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It is theoretically demonstrated that the figure of merit (ZT ) of quantum dot (QD) junctions can be significantly
enhanced when the degree of degeneracy of the energy levels involved in electron transport is increased. The
theory is based on the the Green-function approach in the Coulomb blockade regime by including all correlation
functions resulting from electron-electron interactions associated with the degenerate levels (L). We found that
electrical conductance (Ge) as well as electron thermal conductance (κe) are highly dependent on the level
degeneracy (L), whereas the Seebeck coefficient (S) is not. Therefore, the large enhancement of ZT is mainly
attributed to the increase of Ge when the phonon thermal conductance (κph) dominates the heat transport of the
QD junction system. In the serially coupled double-QD case, we also obtain a large enhancement of ZT arising
from higher L. Unlike Ge and κe, S is found almost independent on electron interdot hopping strength.
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I. INTRODUCTION

Recently, many efforts have been devoted to the search
of high-efficiency thermoelectric (TE) materials because of
the high demand of energy-saving solid state coolers and
power generators [1,2]. TE devices have very good potential
for green energy applications due to their desirable features,
including low air pollution, low noise, and long operation
time. However, there exists certain barriers for TE devices to
replace conventional refrigerators and power generators since
TE materials with figure of merit (ZT ) larger than three are
not yet found [1,2]. The figure of merit, ZT = S2GeT/κ ,
defined in the linear response regime is composed of the
Seebeck coefficient (S), electrical conductance (Ge), thermal
conductance (κ), and equilibrium temperature (T ). κ is the sum
of the electron thermal conductance (κe) and phonon thermal
conductance (κph). It has been shown that low-dimensional
systems including quantum wells [3], quantum wires [4], and
quantum dots (QDs) [5] have very impressive ZT values when
compared with bulk materials [3–9]. In particular, ZT of the
PbSeTe QD array (QDA) can reach two [5], which is mainly
attributed to the reduction of κph in QDA [2]. However, QD
junctions with ZT � 3 are not yet reported experimentally.
There are some technical difficulties in using the QD junction
to achieve ZT � 3 via the reduction of phonon thermal
conductivity [1,2].

More than two decades ago, Hicks and Dresselhauss
theoretically predicted that ZT values of BiTe quantum wells
and quantum wires can be larger than one at room temperature
[10,11]. In particular, ZT values of nanowires (with diameter
smaller than 1 nm) may reach 10 based on the assumption
of very low lattice thermal conductivity (κL = 1.5Wm−1K−1

for Bi2Te3). Recently, there has been considerable interest in
ZT values of nanowires filled with QDs [1,2], because it
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is expected that κph can be reduced significantly due to the
introduction of QDs. Such a reduction of κph due to phonon
scattering with QDs in SiGe nanowire filled with QDs was
verified theoretically in Ref. [12]. However, the behaviors of
Ge, S, and κe in nanowires filled with QDs remain unclear
because of the complicated many-body problem involved.
The full many-body effect on the behaviors of electron
thermoelectric coefficients may be analyzed by considering
a single QD or double QDs (DQD) embedded in a single
nanowire to reveal the importance of the electron Coulomb
interaction.

Theoretical studies have indicated that a TE device made of
molecular QD junction [13,14] can reach the Carnot efficiency
if one can neglect κph. Such a divergence of ZT for QDs
is related to the divergence of Ge/κe, which violates the
Wiedeman-Franz law (WFL) [15]. The violation of WFL is
a typical feature for QDs with discrete energy levels [16].
It is hard to realize thermal devices with Carnot efficiency
as considered in Refs. [13,14], because it is impossible to
blockade acoustic phonon heat flow completely in the imple-
mentation of solid state TE devices [1,2]. Therefore, finding
a way to enhance ZT of QD junctions under an achievable
κph value is crucial. Here, we demonstrate that by increasing
the level degeneracy in QDs, it is possible to enhance the
thermoelectric efficiency significantly given the condition
κph/κe � 1. The level degeneracy in a QD can be determined
by its point-group symmetry. For spherical QDs made of
semiconductors with zincblende (e.g., III-V compounds) or
diamond crystal structure (e.g., Si or Ge), the point group is
Td. Thus, the orbital degeneracy L can be described by singlet
(A1), doublet (E2), or triplet (T2). If the QD energy levels are
well described by the effective-mass model (neglecting the
crystal-field effect), then the orbital degeneracy is determined
by the associated orbital angular momentum quantum number
�, and the level degeneracy becomes L = 2� + 1. For example,
the p-like states in a spherical QD are threefold degenerate
with L = 3 (not including spin degeneracy). In an QD junction,
one can tune the gate voltage to access the level with desired
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degeneracy. The high level degeneracy (L) is also feasible
in QDs made of multivalley semiconductors such as Si or
Ge. Our theoretical results may serve as a useful guideline
for optimizing ZT of semiconductor QD [1,2] or molecular
QD systems [13], in which a dominating phonon thermal
conductivity cannot be avoided.

II. FORMALISM

Here we consider nanoscale semiconductor QDs embedded
in a nanowire connected with metallic electrodes. An extended
Anderson model is employed to simulate a QD junction with
degenerate levels [17–19]. The Hamiltonian of the QD junction
system considered is given by H = H0 + HQD , where

H0 =
∑
k,σ

εka
†
k,σ ak,σ +

∑
k,σ

εkb
†
k,σ bk,σ

+
∑
k,�,σ

V L
k,�d

†
�,σ ak,σ +

∑
k,�,σ

V R
k,�d

†
�,σ bk,σ + c.c. (1)

The first two terms of Eq. (1) describe the free electron gas
in the left and right electrodes. a

†
k,σ (b†k,σ ) creates an electron

of momentum k and spin σ with energy εk in the left (right)
electrode. V L

k,� (V R
k,�) describes the coupling between the �th

energy level of the QD system and left (right) electrode. d
†
�,σ

(d�,σ ) creates (destroys) an electron in the �th energy level of
the QD.

HQD =
∑
�,σ

E�n�,σ +
∑

�

U�n�,σ n�,σ̄

+ 1

2

∑
�,j,σ,σ ′

U�,jn�,σ nj,σ ′ , (2)

where E� is the spin-independent QD energy level, and
n�,σ = d

†
�,σ d�,σ , U�, and U�,j describe the intralevel and

interlevel Coulomb interactions, respectively. For nanoscale
semiconductor QDs, the interlevel Coulomb interactions as
well as intralevel Coulomb interactions play a significant role
on the electron transport in semiconductor junctions. It is
worth noting that HQD possesses the particle-hole symmetry.
One can prove it with a simple swap of electron and hole
operators (d�,σ → c

†
�,σ ). The form of HQD is changed only by

constant terms when QD energy levels are degenerate. This
indicates that dynamic physical quantity is unchanged in the
hole picture.

To reveal the transport properties of a QD junction
connected with metallic electrodes, it is convenient to use
the Green-function technique. The electron and heat currents
from reservoir α to the QD are calculated according to the
Meir-Wingreen formula [19]

J n
α = ie

h

∑
jσ

∫
dε

(
ε − μα

e

)n

�α
j

× [
G<

jσ (ε) + fα(ε)
(
Gr

jσ (ε) − Ga
jσ (ε)

)]
, (3)

where n = 0 is for the electrical current and n = 1 for the
heat current. �α

j (ε) = ∑
k |Vk,j |2δ(ε − εk) is the tunneling rate

for electrons from the αth reservoir and entering the j th
energy level of the QD. fα(ε) = 1/{exp[(ε − μα)/kBTα] + 1}

denotes the Fermi distribution function for the αth electrode,
where μα and Tα are the chemical potential and the temperature
of the α electrode. e, h, and kB denote the electron charge, the
Planck’s constant, and the Boltzmann constant, respectively.
G<

jσ (ε), Gr
jσ (ε), and Ga

jσ (ε) denote the frequency-domain rep-
resentations of the one-particle lessor, retarded, and advanced
Green’s functions, respectively.

A. Thermoelectric coefficients

Thermoelectric coefficients including Ge, S, and κe in the
linear response regime can be evaluated by using Eq. (3) with
small 	V = (μL − μR)/e and 	T = TL − TR . We obtain the
following expressions of thermoelectric coefficients:

Ge =
(

δJ 0
α

δ	V

)
	T =0

(4)

S = −
(

δJ 0
α

δ	T

)
	V =0

/(
δJ 0

α

δ	V

)
	T =0

(5)

κe =
(

δJ 1
α

δ	T

)
	V =0

+
(

δJ 1
α

δ	V

)
	T =0

S

=
(

δJ 1
α

δ	T

)
	V =0

− S2GeT , (6)

where

(
δJ 0

α

δ	V

)
	T =0

= ie

h

∑
jσ

∫
dε�α

j (ε)

×
[
δG<

jσ (ε)

δfα(ε)
+ (

Gr
jσ (ε) − G

(a
jσ (ε)

)]δfα(ε)

δ	V
,

(7)
(

δJ 0
α

δ	T

)
	V =0

= ie

h

∑
jσ

∫
dε�α

j (ε)

×
[
δG<

jσ (ε)

δfα(ε)
+ (

Gr
jσ (ε) − G

(a
jσ (ε)

)]δfα(ε)

δ	T
,

(8)
(

δJ 1
α

δ	T

)
	V =0

= i

h

∑
jσ

∫
dε�α

j (ε)(ε − EF )

×
[
δG<

jσ (ε)

δfα(ε)
+ (

Gr
jσ (ε) − Ga

jσ (ε)
)]δfα(ε)

δ	T
,

(9)
(

δJ 1
α

δ	V

)
	T =0

= i

h

∑
jσ

∫
dε�α

j (ε)(ε − EF )

×
[
δG<

jσ (ε)

δfα(ε)
+ (

Gr
jσ (ε) − Ga

jσ (ε)
)]δfα(ε)

δ	V
.

(10)

δG<
jσ (ε)

δfα (ε) is obtained by taking the derivative of the equation of
motion with respect to the change in Fermi-Dirac distribution,
fα(ε). Here we have assumed the variation of the correlation
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functions with respect to δfα(ε) is of the second order. Note
that we have to take the limit 	V → 0 for the calculation
of ( δJ 0

α

δ	V
)	T =0 and ( δJ 1

α

δ	V
)	T =0. EF is the Fermi energy of

electrodes. The one-particle Green’s functions in Eqs. (7)–(10)
are related recursively to high-order Green’s functions and
correlation functions via a hierarchy of equations of motion
(EOM) [20]. This hierarchy self terminates at the 2N -particle
Green function, where N is the number of levels considered
in the QD or coupled QDs.

To reveal the effect of degenerate levels on the thermoelec-
tric efficiency of the QD junction system, all needed Green’s
functions and correlation functions arising from electron-
electron interactions in the QDs considered are computed
self-consistently following the procedures described in our
previous work [20,21]. Our procedure is beyond the mean-field
theory, which is widely used in solving the equation of
motion in the Green function calculation [14]. For L = 4,
our calculation involves solving one-, two-, · · · , up to eight-
particle Green functions.

B. Phonon thermal conductance

The thermoelectric efficiency of a QD junction embedded
in a nanowire is determined by the figure of merit, ZT =
S2GeT/(κe + κph), which involves the κph of the QD junction
system. The optimization of molecular QD junctions under the
condition of κe/κph � 1 has been theoretically investigated
in Refs. [13,14]. However, the condition of κe/κph � 1 is
very difficult to realize in practice. The main goal of this
study is to investigate the effect of energy level degeneracy
on thermoelectric efficiency under the realistic condition with
κph/κe > 1. The phonon thermal conductance of nanowires
has been extensively studied experimentally and theoretically
[22–32]. In Refs. [22–24] it has been shown experimentally
that κph displays a linear T behavior from 20 K to 300 K
for silicon nanowires with diameter 22 nm. The linear T

behavior of κph also holds for T between 100 K and 400 K
for germanium nanowires with diameter 19 nm [25]. Due
to the reduction of κph, ZT of silicon nanowires increases
significantly (with ZT = 1 at 200 K) in comparison with
ZT = 0.01 for bulk silicon at room temperature [4,26].
The linear T behavior of nanowires is an interesting topic.
Many theoretical efforts have been devoted to clarifying why
nanowires with diameters near 20 nm exhibit the linear T

behavior [27–32]. For a true one-dimensional system, the
linear T behavior of κph is expected [33]. To include κph,
we have adopted the Landauer formula given in Refs. [28,30].

κph = 1

h

∫
dωT (ω)ph

h̄3ω2

kBT 2

eh̄ω/kBT

(eh̄ω/kBT − 1)2
, (11)

where ω and Tph(ω) are the phonon frequency and throughput
function, respectively. In a perfect wire throughput is unity
for each open channel, then κph in such a perfect case is

given by κph,0 = k2
Bπ2T Nph

3h
= g0(T )Nph, where Nph is the

total number of open modes and g0(T ) = k2
Bπ2

3h
T = 9.456 ×

10−4T (nW/K2) is called the quantum conductance [34].
Experimentally, it was found that the linear-T behavior in
the ballistic regime only holds for temperature below 0.8 K
for wires of size 200 nm with Nph = 4 (which includes one

longitudinal, one torsional, and two flexural modes) [34].
Beyond 0.8 K, the nonlinear-T behavior was observed due
the contribution of high-energy phonon modes being ther-
mally populated. Low-temperature thermoelectric properties
of Kondo insulator nanowire were also studied in Ref. [35] by
using the Callaway model to describe κph.

If there exists phonon elastic scattering from the disorder
effects of nanowire surface [27–33] or interface boundary
of QDs embedded in the nanowire [36,37], the throughput
function becomes more complicated [27–33]. In general,
the Tph(ω) depends on the length (L̃) and diameter (D)
of the nanowire, phonon mean free path �0(ω), and Debye
frequency (ωD). Realistic calculation of Tph requires heavy
numerical work for treating the detailed phonon dispersion
curves [29–33,36,37], which is beyond the scope of this paper.
However, an empirical expression which works well in general
for semiconductor nanowires at a wide range of temperature
can be found in Ref. [24], which reads

Tph(ω) = Nph,1(ω)

1 + L̃/�0(ω)
+ Nph,2(ω)

1 + L̃/D
(12)

with the frequency-dependent mean free path �0(ω) given by

1

�0(ω)
= B

δ2

D3

(
ω

ωD

)2

Nph(ω), (13)

where Nph(ω) = 4 + A(D
a

)2( ω
ωD

)2 (for ω < ωD) denotes the
number of phonon modes, and a denotes the lattice constant
of the nanowire material. A and B are dimensionless param-
eters chosen to be [24] A = 2.17 and B = 1.2. Nph,1(ω) =
Nph(min(ω,vs/δ)) and Nph,2(ω) = Nph(ω) − Nph,1(ω). vs is
the sound velocity of the nanowire and δ describes the
thickness of the rough surface of the nanowire [24,28]. In
Eq. (12), one essentially replaces the frequency-dependent
mean free path �0(ω) by a constant D for the high-frequency
modes (ω > vs/δ).

For a certain range of temperatures, a simple expression of
κph(T ) for the molecular QD junction system may be used.
One can approximately write [13]

κph = Fsg0(T ), (14)

where Fs is a dimensionless correction factor used to describe
the effect of nonballistic phonon transport due to surface
roughness and phonon scattering from QDs, which replaces
the throughput function Tph(ω) used in Eq. (11). The simple
expression of Eq. (14) with Fs = 0.1 will be used to describe
κph throughout this paper except in Fig. 4. In Fig. 4,
we compare ZT as a function of temperature obtained by
using both Eq. (12) and Eq. (14). It is found that with the
simple scaling factor Fs we can describe the behavior of κph

reasonably well for thin nanowires in the temperature range of
interest. With this simple scaling we can clarify the effect of
level degeneracy (L) on ZT for different magnitudes of κph.

III. RESULTS AND DISCUSSION

Based on Eqs. (4)–(6), we numerically calculate thermo-
electric coefficients including all correlation functions arising
from electron Coulomb interactions in the QDs. Figure 1
shows ZT of a single QD junction as a function of the
QD level E0, which is tuned by gate voltage Vg according
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FIG. 1. Figure of merit as a function of QD energy level tuned by
gate voltage (E0 = EF + 50�0 − eVg) for level degeneracy, L = 1
and 3. (a) kBT = 1�0, (b) kBT = 5�0, and (c) kBT = 10�0. The
correction factor for phonon scattering is Fs = 0.1. We have adopted
the intralevel Coulomb interaction U0 = 60�0 for L = 1 and U0 =
UI = 20�0 for L = 3. UI denotes the interlevel Coulomb interaction.

to E0 = EF + 50�0 − eVg for the case of nondegeneracy
(L = 1) and threefold degeneracy (L = 3). Note that the
role of gate voltage introduced here allows us to tune the
difference between the QD level energy and Fermi energy.
Throughout this paper, we adopt a symmetrical tunneling rate
with �L = �R = � = �0 and all energy scales are in terms of
�0. �0 ≈ 1 meV in typically QD junctions; thus, reasonable
values for U0 and UI in realistic semiconductor QDs are in
the range of 20–100 �0. Figures 1(a)–1(c) are for kBT = 1�0,
kBT = 5�0, and kBT = 10�0, respectively. It is seen that the
maximum ZT for the threefold case is significantly higher than
the corresponding value for the nondegenerate case when the
temperature is high. For example, the maximum ZT [labeled
by (ZT )max is enhanced by nearly two times for kBT = 5�0

and more than two times for kBT = 10�0, although the
enhancement of ZT for L = 3 is small at kBT = 1�0. We
observe several new spectral features with similar ZT values at
E0 values spaced apart approximately by the charging energy
U0 or UI , which is caused by the intralevel and interlevel
Coulomb interactions. For the nondegenerate case (L = 1),
thermoelectric coefficients can be calculated in terms of the
transmission coefficient TLR(ε), which can be expressed as

TLR(ε)

4�L�R

= 1 − N−σ

(ε − E0)2 + �̄2
+ N−σ

(ε − E0 − U0)2 + �̄2
, (15)

where �̄ = �L + �R , and N−σ denotes the single-particle
occupation number. Equation (15) illustrates two resonant
peaks at ε = E0 and ε = E0 + U0 with the probability weights
of (1 − N−σ ) and N−σ , respectively, which are related to the
two M-shaped spectral features in ZT (labeled by ε1,1 and ε1,2)
with the dip position corresponding to the resonance energies.
(Here the intralevel Coulomb interaction used is U0 = 60�0.)
Similarly, for L = 3 at kBT = 1�0 we label the six M-shaped
spectral features by ε3,n (n = 1, · · · 6), which result from the
resonant channels at E0, E0 + UI , E0 + 2UI , E0 + U0 + 2UI ,
E0 + U0 + 3UI , and E0 + U0 + 4UI , respectively. (Here, we

0.0
0.1
0.2
0.3

-3
-2
-1

0
1
2

0 20 40 60 80
0

1

2

G
e 

e2 /h

 L=1
 L=3

(a)kBT=5Γ0
Δ=E0-EF

S
 k

B
/e (b)

κ e
 

k B
Γ 0

/h (c)

Z
T

Δ/Γ0

κph=Fsg
0
(T) 

Fs=0.1

(d)

FIG. 2. (a) Electrical conductance (Ge), (b) Seebeck coefficient
(S), (c) electron thermal conductance (κe), and (d) figure of merit
(ZT ) as a function of QD energy energy level (	 = E0 − EF ) for
different orbital degenerated states at kBT = 5�0. Fs = 0.1 was used
in the calculation of ZT .

have adopted U0 = UI = 20�0. UI denotes the interlevel
Coulomb interactions for the L = 3 case.) These channels
correspond to physical processes of filling the QD with one to
six electrons. At higher temperatures (kBT = 5�0 and kBT =
10�0), the first M-shaped spectral feature for ZT is broadened
and enlarged. (The last M-shaped ZT feature for L = 3 is not
shown in Fig. 1. For L = 3, the other spectral features of
ZT (at ε3,n; n = 2,3,4,5) are suppressed. This is attributed to
the significant reduction of maximum S2 for those channels.
Because of electron-hole symmetry in the system Hamiltonian,
it is expected that the spectrum of ZT is symmetrical about the
middle point of the Coulomb gap (MPCG). For L = 3, MPCG
occurs at eVg = 100�0. Therefore, we only need to focus on
the analysis of ZT optimization near the first spectral feature
in the level-depletion regime, which is defined as the regime
when the average occupation number of the QD summed over
spin (Nt ) is less than one. In general, it occurs at E0 > EF .

To gain a better understanding of the enhancement mech-
anism for (ZT )max resulting from increased degeneracy, we
calculate the Ge, S, κe, and ZT of the QD junction as functions
of the level energy (	 = E0 − EF ) at kBT = 5�0 for L = 1
and L = 3, and the results are shown in Fig. 2. In Fig. 2(a) the
maximum Ge value is enhanced with increasing of degeneracy,
although its dependence of L is not linear. This is mainly
attributed to complicated correlation functions arising from
the electron Coulomb interactions in QD. Ge is much smaller
than G0 = 2e2

h
(the electron quantum conductance) even for

L = 3, which is mainly attributed to strong electron Coulomb
interactions. We note that the Seebeck coefficient is almost
independent of L, whereas Ge and κe are enhanced with
increasing L. However, since κph/κe � 1, the L dependence
of κe won’t affect ZT appreciably. Thus, the enhancement of
ZT shown in Fig. 1(b) mainly comes from the increase of Ge,
not S. In the Coulomb blockade regime, κe and Ge are highly
suppressed. Thus, if one can introduce a mechanism to reduce
κph (with Fs = 0.1 for example), then the maximum value of
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ZT can reach 1 for L = 1 and around 2 for L = 3 as illustrated
in Fig. 2(d).

The calculation of thermoelectric coefficients for the L = 3
case including all correlation functions arising from electron
Coulomb interactions is quite complicated. To reveal L-
dependent (ZT )max, we consider the transmission coefficient
TLR(ε) including only the contribution from the resonant
channel ε − E0, which is approximately given by

TLR(ε) ≈ 4�L�RLPL,1

(ε − E0)2 + �̄2
, (16)

where PL,1 is the L-dependent probability weight for the
resonant channel at ε = E0. We have P3,1 = (1 − N−σ )(1 −
(N−σ +Nσ )+c)(1−(N−σ +Nσ )+c), where c = 〈n�,σ n�,−σ 〉
denotes the intralevel two particle correlation function [38].

Thermoelectric coefficients determined by the TLR(ε) of
Eqs. (15) and (16) can be calculated by Ge = e2L0, S =
−L1/(eTL0) and κe = 1

T
(L2 − L2

1/L0). Ln is given by

Ln = 2

h

∫
dεTLR(ε)(ε − EF )n

∂f (ε)

∂EF

, (17)

where f (ε) = 1/(exp(ε−EF )/kBT + 1) is the Fermi distribution
function of electrodes.

Because Eq. (16) does not take into account the inter-
level correlation functions arising from UI , Eq. (16) is not
adequate for illustrating thermoelectric coefficients for the
situation 	/kBT � 1. Nevertheless, we see that (ZT )max of
Fig. 2 does not occur in the 	/kBT � 1 regime. Therefore,
we consider the limit of weak coupling between QD and
electrodes (�L = �R = � → 0) in Eqs. (15) and (16) and
obtain Ge = G0�πLPL,1

kBT cosh2( 	
2kB T

)
, S = −	/(eT ), and κe = 0. The

L-dependent behavior of (ZT )max is then determined by the
simple expression

ZT = (	/eT )2G0�πLPL,1T

kBT cosh2
(

	
2kBT

)
kph

, (18)

which explains that the L-dependent ZT is determined by
Ge rather than S and why ZT approaches 0 as E0 → EF

for L = 1. Note that ZT for L = 3 does not approach zero
as 	 → 0, because S has a finite value at 	 = 0 [see the
dashed line of Fig. 2(b)]. Such a result also indicates that
the correlation arising from UI cannot be neglected for QD
when E0 is close to EF . Some novel nanoscale TE devices
resulting from the inclusion of UI were theoretically discussed
for designing electron heat rectifiers [38] and current diodes
[39].

Figure 3 shows Ge, S, κe, and ZT as functions of
temperature with 	 = 15�0 for L = 1,3, and 4. From the
application point of view, the temperature dependence of ZT

is an important consideration for developing room temperature
power generators used in consumer electronics [2]. Ge is
highly enhanced for L = 3 and 4 in the whole temperature
regime, but the difference of L = 3 and L = 4 is small,
indicating a saturation behavior as L exceeds 3, mainly because
of the factor PL,1 in Eq. (16). As seen in Fig. 3(b), S is nearly
independent of L for kBT < 7�0, but becomes weakly depen-
dent on L at higher temperature. This implies that the effect
of resonances at εL,2 and εL,3 cannot be ignored for L > 1
in the high temperature regime (kBT � 7�0). Although κe is
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FIG. 3. (a) Electrical conductance (Ge), (b) Seebeck coefficient
(S), (c) electron thermal conductance (κe), and (d) figure of merit
(ZT ) as a function of kBT for various values of level degeneracy (L)
with 	 = 15�0. Other physical parameters are the same as those of
Fig. 2.

enhanced with increasing L as shown in Fig. 3(c), its effect is
insignificant since κe is much smaller than κph. Therefore, the
behavior of ZT with respect to kBT is determined by the power
factor (PF = S2GeT ). We found impressive enhancement of
ZT for L = 3 and 4 for kBT � 4�0. Comparing Figs. 2(d)
and 3(d), we see that the maximum values of ZT occur near
kBT = 	/2.4 for the tunneling rate considered (� = 1�0).
Based on such a condition, we can infer that the maximum
ZT at room temperature kBT = 25 meV will occur near
	 = 60 meV for �0 = 1 meV.

In Figs. 1–3, κph is assumed to obey the simple expres-
sion give in Eq. (14). Here we examine whether the large
enhancement of ZT due to level degeneracy will be destroyed
when a more realistic throughput function given by Eq. (12)
is considered. Figure 4 shows the comparison of ZT and
κph calculated by both Eq. (12) and Eq. (14). In Fig. 4(a),
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FIG. 4. (a) Figure of merit (ZT ) and (b),(c) phonon thermal
conductance (κph) as a function of kBT . The length of the nanowire
used is L̃ = 2000 nm. Other physical parameters are the same as
those of Fig. 3.
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κph is used to obtain the solid (L = 3) and dashed curves
(L = 1) for ZT are calculated by using Eqs. (11) and (12) with
D = 4 nm, δ = 2 nm and L̃ = 2 μm. Other parameters are
given by physical properties of silicon semiconductors [24,28].
The triangle (L = 3) and square marks (L = 1) for ZT are
calculated by using κph based on Eq. (14). The maximum
ZT values of solid and dashed lines are near 1.8 and 0.9,
respectively. The results of Fig. 4(a) indicate that the large
enhancement of ZT resulting from L is unchanged even when
a more realistic expression for κph (which is nonlinear in
temperature) is used. When we compare the spectra of ZT

given by the solid curve and the curve with triangle marks for
the case of L = 3, the curves with triangle marks have better
ZT value at low temperature due to the lower value of κph in
the linear-T expression. Figure 4(b) shows κph for nanowires
with diameter of 10,15, and 20 nm, which agree well with
the experimental results of Ref. [24], lending support for the
validity of this model. The comparison of behaviors of κph for
a 4 nm nanowire obtained by both Eq. (12) (solid curve) and
Eq. (14) (triangles) is shown in Fig. 4(c). It is found that the
results obtained by the simple linear-T expression of Eq. (14)
are fairly close to that obtained by the realistic expression of
Eq. (12) for temperatures between 50 and 200 K. In Fig. 4(c),
κph shows a nonlinear-T behavior between 1 K and 50, which
is mainly attributed to frequency-dependent mean free path.
The dashed and dotted lines show the behavior of electronic
thermal conductance (κe) with respect to temperature. Note
that the Ge, S, and κe in Fig. 4 are calculated according to
the simplified method described in Ref. [38], where we only
considered single-particle occupation numbers and intralevel
two-particle correlation functions. The curves with triangle
and square marks shown in Fig. 4(a) are almost identical to
the black solid line and red dashed line of Fig. 3(d) obtained
by the full calculation.

Next we examine whether the large enhancement of ZT due
to increase of level degeneracy still exists in the case of coupled
double QDs (DQDs). The Hamiltonian of a DQD is given by
HDQD = HQD,L + HQD,R + ULR

∑
�,j nL,�,σ nR,j,σ ′ +

tLR

∑
�,j (d†

L,�,σ dR,j,σ + H.c.) [40–42].
HQD,L (HQD,R) denotes the Hamiltonian of the left
(right) QD as defined in Eq. (2). For simplicity, the interdot
electron hopping strengths (tLR) and electron Coulomb
interactions (ULR) are assumed uniform. Although electron
tunneling currents through DQDs have been extensively
studied by several authors [40–42], the optimization of ZT

including the effect of all correlation functions arising from
electron Coulomb interactions has not been reported. Here,
we assume one nondegenerate energy level for each QD
(L = 1). The energy levels of left QD and right QD are the
same (denoted E0). Based on Eqs. (4)–(6), Ge, S, κe, and
ZT as functions of the QD energy level (which is related to
the gate voltage by E0 = EF + 50�0 − eVg) for KBT = 3,
5, and 7 �0 are plotted in Fig. 5. There are four peaks
labeled by ε1,n (n = 1,2,3,4) in the spectrum of electrical
conductance (Ge). The Seebeck coefficient (S) behaves like
the derivative of −Ge and is vanishingly small at the MPCG
due to electron-hole symmetry. The maximum S occurs near
the onset of the first peak in Ge or the ending of the last
peak. Both κe and Ge are symmetrical with respect to MPCG.
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FIG. 5. (a) Electrical conductance (Ge), (b) Seebeck coefficient
(S), (c) electron thermal conductance (κe), and (d) figure of merit
(ZT ) as a function of QD energy level tuned by gate voltage (E0 =
EF + 50�0 − eVg) in a DQD junction with L = 1 for various tem-
peratures. We have considered the electron hopping strength tLR =
1�0, interdot Coulomb interaction ULR = 40�0, intradot Coulomb
interactions UL = UR = 100�0, �L = �R = 1�0, and Fs = 0.1.

Similar to the single QD L = 1 case in Fig. 1(d) the maximum
ZT values occur at either the level-depletion regime or the
full-charging regime as seen in Fig. 5(d). Here, the maximum
ZT is close to 1.7 at kBT = 3�0 with Fs = 0.1.

To further understand the relationship between physical
parameters and thermoelectric coefficients, we consider some
approximations which include only the dominant correlation
functions to derive TLR(ε) for DQD with L = 1. Simple
analytic expressions of G<

j,σ (ε),Gr
j,σ (ε) and Ga

j,σ (ε) can be
found in our previous work [42], when we only include
intradot two-particle correlation functions in the probability
weights. Here, we include all two-particle and three-particle
correlation functions. Then, the following expression ofTLR(ε)
is obtained by solving the hierarchy of equations of motion
(which terminates at the four-particle Green function) via a
similar procedure as described in Ref. [42].

TLR(ε)/
(
4t2

LR�L�R

)

= P1,1∣∣μLμR − t2
LR

∣∣2

+ P1,2∣∣(μL − ULR)(μR − UR) − t2
LR

∣∣2

+ P1,3∣∣(μL − ULR)(μR − ULR) − t2
LR

∣∣2

+ P1,4∣∣(μL − 2ULR)(μR − ULR − UR) − t2
LR

∣∣2

+ P1,5∣∣(μL − UL)(μR − ULR) − t2
LR

∣∣2

+ P1,6∣∣(μL − UL − ULR)(μR − UR − ULR) − t2
LR

∣∣2
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+ P1,7∣∣(μL − UL − ULR)(μR − 2ULR) − t2
LR

∣∣2

+ P1,8∣∣(μL − UL − 2ULR)(μR − UR − 2ULR) − t2
LR

∣∣2 ,

(19)

where μL = ε − EL + i�L and μR = ε − ER + i�R .
The probability weights are given by P1,1 = 1 − NL,σ̄ −
NR,σ̄ − NR,σ + 〈nL,σ̄ nR,σ̄ 〉 + 〈nL,σ̄ nR,σ 〉 + 〈nR,σ̄ nR,σ 〉 −
〈nL,σ̄ nR,σ̄ nR,σ 〉, P1,2 = NR,σ̄ − 〈nL,σ̄ nR,σ̄ 〉 − 〈nR,σ̄ nR,σ 〉 +
〈nL,σ̄ nR,σ̄ nR,σ 〉, P1,3 = NR,σ − 〈nL,σ̄ nR,σ 〉 − 〈nR,σ̄ nR,σ 〉 +
〈nL,σ̄ nR,σ̄ nR,σ 〉, P1,4 = 〈nR,σ̄ nR,σ 〉 − 〈nL,σ̄ nR,σ̄ nR,σ 〉,
P1,5 = NL,σ̄ − 〈nL,σ̄ nR,σ̄ 〉 − 〈nL,σ̄ nR,σ 〉 + 〈nL,σ̄ nR,σ̄ nR,σ 〉,
P1,6 = 〈nL,σ̄ nR,σ̄ 〉 − 〈nL,σ̄ nR,σ̄ nR,σ 〉, P1,7 = 〈nL,σ̄ nR,σ 〉 −
〈nL,σ̄ nR,σ̄ nR,σ 〉, and p1,8 = 〈nL,σ̄ nR,σ̄ nR,σ 〉, where 〈n�,σ̄ nj,σ 〉
denote the two particle correlation functions and 〈n�,σ̄ nj,σ nj,σ̄ 〉
the three-particle correlation functions (including both intradot
and interdot terms). Note that the probability weights satisfy
the conservation law

∑
m P1,m = 1. UL(R) and UL,R denote

the intradot and interdot Coulomb interactions. When all
correlation functions of DQDs are included as in Refs. [21,40],
it is difficult to find an analytical expression for TLR(ε).
The thermoelectric coefficients, Ge, S, κe, and ZT obtained
by using Eq. (19) are plotted in Fig. 6. The results are in
very good agreement with those shown in Fig. 5, which are
obtained by the full calculation, including all correlation
functions. It should be noted that Eq. (19) works well only
in the limit tLR/kBT � 1. If one would like to study the
spin-dependent thermoelectric coefficients of DQD in the low
temperature regime (kBT < tLR), all correlations functions
should be included [40].

In Figs. 5 and 6, the peak positions ε1,n (n = 1,2,3,4)
correspond to the channels with probability weights P1,1,
P1,3, P1,6, and P1,8, respectively. There exists an interesting
behavior for S at low temperature (kBT = 3�0). We found
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FIG. 6. (a) electrical conductance (Ge), (b) Seebeck coefficient
(S), (c) electron thermal conductance (κe), and (d) figure of merit
(ZT ) as a function of QD energy level tuned by gate voltage
(E0 = EF + 50�0 − eVg) in a DQD junction with L = 1 for various
temperatures calculated by using Eq. (19). Other physical parameters
are the same as those of Fig. 5.

that S is a linear function of eVg near the maximum of
Ge. From the κe behavior shown in Figs. 5(c) and 6(c), the
electron heat flow is maximized near the midpoint between
the first (or last) two resonant channels, and it increases
with increasing temperature. Equation (19) allows us to
obtain an analytic form of thermoelectric coefficients, which
is very useful for clarifying how thermoelectric coefficients
are influenced by tunneling rates, interdot hopping strength,
and electron Coulomb interactions. Our analysis shows that
S is independent of tLR and it has a linear dependence of
	 = E0 − EF [see Eqs. (21) and (22)] near maximum ZT .
As a consequence, the trend of ZT with respect to tLR is
determined by that of Ge for κph/κe � 1.

Next we consider the case with twofold degenerate levels
(L = 2) for each QD in the DQD junction. Such twofold
degeneracy can be realized in QDs with suitable symmetry.
For example, the x- and y-like states in a disk-shaped QD are
degenerate. Due to symmetry, the intradot electron hopping
process is prohibited, whereas the interdot electron hopping
strength is nonzero. We assume tLR = 1�0, the same as that of
the L = 1 case. The intradot Coulomb interactions are taken
to be UL,i,j = UR,i,j = UI = 50�0, where i,j = 1,2 denote
the two degenerate levels within the same QD. The interdot
Coulomb interaction is taken as UL,R = 40�0. The calculation
of thermoelectric coefficients of DQD with L = 2 involves
solving one-, two-, · · · , up to eight-particle Green functions.
Due to the presence of the tLR term, the numerical procedure is
much more complicated than that of a single QD with L = 4.
Based on Eqs. (4)–(6), we calculate the thermoelectrical
coefficients of DOD for the L = 2 as functions of the QD
energy level as shown in Fig. 7. The first four resonant channels
of Ge (on the left hand side of MDCG) are approximately given
by ε2,1 = E0, ε2,2 = E0 + ULR , ε2,3 = E0 + ULR + UI , and
ε2,4 = E0 + 2ULR + UI , in which the small tLR is neglected
since tLR � UL,R . The oscillatory behavior of Ge displayed in
Fig. 7(a) is similar to the Ge spectra observed experimentally
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in tunneling current measurements of PbSe QD (which has
a sixfold degenerate excited state) and carbon nanotube
QD (which has an eightfold state) [43,44]. Although the
S spectrum exhibits more bipolar oscillatory structures, the
maximum S value does not increase with increasing L. This
feature is the same as that of a single QD case. Figure 7(d)
shows a large enhancement of maximum ZT arising from
the degeneracy effect. In the current case, ZTmax reaches
around 2.7. Comparing Fig. 7(d) with Fig. 5(d), we see an
enhancement of maximum ZT from around 1.7 to 2.7 when
L increases from 1 to 2 for DQD junction when Fs = 0.1. We
expect an even larger enhancement to occur for higher level
degeneracy. Unfortunately, the computation effort for L > 2
for a DQD junction is prohibitively large if all Green functions
and correlations functions are to be included.

To clarify the behavior of ZTmax in the level-depletion
regime (with Nt < 1), we can approximately write (by keeping
only the dominant channel)

TLR(ε) ≈ 4�L�Rt2
LRLPL,1∣∣(ε − E0 + i�L)(ε − E0 + i�R) − t2

LR

∣∣2 , (20)

where PL,1 is the probability weight for DQD in the level-
depletion regime. Under the assumption of �L = �R → 0 and
tLR/kBT � 1, we have

L0 = 2

hkBT

π�t2
LRLPL,1(

4t2
LR + �2

) 1

cosh2
(

	
2kBT

) (21)

and

L1 = 2

hkBT

π�t2
LRLPL,1(

4t2
LR + �2

) 	

cosh2
(

	
2kBT

) . (22)

From Eqs. (21) and (22), we have Ge = e2L0 and S =
−	/(eT ). This reveals the behavior of S around the maximum
of Ge at kBT = 3�0 in Fig. 6(b) and L-dependent ZTmax

determined by Ge in Fig. 7(d). Note that if we artificially
set Fs = 0 (i.e., neglecting κph), one can prove that the
enhancement of ZTmax arising from L will disappear due to the
L independence of the ratio Ge/κe and L independence of S.

If we choose a much higher value of Fs (e.g., Fs = 1) in
Eq. (14), we will have the condition κph/κe � 1. In this
situation, L dependence of ZTmax is fully determined by Ge

and we have ZT linearly proportional to L, since PL,1 in
Eq. (18) is close to 1 under the condition (E0 − EF )/kBT � 1,
and the ZT values will be approximately proportional to 1/Fs .
Finally, we would like to point out that QD junctions embedded
in a silicon nanowire can be realized by the advanced technique
reported in Refs. [45,46].

IV. CONCLUSION

We have theoretically investigated the effects of level
degeneracy on thermoelectric properties of QDs embedded
in a thin nanowire junction in the Coulomb blockade regime.
All the correlation functions arising from electron Coulomb
interactions for electrons in the degenerate levels are included
in our calculation. We found that the maximum values of
ZT can be highly enhanced with level degeneracy under
the typical condition with κph much larger than κe. When
(E0 − EF )/kBT � 1, S is independent of L. Therefore, the
enhancement of ZTmax in the level-depletion regime is mainly
attributed to the increase of Ge. Large enhancement of ZT due
to the increase of level degeneracy is also found in the presence
of finite electron hopping in coupled QD system. In our
studies, we assumed a simple expression κph = Fsg0(T ) for
the phonon thermal conductance. However, it is worth pointing
out that our conclusion on the effect of level degeneracy on ZT

is not limited to the linear T behavior of κph (as illustrated in
Fig. 4). The enhancement due to level degeneracy holds as long
as κph > κe, regardless of the temperature dependance of κph.
This implies that the design principle based increasing level
degeneracy is applicable for composite materials involving
arrays of coupled QDs [1,2] and molecular QDs [13].
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