kxi − kxf )h(kyi − kyf ), (31)
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FIG. 2. Example of the real component of the z dependent part of the initial bulk (a), surface (b), and final (c) wave functions. Here
z0 = 0.042 nm and s = 12.5.

where K1 = e2h̄2|A0|2
m2

ec
2 and h(ζ ) = 1

L
[ 2 sin(Lζ/2)

ζ
]2. Note that in

the limit L → ∞, h(ζ ) = 2πδ(ζ ). Id , Is , and I are given as
follows:

Id = L/2

kz

∫ L/2

−L/2
dz φ∗

zf e[z′H (−z′/)dl ]
∂

∂z
φzi, (32)

Is = L/2

kz

φ∗
zf (z0)φzi(z0), (33)

I = L/2

kz

∫ L/2

−L/2
dz φ∗

zf e[z′H (−z′)/dl ]φzi . (34)

The integrals Id and I can be evaluated analytically and
the expressions are given in the Appendix. Owing to the
appropriate normalization of the wave functions, Id , Is , and
I are independent of L when L → ∞.

Note that the matrix element given in Eq. (31) is asymmetric
in kxi . This can lead to an asymmetric photoemission where
the number of electrons emitted with momentum kx is different
from electrons with number of electrons with x direction
momentum −kx .

The matrix element for s-polarized light can be given by

M2 = 4K1|Ts |2
L4

k2
z |ikyiI |2h(kxi − kxf )h(kyi − kyf ). (35)

D. Calculating the QE

The total QE can be written as the sum of the QE
contribution from the bulk states (QEbulk) and the surface state
(QEss):

QE = QEbulk + QEss. (36)

QEbulk can be given by

QEbulk = Rbulk

FL2
, (37)

where Rbulk can be calculated from Eq. (6) with the integrations
being carried over all possible initial bulk and final states. F

is the incident photon flux per unit area given by Eq. (3).
QEss can be given by

QEss = Rss

FL2
. (38)

Rss can be calculated by an expression similar to Eq. (6) with
the difference that the integration over the initial state has to be
performed over kxi and kyi only, due to the two-dimensional
nature of the surface state. Rss can be written as

Rss = 4π

h̄

(
L

2π

)5 ∫ ∫
dkxidkyi

×
∫

d3�k M2δ[Ef − (Ei + h̄ω)]f (Ei). (39)

Using Eqs. (3), (6), (8), (31), and (37), QEbulk for p-
polarized light can be written as

QEbulk = K

(2π )2

∫
d3 �ki

∫
d3�k k2

z

kz0
|(Id + CIs) sin θt

+ ikxiI cos θt |2h(kxi − kx)h(kyi − ky)

× δ(kz − kz0)f (Ei), (40)

where K = 8(h̄c)2α|Tp |2
(2π)2(mec2)h̄ω

and α is the fine structure constant.
Note that we require kxf = kx and kyf = ky in order to match
the transverse part of the final wave functions at the boundary.

In the limit as L → ∞, h(ζ ) = 2πδ(ζ ). Taking the limit as
L → ∞ and integrating over the final states we obtain

QEbulk = K

∫
d3 �kikz0|(Id+CIs) sin θt+ikxiI cos θt |2f (Ei).

(41)

Note that I , Id , Is , kz0, and Ei are functions of �ki and �k.
Integrating the δ functions in Eq. (40) we get kx = kxi , ky =
kyi , and kz = kz0. These δ functions enforce the conservation
of transverse momentum and energy during photoemission.

Similarly, QEss can be obtained using Eq. (38) as

QEss = 2πK

L

∫
dkxi

∫
dkyikz0|(Id + CIs) sin θt

+ ikxiI cos θt |2f (Ei). (42)

The normalization constant for the surface state (Ns) is not
dependent on L. Hence, for the surface state I , Id and Is are
proportional to

√
L even as L → ∞. Thus, the surface state

QE as given in Eq. (42) remains independent of L as L → ∞.
After writing kxi and kyi in cylindrical coordinates as kxi =

kr cos ϕ and kxi = kr sin ϕ, then integrating over ϕ the above
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expressions for QEbulk and QEss can be written as

QEbulk = 2πK

∫
dkr

∫
dkzikrkz0f (Ei)

×
[
|(Id + CIs) sin θt |2 + k2

r

|I cos θt |2
2

]
(43)

and

QEss = 4π2K

L

∫
dkrkrkz0f (Ei)

×
[
|(Id + CIs) sin θt |2 + k2

r

|I cos θt |2
2

]
, (44)

respectively.
The QE for s-polarized light can be similarly calculated

by using the appropriate matrix elements. The 3D momentum
distributions and the rms transverse momentum can also be
calculated easily as shown in Eq. (10).

IV. RESULTS AND DISCUSSION

A. Spectral response

Figure 3 compares the spectral response measured from an
Ag(111) surface to the result obtained from the photoemission
model presented above, for p-polarized light at various angles
of incidence.

In order to measure the QE, a commercially bought [37]
single-crystal Ag(111) sample was prepared in an ultrahigh
vacuum chamber with base pressure in the low 10−10 torr
range. Several cycles of Ar ion bombardment and annealing
to 500 ◦C were performed until a sharp hexagonal LEED
pattern was observed. The surface cleanliness was verified
using Auger electron spectroscopy. The QE was obtained by
measuring the photocurrent and the power of light incident
on the sample surface. A laser based plasma lamp with a
monochromator [38] was used as a light source for the QE
measurement. The spectral width of the light source was 2 nm
FWHM.

All constants used for modeling the band structure to
calculate the QE are given in Table I. The optical constants (nr

and ni) for silver as a function of wavelength are well known

FIG. 3. Measured and calculated spectral response of the Ag(111)
surface at various angles of incidence (θi) in p-polarized light. The
error bar on the experimental measurement is ∼10%.

FIG. 4. QEbulk and QEss for s = 1 and s = 12.5. QEss is not very
sensitive to s because the surface state electrons are localized at the
surface and do not need to travel inside the metal to get emitted.

[39,40]. The surface constant C and the electron-electron
scattering length de-e were obtained as a function of photon
energy by extrapolating the values of C and de-e obtained from
PES measurements [17,18]. The scattering parameter s is set
to 12.5 to obtain a good match to the experimental data.

Figure 3 shows that the calculated QE explains the
experimental data, both qualitatively and quantitatively. With
the exception of the scattering parameter s, this photoemission
model calculates the QE accurately without the use of any
ad hoc coefficients or scaling factors. It is seen that the QE
increases with the angle of incidence for p-polarized light
(vectorial photoelectric effect). The knee observed in the
spectral response for higher angles of incidence at ∼4.55 eV
is caused due to the surface state. This becomes clear from
Fig. 4, which shows the contributions to the QE from the bulk
and surface states. The sections below discuss the effect of
the scattering parameter and the vectorial photoelectric effect,
respectively.

1. Effect of scattering

The decay constant of the final wave function kd takes
into account the electrons that were excited by light but were
unable to escape due to various scattering mechanisms while
traveling towards the surface. The inelastic electron-electron
scattering is the dominant scattering mechanism of excited
electrons in metals. Hence we write kd = s/de-e, where de-e is
the electron-electron scattering mean free path and s is adjusted
to match the calculated QE to the experimental value. Figure 4
shows QEbulk and QEss for s = 1 and s = 12.5. We can see that
QEss does not change significantly with s. The surface state is
localized at the metal-vacuum interface. Hence the electrons
excited from the surface state do not need to travel inside the
metal to get emitted. This causes QEss to be insensitive to s or
kd .

In order to match the experimental data, s needs to be
set to a particularly large value of 12.5. This implies a much
higher effective scattering rate than set by the electron-electron
scattering lengths obtained from UV-PES data [17,18]. The
reason for this increased scattering is not clear.
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FIG. 5. The theoretical curve for the vectorial photoelectric effect
obtained from equation (45) matches the experimental data measured
at photon energy of 4.57 eV.

2. Vectorial photoelectric effect

Vectorial photoelecric effect is the variation of QE with the
angle of incidence and polarization of incident light.

The QE for p-polarized light is given by Eqs. (43)
and (44). In these equations, the term |(Id + CIs) sin θt |2
corresponds to the QE contribution of the z component of
the polarization vector and the term k2

r
|I cos θt |2

2 corresponds to
the QE contribution of the x component of the polarization
vector. For the band structure and wave functions used here,
|(Id + CIs)|2 � k2

r
|I |2

2 . As a result, the photoemission from
the Ag(111) surface is dominated by the z component of
the polarization vector (i.e., component perpendicular to the
surface). Neglecting the contribution of the x (parallel to
surface) component, the QE can be written as

QE = Kp

|Tp sin θt |2
cos θi

, (45)

where Kp is a constant independent of the angle of incidence.
Note that both Tp and θt are dependent on the angle of
incidence. Figure 5 shows that the experimentally measured
angular dependence of QE for p-polarized light matches this
calculation. This dependence is similar to the angular depen-
dence of QE measured for several materials [14,15,41,42].

The spectral response calculated by the model at 0◦ angle
of incidence is much smaller than the experimental value
(see Fig. 3). At 0◦ angle of incidence only the x and y

components of the polarization vector exist. This implies
that the experimentally observed contribution of the x and
y components of the polarization vector is larger than that
calculated by the model. The assumption that the wave
functions in the x and y directions are modeled by plane waves
could be one possible culprit for this. Emission from parts of
the band structure not modeled by the nearly-free-electron
representation, many-body photoemission effects like the hole
state lifetime induces energy spread [43], and the breakdown of
the sudden approximation [44] are other effects which may be
responsible for this discrepancy. They may also be responsible
for the large effective scattering parameter.

FIG. 6. The blue curve shows the rms transverse momentum
calculated for the Ag(111) surface. The dashed green line shows the
rms transverse momentum typically obtained from cathodes in the
state-of-art electron guns. The red dashed line indicates the thermally
limited rms transverse momentum [13]. At 4.57 eV photon energy
Ag(111) gives near thermal rms transverse momentum with a QE of
5 × 10−5 making it a much better electron source than the current
state-of-the-art.

B. Transverse momentum spread

Figure 6 shows the rms transverse momentum expected
from the Ag(111) surface. The rms transverse momentum has
been calculated using Eq. (10) for angle of incidence equal
to 60◦. It can be seen that the rms transvserse momentum
initially decreases, reaches a minimum, and then increases
with increasing photon energy. At photon energies very
close to threshold only electrons from the ring formed by
the intersection of the surface state with the Fermi level are
emitted. These electrons have a relatively high transverse
momentum. At higher photon energies, electrons from the
surface state with lower transverse momentum and lower
energy can also be emitted along with the electrons from
the surface state ring at the Fermi level. This causes the
rms transverse momentum to initially reduce with increasing
photon energy. This decline continues until the photon energy
is sufficiently high to allow emission from the entire surface
state. At this photon energy the rms momentum reaches a
minimum. At higher photon energies, the electrons from
bulk states which are located near the Fermi level and have a
much higher transverse momentum are allowed to be emitted
causing the rms transverse momentum to increase again.

The smallest rms momentum measured from polycrys-
talline metal cathodes (which are typically used as electron
sources) is limited by the room temperature to a value of
160 eV/c [13] at the photoemission threshold. However, at
the photoemission threshold the QE is also very low (in the
10−6–10−7) range making polycrystalline cathodes unusable
in this regime. At higher photon energies, the QE increases
but so does the rms transverse momentum. In order to obtain
a desirable QE greater than 10−5 the photon energy used has
to be several 100 meV above threshold. This sets the rms
transverse momentum practically obtained in electron guns
to ∼350 eV/c [12]. According to our calculations, Ag(111)
when operated at an angle of incidence of 60◦ in p-polarized
light at 4.57 eV can act as a cathode with rms transverse
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momentum lower than 180 eV/c and a QE as high as 5 × 10−5.
This shows that Ag(111) can act as a better photocathode the
polycrystalline metals currently used as electron sources.

V. CONCLUSION

We have presented a 3D one-step model that allows
us to calculate photoemission properties such as QE and
rms transverse momentum of emitted electrons from single-
crystal surfaces. Optimizing these photoemission properties
can greatly improve the performance of electron source
applications such as FELs and UED.

Using the example of photoemission from Ag(111) we
show that not only can this model calculate the spectral
response from surface state without the use of any ad hoc
parameters, but also explains the photoemission phenomena
of the vectorial photoelectric effect accurately.

We also calculate the rms transverse momentum from an
Ag(111) surface and show that in p-polarized light with a high
angle of incidence, the Ag(111) surface can exhibit high QE

along with a small rms transverse momentum, making it a
much better cathode than the currently used polycrystalline
metals. Upon integrating with other band structure and wave
function calculation techniques like density functional theory,
this methodology can be used to calculate the electron source
relevant photoemission properties from any single-crystal
surface in order to identify ideal electron emitters from first-
principles calculations [45]. Such a methodology is essential
to screen for materials to identify good electron emitters.
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APPENDIX

The analytic expressions to calculate several of the coefficients used in the wave function calculations are given below:

ψi,f =
(h̄2(kzi,zf +p)2

2mi,f
− h̄2p2

2mi,f
− Ezi,zf + V + Ev

)
V

, (A1)

c1 = [κi + i(kzi + p)]ei(kzi+p)z0 + [κi + i(kzi − p)]ψie
i(kzi−p)z0

[−κi + i(kzi + p)]e−i(kzi+p)z0 + [−κi + i(kzi − p)]ψie−i(kzi−p)z0
, (A2)

c2 = 2i
(kzi + p) + (kzi − p)ψ2

i + 2kziψi cos(2pz0)

[κi + i(kzi + p)]e−i(kzi+p)z0 + [−κi + i(kzi − p)]e−i(kzi−p)z0
, (A3)

tpk = 2ikz

[i(kzf + p + kz) + kd ]e[i(kzf +p)+kd ]z0 + [i(kzf − p + kz) + kd ]ψf e[i(kzf −p)+kd ]z0
, (A4)

1 + rpk = 2ikz[e[i(kzf +p)+kd ]z0 + ψf e[i(kzf −p)+kd ]z0 ]

[i(kzf + p + kz) + kd ]e[i(kzf +p)+kd ]z0 + [i(kzf − p + kz) + kd ]ψf e[i(kzf −p)+kd ]z0
, (A5)

N =
√

(2)√(
L
2

)(
1 + ψ2

i

)
(1 + |c1|2)

(assuming L → ∞), (A6)

cs = ei(kzs+p)z0 + ψse
i(kzs−p)z0 , (A7)

Ns =
√

(2)

{
e2kzsz0

2kzs

(1 + |ψs |2) + Re

[
ψ∗

s

e2(ip+kzs )

ip + kzs

]
+ |cs |2

2κs

}−1/2

. (A8)

Note that the wave functions have been normalized to 2 in order to account for the electrons emitted from the equivalent L point
at (−π

a
, − π

a
, − π

a
). z0 can be obtained by solving the following equation numerically:

i(kzs + p)ei(kzs+p)z0 + iψs(kzs − p)ei(kzs−p)z0 = −κscs . (A9)

The analytic expressions for the integrals Id and I used in the matrix element calculations are given below:

Id =
∫

dz φ∗
zf

∂

∂z
φzi = Nκic2

(
2ikz

κ2
i + k2

z

+ 1 + r∗
pk

−κi + ikz

)

+Nt∗pk

[
i(kzi+p)e[i(−kzf +kzi )+kd ]z0

i(−kzf +kzi)+kd

+φi

i(kzi−p)e[i(−kzf +kzi−2p)+kd ]z0

i(−kzf +kzi−2p)+kd

−c1
i(kzi+p)e[−i(kzf +kzi+2p)+kd ]z0

−i(kzf +kzi+2p)+kd
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− c1φi

i(kzi − p)e[−i(kzf +kzi )+kd ]z0

−i(kzf + kzi) + kd

+ φf

i(kzi + p)e[i(−kzf +kzi+2p)+kd ]z0

i(−kzf +kzi + 2p)+kd

+φiφf

i(kzi − p)e[i(−kzf +kzi )+kd ]z0

i(−kzf +kzi)+kd

− c1φf

i(kzi + p)e[−i(kzf +kzi )+kd ]z0

−i(kzf + kzi) + kd

− c1φi

i(kzi − p)e[−i(kzf +kzi−2p)+kd ]z0

−i(kzf + kzi − 2p) + kd

]
, (A10)

I =
∫

dz φ∗
zf φzi = Nc2

(
2ikz

κ2
i + k2

z

+ 1 + r∗
pk

−κi + ikz

)
+ Nt∗pk

[
e[i(−kzf +kzi )+kd ]z0

i(−kzf + kzi) + kd

+ φi

e[i(−kzf +kzi−2p)+kd ]z0

i(−kzf + kzi − 2p) + kd

− c1
e[−i(kzf +kzi+2p)+kd ]z0

−i(kzf + kzi + 2p) + kd

− c1φi

e[−i(kzf +kzi )+kd ]z0

−i(kzf + kzi) + kd

+ φf

e[i(−kzf +kzi+2p)+kd ]z0

i(−kzf + kzi + 2p) + kd

+φiφf

e[i(−kzf +kzi )+kd ]z0

i(−kzf + kzi) + kd

− c1φf

e[−i(kzf +kzi )+kd ]z0

−i(kzf + kzi) + kd

− c1φi

e[−i(kzf +kzi−2p)+kd ]z0

−i(kzf + kzi − 2p) + kd

]
. (A11)
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