
PHYSICAL REVIEW B 95, 075438 (2017)

Wigner crystal phases in bilayer graphene
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It is generally believed that a Wigner crystal in single layer graphene cannot form because the magnitudes of
the Coulomb interaction and the kinetic energy scale similarly with decreasing electron density. However, this
scaling argument does not hold for the low energy states in bilayer graphene. We consider the formation of a
Wigner crystal in weakly doped bilayer graphene with an energy gap opened by a perpendicular electric field.
We argue that in this system the formation of the Wigner crystal is not only possible, but different phases of the
crystal with very peculiar properties may exist here depending on the system parameters.
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I. INTRODUCTION

The observation of a Wigner crystal [1–4], a solidified phase
of a conducting electron Fermi liquid, is a challenging task
even in conventional metals [5–7]. Finding whether this elusive
electron solid may exist in novel materials, like graphene,
constitutes an additional challenge. Simple scaling analysis
shows that Wigner crystallization in single layer graphene is
unlikely [8]. Much richer is the issue of crystallization in bi-
layer graphene. If the gap in the bilayer electron spectrum is not
opened, screening of the Coulomb interaction [9] prevents the
formation of the crystal, as we discuss below [10]. However,
and this is the main result of this paper, if the gap is opened due
to an interlayer voltage, the crystallization is not only possible,
but depending on the density of electrons in the conduction
band there should exist two very distinct phases of the crystal.

Interaction induced phases of undoped bilayer graphene
have been addressed by numerous publications [11–19]. The
considered effects include the spontaneous ferromagnetic
and/or pseudospin polarization [11,12] or the spontaneous
gap opening in the electron’s spectrum [15,16], but not
the spontaneous translation symmetry breaking. The spatial
in-plane charge inhomogeneity is hard to expect in undoped
bilayer graphene. In this paper we consider the breaking of
translation symmetry in the form of an electron crystal in the
case of a weakly doped conduction band in gapped bilayer
graphene. A gate tunable doping level is obtained routinely in
both single- and bilayer graphene [20,21].

Generally, Wigner crystallization takes place when the
lowering of electrons’ repulsion energy in the crystal phase
wins over the rise of the kinetic energy caused by the restricted
motion on the lattice [1]. Both the kinetic energy and the
screened interaction behave highly nontrivially in bilayer
graphene with the interlayer voltage induced gap. After the
gap is opened, graphene becomes an insulator and electrons’
repulsion at very large distances becomes the usual Coulomb
law. However, at least one of the Wigner crystal phases, which
we consider, exists for the interelectron distances where the
electrons’ interaction is well approximated by a logarithmic
repulsion, reminiscent of the vortex interaction in type II
superconductors [22,23].

Deep in the stable crystal phase, which is the only regime
accessible analytically, the dominant repulsion of electrons
favors the triangular lattice [2] with only small fluctuations
around it. The kinetic energy, which has a unique form for

electrons in bilayer graphene, is responsible in this regime
for quantum fluctuations and small distortions of the classical
lattice. These fluctuations may or may not respect the symme-
tries of the original triangular lattice. For example, the lattice
symmetry is preserved at the quantum level in a Wigner crystal
with quadratic dispersion (ε ∼ p2/2m) but is broken in two-
dimensional semiconductors with strong spin-orbit interaction
[24,25]. As we will show, both of these possibilities are real-
ized in gapped bilayer graphene at different electron densities.

Applying an interlayer voltage, besides opening the gap,
leads to a peculiar single-electron dispersion with several re-
gions of different scaling behavior as a function of momentum
(see Fig. 1). Consequently, the two phases of the crystal, which
we predict in this work, are distinguished by different kinetic
energy dispersions at different electron densities. While the
doping level in the conduction band is lowered, the dilute
electron gas crystalizes into what we call an intermediate
density crystal phase with a quartic electron dispersion,
ε(p) ∝ p4. This anharmonic kinetic energy makes it difficult
to describe the quantum fluctuations of the crystal. We use
the self-consistent mean-field approximation to calculate the
effective phonon modes in this case, which may be reasonable
even in the absence of a small parameter. The quantum
corrections in the case of ε(p) ∝ p4 obviously preserve the
symmetries of the triangular crystal lattice.

When reducing the density of electrons further their
energies get close to the bottom of the sombrerolike spec-
trum characteristic of graphene with an interlayer voltage
[26]. This dispersion relation is reminiscent of the one for
electrons with Rashba spin-orbit interaction [27]. The Wigner
crystallization in a two-dimensional electron gas with strong
spin-orbit interaction was investigated in Refs. [24,25]. The
predictions of Ref. [25], where the long-range interaction
between electrons was assumed, may be applied to bilayer
graphene almost without modifications. The main effect for
the fluctuations in this low-density regime for bilayer graphene
is an asymmetric (cigar-shape) density profile in real as well as
momentum space which breaks the symmetries of the original
triangular lattice. The fact that the two low energy phases of
the electron crystal which we find have different symmetries
rules out the possibility of a smooth crossover between them
(see also Fig. 2).

Taking into account properly the screening of electron-
electron interaction is crucial for the correct description of
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FIG. 1. Schematic drawing of the different regimes for the kinetic
energy dispersion ε(p) in bilayer graphene with a gap opened by
an interlayer voltage V and with interlayer hopping energy t⊥.
Momentum is calculated either from the K or K ′ point. The inset
shows the bilayer graphene lattice with Bernal AB stacking.

Wigner crystallization in bilayer graphene. We describe below
different screening regimes for the case of a parametrically
small gap in bilayer graphene and give more details on the
screening in the Appendixes.

II. BILAYER GRAPHENE

The Bloch Hamiltonian for the Bernal stacked bilayer
graphene in the vicinity of the K point is given by the matrix
[26] (we neglect the hopping elements leading to the small

FIG. 2. Visualization of the electronic density in a Wigner crystal
with Mexican-hat shaped kinetic energy dispersion in the momentum
(left) and coordinate (bottom-right) representation according to
Ref. [25]. Top-right: the Wigner crystal at the intermediate electron
density, where fluctuations preserve the triangular lattice symmetries.

trigonal warping terms)

Hp =

⎛
⎜⎝

−V vF p̃ 0 0
vF p̃∗ −V t⊥ 0

0 t⊥ V vF p̃

0 0 vF p̃∗ V

⎞
⎟⎠. (1)

Here p is the momentum calculated from the K point and p̃ =
px + ipy . The hopping matrix element between two vertically
aligned carbon atoms t⊥ ≈ 0.39 eV is small compared to the
interlayer matrix element t ≈ 2.8 eV, the latter entering Eq. (1)
through the Fermi velocity h̄vF = 3dt/2 with d ≈ 1.42 Å
being the distance between two nearest in-plane carbon atoms.
The layer potential ±V is regulated by the external gates.
Each single electron state is doubly degenerate due to spin and
electrons with momenta close to the K ′ point are described by
the Hamiltonian H∗

−p.
Diagonalization of Hp gives the particle-hole symmetric

spectrum

ε2 = V 2 + v2
F p2 + t2

⊥
2

±
√

v2
F p2(4V 2 + t2

⊥) + t4
⊥
4

. (2)

For an interlayer voltage small compared to the interlayer
hopping matrix element V/t⊥ � 1, the two crystal phases
exist at parametrically different electron densities. The ratio
V/t⊥, which is a small parameter in our estimates, may be
tuned experimentally. Assuming V � t⊥ � t , we find several
distinct regimes of the spectrum Eq. (2),

(I) ε ≈ vF p for vF p 	 t⊥, (3)

(II) ε ≈ v2
F p2/t⊥ for

√
V t⊥ � vF p � t⊥,

(III) ε ≈ V + v4
F p4

2V t2
⊥

for V � vF p �
√

V t⊥,

(IV) ε ≈ V − 2V
v2

F p2

t2
⊥

+ v4
F p4

2V t2
⊥

for vF p ∼ V.

We show here only the low energy positive branch of solutions
Eq. (2). Replacing the momentum by the inverse typical
distance between electrons, p ∼ √

n, one finds the electron
density n assigned to each energy regime I–IV.

As we discuss below, Wigner crystallization is possible only
in the lowest energy/density regimes III and IV of Eq. (3).

III. SCREENING OF THE COULOMB INTERACTION

The different energy dispersion regimes in Eq. (3) lead to a
different ability of bilayer graphene to screen the Coulombic
electron-electron interaction at different length scales. We give
a detailed description of the screening in the Appendixes, and
present here only the results.

First, at the highest energies or electron densities, the two
graphene sheets are approximately decoupled, leading to a
single-layer-like Coulomb interaction [28],

U (r) = e2/ε r, (4)

where the polarization of both the substrate and the graphene
flake contribute similarly to the dielectric constant ε ∼ 1 (see
the Appendixes).
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The long-range Coulomb interaction in undoped intrinsic
bilayer graphene is fully screened in the second regime II of
Eq. (3) with quadratic dispersion and negligible gap, ε ∝ p2.
The random-phase-approximation calculation of Ref. [9] here
gives

U (r 	 1/qTF) ∼ e2/(qTFr)2r, (5)

where the Thomas-Fermi screening wave vector qTF ∼ t⊥/h̄vF

(see Appendixes for details). Note that in two dimensions
screening of the charge is not exponential but a power law,
leading to an ∼1/r3 interaction, as it is in Eq. (5).

At distances r > h̄vF/
√

V t⊥ = 2dt/3
√

V t⊥ (regime III)
bilayer graphene behaves like a two-dimensional insulator
due to the gap in the spectrum, with a large and momentum
dependent dielectric constant, leading to (see Appendixes)

U (r 	 h̄vF/
√

V t⊥) = (3V/4) ln(h̄vF /V r). (6)

Using this potential is enough for a quantitative description of
the Wigner crystallization and of the properties of the crystal
in the region III of Eq. (3). It is also sufficient for the qualitative
description of the transition between the two crystal phases at
r ∼ h̄vF /V . Only at much larger interelectron distances (deep
inside the regime IV) the effect of the graphene polarization
becomes negligible and the interaction takes the form

U (r 	 h̄vF/V ) = e2/ε0r, (7)

with ε0 being the substrate dielectric constant (see Ap-
pendixes).

Understanding the screening behavior Eqs. (4)–(7) of the
electron-electron interaction is crucial for understanding the
possibility of Wigner crystallization in bilayer graphene. For
two-dimensional electron gases formed in usual semiconduc-
tor heterostructures, the interaction between electrons is of
the Coulomb form, U (r) ∼ 1/r , and the kinetic energy is
quadratic in momentum, ε ∼ p2 ∼ h̄2/�r2. Here �r is the
electrons’ quantum mechanical position uncertainty, which
at the melting transition is of the same order as the typical
distance between electrons. With lowering the electron density
the kinetic energy decays faster than the typical electron
interaction thus making the crystalline phase energetically
favorable [1–4]. On the contrary, in the single layer graphene
the electron energy ε = vFp ∼ h̄vF/�r scales at low electron
densities similarly as the Coulomb interaction energy, making
the Wigner crystallization unlikely [8].

In ungapped bilayer graphene the electron dispersion
relation, Eq. (3) II, becomes quadratic in momentum like for
usual semiconductors. However, the Wigner crystal cannot
exist here because of the strong screening from the filled
valence band leading to a U (r) ∼ 1/r3 interaction, Eq. (5). The
authors of Ref. [29] have considered the possibility of a CDW
(charge-density wave) instability in doped ungapped bilayer
graphene. However, the screening of long-range interaction
[see Eq. (5) and Ref. [9]] was not taken into account in Ref. [29]
and therefore their results are not applicable to the low density
electron phase.

Only in gapped bilayer graphene, where the kinetic energy
is sufficiently suppressed, Eq. (3) III and IV, and the interaction
is strong enough, Eqs. (6),(7), crystallization of a dilute
electron gas becomes possible.

IV. EXISTENCE OF THE WIGNER CRYSTAL
IN GAPPED BILAYER

The electron crystal in bilayer graphene at the densities
where crystallization is possible is thus described by a
Hamiltonian

H =
∑

i

H0(pi) +
∑
i<j

U (|Rij + rij |), (8)

where the single-electron Hamiltonian is determined by its
eigenvalues H0(p) [cf. Eq. (3)] and the potential U (r)
[Eqs. (4)–(7)] in the region of our interest is best approximated
by the logarithmic formula Eq. (6). In the crystal phase the
electrons’ displacements ri from their equilibrium positions
Ri should be small compared to the lattice constant, which we
denote by a. Also Rij = Ri − Rj and rij = ri − rj .

Consider first the higher density Wigner crystal phase
with single electron energies of the form Eq. (3) III. For
small displacements around the equilibrium electron positions,
Hamiltonian Eq. (8) now takes the form

HIII = λ
∑

j

p4
j +

∑
i<j,α,β

rα
ij r

β

iju
αβ

ij , (9)

where λ = v4
F /(2V t2

⊥), rα
ij is the α component of vector rij , and

components of the tensor u
αβ

ij ∼ V/R2
ij are found via the small

displacement expansion of the potential Eq. (6). Electrons
fluctuate around their equilibrium positions with some typical
amplitude �r . To ensure the crystal stability, two obvious
conditions should be met. First, the amplitude of quantum
fluctuations should be small compared to the lattice spacing,
�r � a. Second, the crystallization reduces the interaction
energy, but raises the fluctuation energy of confined electrons.
The crystal phase is stable if this decrease of interaction energy
exceeds the gain in the fluctuation one.

The two terms in Eq. (9) give comparable contributions to
the ground state quantum fluctuation energy. This allows us to
find the typical displacement �r2 from

λh̄4/�r4 ∼ (V/a2)�r2. (10)

Requiring the smallness of either the amplitude of fluctuations
or the fluctuation energy now gives

a 	 dt/
√

V t⊥. (11)

This determines an upper bound for the electron density,
n ∼ 1/a2, in a stable crystal. Electrons in the regime III
Eq. (3) resemble Abrikosov vortices in type II superconductors
[22], which repel each other logarithmically and are known to
crystallize into the triangular lattice [23].

For V � t⊥ electron gas crystallization, Eq. (11), takes
place at higher electron densities than needed for the Fermi liq-
uid symmetry-breaking transition suggested in Refs. [30,31].

With further increasing the distance between electrons one
needs to take into account the (negative)quadratic term in the
energy dispersion Eq. (3) IV, which happens at �r ∼ d t/V .
Since at the transition between two crystal phases both terms
∼p2 and ∼p4 are of the same order of magnitude, we still can
use here Eq. (10) to find the relation between �r and a. Thus
we find at the transition

a ∼ dt t⊥/V 2. (12)
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This corresponds to a t3
⊥/V 3 	 1 times lower density, as

needed for the liquid-to-crystal transition Eq. (11). We will
return to the discussion of the Wigner crystal phase for the
case of a Mexican-hat electron spectrum later.

Finding the accurate positions of the phase transitions char-
acterized by the electron densities described by Eqs. (11) and
(12) may be done only numerically. However, our estimates are
enough to prove the existence of such liquid-to-crystal (11) and
crystal-to-crystal (12) phase transitions in bilayer graphene for
a sufficiently weak interlayer voltage, V � t⊥.

V. MEAN FIELD APPROACH TO QUANTUM
FLUCTUATIONS

The displacement Hamiltonian Eq. (9) with the λp4 single
particle energy does not support even small amplitude har-
monic vibrations, which would lead to the phonon modes.
One way to treat this Hamiltonian approximately is to perform
the mean field decomposition

λ
∑

j

p4
i → λ

∑
j

(
2p2

i 〈p2〉 + 4pα
i p

β

i 〈pαpβ〉), (13)

where the on-site expectation values 〈p2〉 and 〈pαpβ〉 should
be found self-consistently.

Using Eq. (13) makes the displacement Hamiltonian Eq. (9)
exactly solvable. The true λp4 kinetic energy may then be
taken into account perturbatively. The advantage of choosing
Eq. (13) as a zeroth order approximation is that it leads to
the perturbation theory expansion with vanishing first order
diagrams in the phonon interaction. However, the resulting
series, although starting from the second order, has no obvious
small parameter.

Due to the triangular symmetry of the crystal we have
〈pαpβ〉 = δαβ〈p2〉/2. Thus using Eq. (13) together with
Hamiltonian Eq. (9) is equivalent to introducing a usual
quadratic dispersion with the effective mass

1/(2meff) = 4λ〈p2〉. (14)

In order to find the average value 〈p2〉, we may use the virial
theorem, which states that the energy of a system of harmonic
oscillators (h̄ωk/2 per mode) is split equally between the
kinetic and potential energy terms, 1

2meff
〈p2〉 = h̄

4

∑
k

ωk

N
. The

phonon frequency ωk with wave vector k depends itself on
meff . The mass independent combination is meffω

2
k ∼ V/a2.

Therefore, it is convenient to rewrite Eq. (14) as

1

m
3/2
eff

= 4λh̄
√

meff

∑
k

ωk

N
= α

λh̄V

a2
. (15)

The coefficient α ∼ 1 here may be found numerically.
Approximations Eqs. (13)–(15) should give a reasonably

good description of the typical displacement eigenmodes of
the Hamiltonian Eq. (9). However, it is unclear how the strong
interaction between phonons would modify for example the
spectrum of low energy excitations.

VI. MEXICAN-HAT POTENTIAL

Existing previous investigations have been concentrated
on the Wigner crystallization starting from the Fermi liquid

phase [1–4]. Interestingly, in bilayer graphene in addition
to the liquid-to-crystal transition we predict a second low
density transition between two solidified phases, indicating
the lattice reconstruction caused by the Mexican-hat shaped
kinetic energy Eq. (3) IV.

Freezing of the Fermi liquid may be seen in transport
experiments [7]. To detect the second transition one may
search for the change of the symmetry of the lattice (seen,
e.g., in the photon reflection). However, probably the easiest
way, for which graphene is almost ideally designed (see, e.g.,
the experiments [32,33]), will be to measure the singularity
in the doping dependance of the differential capacitance at
the transition. Doping of (exfoliated) graphene is achieved by
applying a voltage between the conducting substrate and the
graphene flake separated by an insulating layer. At a given
electron density the value of the voltage depends on the inter-
action energy per electron in the Wigner crystal. Consequently,
the differential capacitance carries the information about the
phase of the Wigner crystal and about the transition between
phases.

As we mentioned already, the properties of the lowest
density Wigner crystal phase in bilayer graphene are similar
to that of the Wigner crystal in a two-dimensional electron gas
with strong Rashba spin-orbit interaction, investigated recently
by one of the authors [25]. The electron density (coordinate
and momentum representation) found in Ref. [25] is shown in
Fig. 2. Electrons’ crystallization into the intermediate density
phase (dispersion ε ∝ p4) of the Wigner crystal breaks the
continuous symmetry of the Fermi liquid to the discrete
symmetry (D6) of the triangular lattice. We expect quantum
fluctuations in this phase to preserve the lattice discrete
symmetries. On the contrary, the triangular lattice symmetry
is broken by the fluctuations in the lowest density phase,
where one has to take into account the multiple minima of
the Mexican-hat shaped energy dispersion. These different
symmetries of the lattice at different densities prove the
existence of the quantum phase transition.

The regime Eq. (3) IV exhibits a degenerate minimum at
the ring of momenta |p| = √

2V/vF . Since the uncertainty
principle couples coordinates and momenta, broken spatial
rotational symmetry in the crystalline phase makes different
directions in the momentum space also inequivalent. Each
crystal electron now picks up its own position (different for
different electrons) at the ring of minima. For any choice of the
set of minima, vibrations normal to the ring |p| = √

2V/vF

give parametrically the largest contribution to the fluctuation
energy. Minimization of the zero point energy due to these
fluctuations for the ensemble of individual electron positions
on the ring results in the crystal shown in Fig. 2 [25]. The
low energy excitation modes of the Wigner crystal with a
Mexican-hat shaped kinetic energy, associated, e.g., with the
vibrations along the ring of minima, |p| = √

2V/vF , or with
the valley and spin flips, cannot lead to a substantial change of
the electron density distribution.

VII. CONCLUSIONS

Our main result in this paper is the prediction of the
existence of Wigner crystalline phases in lightly doped
bilayer graphene subject to an interlayer voltage. This is in
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contrast to single-layer graphene and bilayer graphene without
a gap, where scaling arguments (together with screening
properties for bilayer graphene) prove the absence of the
crystallization [8].

Moreover, we predict the existence of two distinct crystal
phases at different electron densities, having different symme-
tries, and separated by a quantum phase transition. We suggest
differential capacitance measurements for the experimental
verification of the transition.

Further investigations of Wigner crystals with nonquadratic
kinetic energy may be done numerically via the quantum
Monte Carlo method. At least for the case of the quartic energy
dispersion, ε ∝ p4, this may be not more difficult than the
standard calculation [3,4].

The two phases of the Wigner crystal predicted in this
paper exist if the voltage between the graphene layers is
small compared to the interlayer coupling, V � t⊥. Assuming
V = t⊥/10 we estimate from Eqs. (11) and (12) the liquid-
to-solid (ls) and the solid-to-solid (ss) transitions to appear
at als ≈ 23 d and ass ≈ 720 d, or at the electron densities
nls ≈ 1.1 × 1013 cm−2 and nss ≈ 1.1 × 1010 cm−2. We must
mention, however, that in the usual electron gas with parabolic
dispersion consideration similar to ours overestimates the
transition density by a large pure numerical factor [3,4].

We mention other effects potentially affecting the crys-
tallization. Disorder may be ignored, since electron’s mean
free path in bilayer graphene may be as large as micrometers
[34]. Temperature, to play a role, should be comparable to
(e.g., kinetic) electron’s energy. For the low density solid-to-
solid transition this gives T ∼ V 3/t2

⊥ ≈ 5 K (for V = t⊥/10).
As usual [6], a quantizing magnetic field will simplify the
observation of a (Skyrme-)Wigner [35,36] crystal in bilayer
graphene. However, the magnetic field will also destroy the
low density crystal phase from Fig. 2.
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APPENDIX A: SCREENING IN GAPPED
BILAYER GRAPHENE

Here, we consider the static screening of the Coulomb
interaction between electrons in intrinsic (undoped) bilayer
graphene with an interlayer voltage. A detailed discussion
of the interaction effects in graphene may be found, e.g.,
in the review paper [28]. However, we are not aware of any
publication emphasizing the absence of interaction corrections
in the dielectric constant of gapped bilayer graphene and
especially the existence of the intermediate regime for the
interaction Eq. (A16) for V � t⊥.

The standard approach to screening of the electrostatic
potential proceeds by introducing the momentum dependent
dielectric constant ε(q) via

U (q) = 2πe2

ε0q
→ 2πe2

ε(q)q
. (A1)

Here, the bare dielectric constant ε0 for the case of exfoliated
graphene on silicon oxide is ε0 = (εSiO2 + 1)/2 [37] and
εSiO2 ≈ 4.2. In suspended graphene obviously ε0 = 1. The
dielectric function is usually calculated in the random phase
approximation (RPA), yielding

ε(q) = ε0[1 − U (q)�(q)], (A2)

where the polarization function �(q) is found in a single
bubble approximation.

In order to have a finite dielectric constant at low momenta
the polarization function should vanish at small q as �(q →
0) ∼ q. This indeed happens in a single layer graphene, where
the static dielectric constant in the RPA approximation takes
the form

URPA = 1

εRPA

e2

r
, εRPA = εSiO2 + 1

2
+ π

2

e2

h̄vF

. (A3)

For the case of bilayer graphene in the regime I of Eq. (3) of
the main text one should simply double the interaction (∼e2)
term in εRPA (A3) and use this formula for r < h̄ vF /t⊥.

The result Eq. (A3) is already surprising. Graphene is only
a two-dimensional sheet of atoms. How can it show the same
effect on screening of a long-range interaction potential as
a three-dimensional bulk of SiO2? This may happen only
because graphene has no band gap and consequently a much
higher polarizability.

The situation is even more interesting in bilayer graphene.
In the ungapped case the spectrum of the bilayer consists of
two parabolic bands touching each other at the K (K ′) point.
This means that the density of states around the Fermi energy
in intrinsic bilayer graphene is constant

dn

dε

∣∣∣∣
ε≈0

= const �= 0, (A4)

similar to that in a usual two-dimensional metal. This results
in an even larger polarizability than for single layer graphene,
sufficient to develop a full screening of the electric charge,
as was shown in the one-loop calculation in Ref. [9]. In
this case the polarization operator �(q) turns out to be a
constant independent of q and the interaction potential in the
momentum representation Eq. (A1) takes the form

U (q) = 2πe2

ε0q
→ 2πe2

ε0(q + qTF)
, (A5)

where the Thomas-Fermi screening wave vector is [9]

qTF = 2t⊥e2

ε0h̄
2v2

F

ln 4. (A6)

The charge of the electron in Eq. (A5) is fully compensated by
the cloud of charges induced in graphene at a distance ∼1/qTF.
Since this is a two-dimensional charge cloud, the potential is
not fully screened, but rather decays (in plane) as a power law
U (r 	 1/qTF) ∼ 1/r3.

In bilayer graphene with an interlayer voltage V , described
by the Hamiltonian Eq. (1), the result Eq. (A5) is valid as long
as one may neglect the gap ∼V in the electron’s spectrum, i.e.,
at q 	 √

V t⊥/h̄vF . For smaller momenta (larger distances
between electrons) one should consider the graphene sheet
as a narrow-gap two-dimensional insulator. The polarization

075438-5



P. G. SILVESTROV AND P. RECHER PHYSICAL REVIEW B 95, 075438 (2017)

function �(q) here decreases with decreasing q as �(q) ∼ q2

(see the calculation below). Eventually at very small q the
polarization function contribution to the dielectric constant
becomes negligible, i.e., ε(q) = ε0 in Eq. (A1). This means that
at largest distances the screening of the electron’s interaction is
fully determined by the bulk three-dimensional dielectric be-
low and above the graphene flake, U (r → ∞) = e2/ε0r . The
transition from the fully screened, U ∼ 1/r3, to the unscreened
Coulomb interaction does not happen instantaneously, but
rather proceeds continuously in the parametrically wide region
of interelectron distances, h̄vF /

√
t⊥V � r � h̄vF /V . Below

we describe the behavior of the screened potential U (r) at
these intermediate distances.

To describe quantitatively the evolution of the electron’s
interaction from the fully screened to the unscreened regime,
we consider the calculation of the polarization function �(q).
First we notice that the Thomas-Fermi screening Eq. (A6)
and transition between quadratic (II) and linear (I) spectrum
regimes in Eq. (3) of the main text take place at the same
momentum ∼qTF, since in graphene e2/(h̄vF ) ∼ 1. This means
that we may use a simplified two-band Hamiltonian for a
reliable description of the polarization, instead of the full
four-band Hamiltonian Eq. (1), cf. [9],

Heff =
( −V −p̃2v2

F /t⊥
−p̃∗2v2

F /t⊥ V

)
, (A7)

where p̃ = px + ipy . The two eigenvalues of the two-band
Hamiltonian are

εp± = ±εp, εp =
√

V 2 + p4v4
F /t2

⊥, (A8)

which reproduce correctly the spectrum of the four-band
Hamiltonian Eq. (1) in the regimes II and III of Eq. (3). The
lowest energy Mexican-hat spectrum, Eq. (3) regime IV, may
be found only from the four-band model. However, as we will
see, the two-band approximation Eq. (A7) leads to the correct
form of the polarization function �(q) even for the momentum
transfer q corresponding to the lowest energy regime IV in
Eq. (3). The two positive- and negative-energy eigenfunctions
of Heff in Eq. (A7) are

ψ+ = 1√
p4v4

F

/
t2
⊥ + (V + εp)2

(
p̃2v2

F /t⊥
−(V + εp)

)
(A9)

and

ψ− = 1√
p4v4

F

/
t2
⊥ + (V + εp)2

(
V + εp

p̃∗2v2
F /t⊥

)
. (A10)

The zero temperature polarization function in the single bubble
approximation may now be written as

�(q) = −g

∫
d2p

(2πh̄)2

[
|ψ†

+ψ ′
−|2

εp+ − εp′−
+ |ψ†

+ψ ′
−|2

εp′+ − εp−

]
. (A11)

Here h̄q = p − p′, ψ ′ = ψ(p′), and the degeneracy factor g =
4 accounts for two valleys and two spin orientations. For the
gapless case, V = 0, formulas for ψ+ and ψ− are greatly
simplified and Eq. (A11) coincides with Eq. (4) of Ref. [9].

Moreover, in the case of vanishing V the overlap of two
eigenvectors depends only on the ratio p/q and the angle

between two momenta, |ψ†
+ψ ′

−|2 = 1 − (pp′)2/p2p′2, while
the energy in this case is simply quadratic in momentum εp± ∝
±p2. As a result the polarization function Eq. (A11) in the limit
V = 0 turns out to be a constant independent of the momentum
transfer q [9]

�(q) ≈ �V =0 = − ln 4

π

t⊥
h̄2v2

F

, (A12)

leading to the Thomas-Fermi screening, Eqs. (A5) and (A6).
The situation is different in the case of a finite interlayer

voltage, V �= 0, and a very small momentum transfer, q �√
t⊥V /h̄vF . The integral over momentum in this limit comes

from the region p ∼ √
t⊥V /vF . This means that typically

p 	 q and the overlap of two different eigenfunctions of al-
most the same Hamiltonians, Heff(p) and Heff(p′) in Eq. (A7),
vanishes as |ψ†

+ψ ′
−|2 ∝ q2. This leads to the quadratic in small

momentum transfer q behavior of the polarization function
[see Eqs. (B1) and (B2) for the explicit calculation]

�(q) = −2

3π

q2

V
. (A13)

According to Eqs. (A1) and (A2) this results in the absence of
electron’s interaction contribution to the dielectric constant in
gapped bilayer graphene at very large distances.

The fact that at low momentum transfer the ∼q2 behavior of
the polarization function Eq. (A13) is due to the small overlap
of the spinors ψ

†
+ψ ′

− ∼ q, while the nontrivial integration goes
over the large-momentum region, p ∼ √

t⊥V /vF , suggests
that this result may be valid also for very small values
of q, where at q ∼ V/vF the dispersion ε(q) is described
properly by the full four-band Hamiltonian Eq. (1). Indeed, in
order to calculate the polarization function directly from the
four-band Hamiltonian one would need to add in Eq. (A11)
a summation over the double set of + and − states, ψi±,
and to modify the dispersion ε(p) in Eq. (A8) accordingly.
However, also in this case, the product of two eigenvectors
vanishes at small momentum transfer, |ψ†

i+ψ ′
j−| ∼ q, leading

to the ∼q2 smallness of �(q). As a fact, the contribution to the
remaining integral from the new terms added into Eq. (A11)
will be suppressed due to the larger denominators (∼t⊥ instead
of ∼V ). The modification of the term in �(q) describing
the transitions between the two lower energy bands of the
four-band model will also lead to corrections of the small
relative order ∼V/t⊥.

The result Eq. (A13) reveals a nontrivial distribution of
charges induced in bilayer graphene with an interlayer voltage.
First, as we saw in Eqs. ((A5), (A6)), for the case of a very small
gap V the negative charge of an electron is compensated by
the positive charge cloud at distances ∼1/qTF. However, as we
see in Eq. (A13), the screening of the original electron charge
starts to disappear at distances ∼h̄vF /

√
t⊥V . This implies

the existence of a second very large negative charge cloud
restoring the original electron’s charge.

The low-momentum-transfer formula Eq. (A13) is valid
for q � √

t⊥V /h̄vF , when the polarization operator is small
compared to the gapless case, �(q) � �V =0. Interestingly,
however, this does not imply that this “small” polarization
operator is not sufficient to modify strongly the electrons’
interaction. Indeed, combining Eqs. (A1), (A2), and (A13),
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we write

U (q) = 2πe2

ε0q + q2/q0
, (A14)

where q0 = 3V/(4e2) ∼ V/(h̄vF ). This formula is still valid
for q 	 q0, where the second, interaction induced term in the
denominator dominates.

The coordinate representation of the interaction Eq. (A14)
is found via the standard Fourier transformation. The essential
part of the calculation of U (r) reduces then to find the integral
[38]

∫ ∞

0

J0(k)dk

x
= π

2
[H0(x) − N0(x)], (A15)

where x = ε0q0r and J0,N0,H0 are the Bessel, Neumann, and
Struve functions, respectively. Forh̄vF /

√
t⊥V � r � h̄vF /V

this gives

U (r) ≈ 3V

4
ln

(
h̄vF

rV

)
. (A16)

At larger distances, the potential Eq. (A16) crosses over into
the usual Coulomb potential U (r) = e2/ε0r , while at shorter

distances it transforms into U (r) ≈ e2/ε0r(qTFr)2, which is
the screened interaction in bilayer graphene without a gap [9].

APPENDIX B: DERIVATION OF EQ. (A13)

A straightforward calculation of the overlap of the two
spinors in Eqs. (A9) and (A10) to leading order in small q

gives

|ψ†
+ψ ′

−|2 = 4

[p4 + (V + ε)2]2

[
p2q2(V + ε)2

− 2
(pq)2p4(V + ε)

ε
+ (pq)2p8

ε2

]
. (B1)

Here, for a moment, we set h̄ = t⊥ = vF = 1. Substitution
of this into Eq. (A11) followed by the angle integration and
changing variables from p to x = p4v4

F /(t2
⊥V 2) leads to

�(q) = −g

2π

q2

V

∫ ∞

0

e2(1 + e)2 − xe(1 + e) + x2/2

e3[(1 + e)2 + x]2
dx,

(B2)

where e = √
1 + x. Changing the integration variable from dx

to de we now find

�(q) = −g

6π

q2

V
. (B3)

[1] E. Wigner, Phys. Rev. 46, 1002 (1934).
[2] L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959

(1977).
[3] B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).
[4] N. D. Drummond and R. J. Needs, Phys. Rev. Lett. 102, 126402

(2009).
[5] C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
[6] E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris,

and B. Etienne, Phys. Rev. Lett. 60, 2765 (1988); V. J. Goldman,
M. Santos, M. Shayegan, and J. E. Cunningham, ibid. 65, 2189
(1990); F. I. B. Williams, P. A. Wright, R. G. Clark, E. Y. Andrei,
G. Deville, D. C. Glattli, O. Probst, B. Etienne, C. Dorin, C. T.
Foxon, and J. J. Harris, ibid. 66, 3285 (1991); M. A. Paalanen,
R. L. Willett, R. R. Ruel, P. B. Littlewood, K. W. West, and
L. N. Pfeiffer, Phys. Rev. B 45, 13784 (1992).

[7] J. Yoon, C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan, Phys.
Rev. Lett. 82, 1744 (1999).

[8] H. P. Dahal, Y. N. Joglekar, K. S. Bedell, and A. V. Balatsky,
Phys. Rev. B 74, 233405 (2006).

[9] E. H. Hwang and S. Das Sarma, Phys. Rev. Lett. 101, 156802
(2008).

[10] In spite of its simplicity, to the best of our knowledge, the
result that screening [9] prevents the Wigner crystallization in
ungapped bilayer graphene was never claimed in the existing
literature. See the discussion after Eq. (7).

[11] J. Nilsson, A. H. Castro Neto, N. M. R. Peres, and F. Guinea,
Phys. Rev. B 73, 214418 (2006).

[12] H. Min, G. Borghi, M. Polini, and A. H. MacDonald, Phys. Rev.
B 77, 041407 (2008).

[13] F. Zhang, H. Min, M. Polini, and A. H. MacDonald, Phys. Rev.
B 81, 041402(R) (2010).

[14] O. Vafek and K. Yang, Phys. Rev. B 81, 041401(R) (2010).
[15] R. Nandkishore and L. Levitov, Phys. Rev. Lett. 104, 156803

(2010).
[16] R. Nandkishore and L. Levitov, Phys. Rev. B 82, 115124 (2010).
[17] Y. Lemonik, I. L. Aleiner, C. Toke, and V. I. Fal’ko, Phys. Rev.

B 82, 201408 (2010).
[18] V. Cvetkovic, R. E. Throckmorton, and O. Vafek, Phys. Rev. B

86, 075467 (2012).
[19] R. E. Throckmorton and S. Das Sarma, Phys. Rev. B 90, 205407

(2014).
[20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[21] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

[22] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957); J. Phys.
Chem. Solids 2, 199 (1957).

[23] J. B. Ketterson and S. N. Song, Superconductivity (Cambridge
University Press, Cambridge, UK, 1999).

[24] E. Berg, M. S. Rudner, and S. A. Kivelson, Phys. Rev. B 85,
035116 (2012).

[25] P. G. Silvestrov and O. Entin-Wohlman, Phys. Rev. B 89, 155103
(2014).

[26] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
[27] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)

[Sov. Phys. Solid State 2, 1109 (1960)].
[28] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.

Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).
[29] H. P. Dahal, T. O. Wehling, K. S. Bedell, J.-X. Zhu, and A.

Balatsky, Physica B 405, 2241 (2010).
[30] J. Ruhman and E. Berg, Phys. Rev. B 90, 235119 (2014).

075438-7

https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.39.5005
https://doi.org/10.1103/PhysRevB.39.5005
https://doi.org/10.1103/PhysRevB.39.5005
https://doi.org/10.1103/PhysRevB.39.5005
https://doi.org/10.1103/PhysRevLett.102.126402
https://doi.org/10.1103/PhysRevLett.102.126402
https://doi.org/10.1103/PhysRevLett.102.126402
https://doi.org/10.1103/PhysRevLett.102.126402
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.65.2189
https://doi.org/10.1103/PhysRevLett.65.2189
https://doi.org/10.1103/PhysRevLett.65.2189
https://doi.org/10.1103/PhysRevLett.65.2189
https://doi.org/10.1103/PhysRevLett.66.3285
https://doi.org/10.1103/PhysRevLett.66.3285
https://doi.org/10.1103/PhysRevLett.66.3285
https://doi.org/10.1103/PhysRevLett.66.3285
https://doi.org/10.1103/PhysRevB.45.13784
https://doi.org/10.1103/PhysRevB.45.13784
https://doi.org/10.1103/PhysRevB.45.13784
https://doi.org/10.1103/PhysRevB.45.13784
https://doi.org/10.1103/PhysRevLett.82.1744
https://doi.org/10.1103/PhysRevLett.82.1744
https://doi.org/10.1103/PhysRevLett.82.1744
https://doi.org/10.1103/PhysRevLett.82.1744
https://doi.org/10.1103/PhysRevB.74.233405
https://doi.org/10.1103/PhysRevB.74.233405
https://doi.org/10.1103/PhysRevB.74.233405
https://doi.org/10.1103/PhysRevB.74.233405
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevB.73.214418
https://doi.org/10.1103/PhysRevB.73.214418
https://doi.org/10.1103/PhysRevB.73.214418
https://doi.org/10.1103/PhysRevB.73.214418
https://doi.org/10.1103/PhysRevB.77.041407
https://doi.org/10.1103/PhysRevB.77.041407
https://doi.org/10.1103/PhysRevB.77.041407
https://doi.org/10.1103/PhysRevB.77.041407
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041401
https://doi.org/10.1103/PhysRevB.81.041401
https://doi.org/10.1103/PhysRevB.81.041401
https://doi.org/10.1103/PhysRevB.81.041401
https://doi.org/10.1103/PhysRevLett.104.156803
https://doi.org/10.1103/PhysRevLett.104.156803
https://doi.org/10.1103/PhysRevLett.104.156803
https://doi.org/10.1103/PhysRevLett.104.156803
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.201408
https://doi.org/10.1103/PhysRevB.82.201408
https://doi.org/10.1103/PhysRevB.82.201408
https://doi.org/10.1103/PhysRevB.82.201408
https://doi.org/10.1103/PhysRevB.86.075467
https://doi.org/10.1103/PhysRevB.86.075467
https://doi.org/10.1103/PhysRevB.86.075467
https://doi.org/10.1103/PhysRevB.86.075467
https://doi.org/10.1103/PhysRevB.90.205407
https://doi.org/10.1103/PhysRevB.90.205407
https://doi.org/10.1103/PhysRevB.90.205407
https://doi.org/10.1103/PhysRevB.90.205407
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1103/PhysRevB.85.035116
https://doi.org/10.1103/PhysRevB.85.035116
https://doi.org/10.1103/PhysRevB.85.035116
https://doi.org/10.1103/PhysRevB.85.035116
https://doi.org/10.1103/PhysRevB.89.155103
https://doi.org/10.1103/PhysRevB.89.155103
https://doi.org/10.1103/PhysRevB.89.155103
https://doi.org/10.1103/PhysRevB.89.155103
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1016/j.physb.2010.02.019
https://doi.org/10.1016/j.physb.2010.02.019
https://doi.org/10.1016/j.physb.2010.02.019
https://doi.org/10.1016/j.physb.2010.02.019
https://doi.org/10.1103/PhysRevB.90.235119
https://doi.org/10.1103/PhysRevB.90.235119
https://doi.org/10.1103/PhysRevB.90.235119
https://doi.org/10.1103/PhysRevB.90.235119


P. G. SILVESTROV AND P. RECHER PHYSICAL REVIEW B 95, 075438 (2017)

[31] J. Jung, M. Polini, and A. H. MacDonald, Phys. Rev. B 91,
155423 (2015).

[32] E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R)
(2010).

[33] A. F. Young, C. R. Dean, I. Meric, S. Sorgenfrei, H. Ren, K.
Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim,
Phys. Rev. B 85, 235458 (2012).

[34] P. Rickhaus, P. Makk, M.-H. Liu, K. Richter, and C.
Schönenberger, Appl. Phys. Lett. 107, 251901 (2015)

[35] C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 75, 245414 (2007);
77, 205426 (2008).

[36] R. Cote, J.-F. Jobidon, and H. A. Fertig, Phys. Rev.
B 78, 085309 (2008); R. Cote, W. Luo, B. Petrov,
Y. Barlas, and A. H. MacDonald, ibid. 82, 245307
(2010); Y. Sakurai and D. Yoshioka, ibid. 85, 045108
(2012).

[37] P. G. Silvestrov and K. B. Efetov, Phys. Rev. B 77, 155436
(2008).

[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, 4th ed., 1965, corrected and enlarged edition by A.
Jeffrey, 1980, 5th ed. by A. Jeffrey (Academic Press, New York,
1994).

075438-8

https://doi.org/10.1103/PhysRevB.91.155423
https://doi.org/10.1103/PhysRevB.91.155423
https://doi.org/10.1103/PhysRevB.91.155423
https://doi.org/10.1103/PhysRevB.91.155423
https://doi.org/10.1103/PhysRevB.82.041412
https://doi.org/10.1103/PhysRevB.82.041412
https://doi.org/10.1103/PhysRevB.82.041412
https://doi.org/10.1103/PhysRevB.82.041412
https://doi.org/10.1103/PhysRevB.85.235458
https://doi.org/10.1103/PhysRevB.85.235458
https://doi.org/10.1103/PhysRevB.85.235458
https://doi.org/10.1103/PhysRevB.85.235458
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1103/PhysRevB.75.245414
https://doi.org/10.1103/PhysRevB.75.245414
https://doi.org/10.1103/PhysRevB.75.245414
https://doi.org/10.1103/PhysRevB.75.245414
https://doi.org/10.1103/PhysRevB.77.205426
https://doi.org/10.1103/PhysRevB.77.205426
https://doi.org/10.1103/PhysRevB.77.205426
https://doi.org/10.1103/PhysRevB.78.085309
https://doi.org/10.1103/PhysRevB.78.085309
https://doi.org/10.1103/PhysRevB.78.085309
https://doi.org/10.1103/PhysRevB.78.085309
https://doi.org/10.1103/PhysRevB.82.245307
https://doi.org/10.1103/PhysRevB.82.245307
https://doi.org/10.1103/PhysRevB.82.245307
https://doi.org/10.1103/PhysRevB.82.245307
https://doi.org/10.1103/PhysRevB.85.045108
https://doi.org/10.1103/PhysRevB.85.045108
https://doi.org/10.1103/PhysRevB.85.045108
https://doi.org/10.1103/PhysRevB.85.045108
https://doi.org/10.1103/PhysRevB.77.155436
https://doi.org/10.1103/PhysRevB.77.155436
https://doi.org/10.1103/PhysRevB.77.155436
https://doi.org/10.1103/PhysRevB.77.155436



