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We study the unique physical properties of topological nodal-loop semimetals protected by the coexistence
of time-reversal and inversion symmetries with negligible spin-orbit coupling. We argue that strong correlation
effects occur at the surface of such systems for relatively small Hubbard interaction U, due to the narrow
bandwidth of the “drumhead” surface states. In the Hartree-Fock approximation, at small U we obtain a surface
ferromagnetic phase through a continuous quantum phase transition characterized by the surface-mode divergence
of the spin susceptibility, while the bulk states remain very robust against local interactions and remain nonordered.
At slightly increased interaction strength, the system quickly changes from a surface ferromagnetic phase to a
surface charge-ordered phase through a first-order transition. When Rashba-type spin-orbit coupling is applied to
the surface states, a canted ferromagnetic phase occurs at the surface for intermediate values of U. The quantum
critical behavior of the surface ferromagnetic transition is nontrivial in the sense that the surface spin order
parameter couples to Fermi-surface excitations from both surface and bulk states. This leads to unconventional
Landau damping and consequently a naive dynamical critical exponent z & 1 when the Fermi level is close to the
bulk nodal energy. We also show that, already without interactions, quantum oscillations arise due to bulk states,
despite the absence of a Fermi surface when the chemical potential is tuned to the energy of the nodal loop. The
bulk magnetic susceptibility diverges logarithmically whenever the nodal loop exactly overlaps with a quantized
magnetic orbit in the bulk Brillouin zone. These correlation and transport phenomena are unique signatures of

nodal-loop states.
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I. INTRODUCTION

The theoretical proposal and experimental verification of
Weyl and Dirac semimetals [1-18] has shown that topological
electronic structure is not restricted to gapped systems [19-23],
but also occurs in gapless systems such as nodal metals [24].
Recently, the interest in topological semimetals has been
extended from systems with point nodes to those with a
three-dimensional (3D) nodal loop, “nodal chain” [25], “nodal
arc”’[26], and even ‘“nodal surfaces” [27], in which there are
bulk band touchings along isolated or connected 1D lines, or
even at 2D surfaces in the 3D Brillouin zone (BZ) instead of
at isolated points.

A growing number of material systems have been theo-
retically proposed to realize nodal-loop semimetals (NLSMs)
[28-37]. In particular, ZrSiS and PbTaSe, have been exper-
imentally confirmed by angle-resolved photoemission spec-
troscopy (ARPES) measurements [31,32,34], and the bulk
nodal loops in the ZrSiS-family compounds were further inves-
tigated by de Haas—van Alphen (dHvA) quantum oscillations
[38,39] and magnetotransport measurements [40].

In this paper, we discuss some fundamental physics of
NLSMs which is distinct from Weyl and Dirac systems. First,
we argue that nodal-loop semimetals are prime candidates to
observe correlation effects at their surfaces. This is because,
unlike point node materials which possess highly dispersive
bulk and surface states (typically with large Fermi velocities
derived naturally from the several eV width of the associated
bands), nodal-loop semimetals possess “drumheadlike” sur-
face states. Depending on surface terminations, the states exist
either inside or outside the projection of the nodal loop in the
surface BZ.

The dispersion of such drumhead surface states is typically
much smaller than that of the bulk valence and conduction
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bands, raising the interesting possibility of correlation effects
occurring at the surface even when interactions are too weak
to disturb the electronic states with large kinetic energy in
the interior of the sample. Correlations may be induced by
Coulomb interactions and/or coupling to phonons, due to
the small kinetic energy and large surface density of states.
For example, it has been theoretically proposed that such
flat surface states might support s-wave superconductivity
whose critical temperature scales linearly with the coupling
strength [41-43]. Here we argue that repulsive Coulomb
interactions generate unusual surface charge density wave
and ferromagnetic states, for moderate interaction strength for
which the bulk states are unaffected. We expound this in detail
through a thorough Hartree-Fock study of a NLSM, including
both Hubbard U and surface Rashba-like spin-orbit coupling
(SOC) [44]. This yields a phase diagram showing several
correlated surface phases at relatively small values of U.

Given the prospect for surface quantum phase transitions
(QPTs) in these systems, it is interesting to explore the
associated quantum critical behavior. We find that such surface
QPTs can realize entirely different critical universality classes,
different from either two- or three-dimensional bulk QPTs,
owing to their mixed dimensional character. Specifically,
a distinct process of Landau damping of order-parameter
fluctuations into the third dimension arises, and dominates
under conditions which we explain.

It is also important to be able to characterize a NLSM by
probes other than photoemission, which may be difficult or
impossible on many samples, or on appropriate crystal sur-
faces. In that vein, we derive the existence of unconventional
quantum oscillations in NLSMs, which are present even when
the Fermi level is exactly at the degeneracy level, so that the
system has no true Fermi surface.
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These results are expounded in detail in the remainder
of the paper, which is organized as follows. In Sec. II,
we first a noninteracting tight-binding (TB) model on a
tetragonal lattice with both inversion (P) and time-reversal (7)
symmetries, which can realize the NLSM phase when spin-
orbit coupling (SOC) is neglected. Then, in Sec. III we apply
on-site Hubbard interactions (the strength of the interaction
is denoted by U), and solve such an interacting model in a
slab geometry within the Hartree-Fock (HF) approximation,
both with and without Rashba SOC, and complement the HF
analysis with a study of the susceptibility in the random-phase
approximation. Next, in Sec. IV, we consider Landau damping
of ferromagnetic surface fluctuations, which control quantum
critical phenomena [45,46]. We find in particular that when
the Fermi level is close to the nodal energy, the dominant
process is one in which an electron-hole pair is shared between
the bulk and surface, leading to an unconventional dynamical
coefficient ~|v,,|q) (v, is the bosonic Matsubara frequency,
q) is the magnitude of in-plane wave vector). This implies a
different universality class for the ferromagnetic QPT. Finally,
In Sec. V, we discuss quantum oscillations due to the bulk
nodal-loop states, showing that they arise even in the absence
of a Fermi surface, and conclude with a summary in Sec. VL.

II. NONINTERACTING TIGHT-BINDING MODEL

We first construct a noninteracting TB model on a tetragonal
lattice with both 7 and P symmetries neglecting SOC. As
schematically shown in Fig. 1(a), there are two sublattices
denoted by A and B in each primitive cell, and the hopping
from A to B along the positive (negative) z direction is denoted
by #; (t,). Moreover, there are intrasublattice in-plane hopping

el

M, (0, ) T (0,0)

kX X

FIG. 1. Schematic illustration of the noninteracting tight-binding
model for nodal-loop semimetals on a tetragonal lattice. (a) Lattice
structure and hopping terms; the thick black arrow indicate surface
electric field which generates Rashba SOC denoted by Ag. (b)—(d)
Nodal loops projected onto the (001) surface BZ, with the shaded
region indicating the drumhead surface states, (b) for #, < ¢, (c)
h =1, and (d) h > 1.
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FIG. 2. Surface band structures of the noninteracting tight-
binding model without surface SOC, (a) and (b), and with surface
SOC, (c) and (d). (a) t, = 0.75t;, and (b) t, = 1.25¢1; (¢c) t, = 0.75¢4,
Ar = 0.0625t),and (d) 1, = 1.25¢;, Ag = 0.0625¢,. The energy bands
are plotted along the high-symmetry path marked by the thick black
lines in Fig. 1(b).

to and intersublattice in-plane hopping #3. Without the in-plane
hoppings, the system can be considered as arrays of decoupled
1D Su-Schrieffer-Heeger (SSH) chains [47,48]; the in-plane
hopping #; couple these chains together so that there is band
inversion around only one of the eight time-reversal invariant
momenta (TRIM). The nodal loop is centered around the TRIM
with inverted band order.

Note that this model, defined on a bipartite lattice, possesses
a “chiral symmetry” when 7y = 0. In this special case,
CH({k)C™! = —H(k), where C = o,, and H(k) is the model
Hamiltonian at wave vector k. This implies that if E(k) is an
eigenenergy at k, then — E (k) is also the eigenenergy. Adding
the #p hopping term break this symmetry.

The specific properties of the nodal loop such as its size
and shape are controlled by 7, #,, and #3, while fy renders
dispersions to both the bulk nodal energy along the loop and
the otherwise flat drumhead surface states. Hereafter we fix
t1 =0.8, 13 =0.2, 1o = 0.01, and 1, > 0 is the only variable
in the noninteracting situation. In particular, when #, < 7,
there is a circular nodal loop centered at the X [(m,7,7)]
point. If the surface [49] is truncated at the A sublattice, one
obtains drumhead surface states inside the projected nodal
loop centered at X as shown in Figs. 1(b) and 2(a). If £, = 1y,
the nodal loop is diamondlike and connects the TRIM X and
M [(7,0,7)]. The corresponding surface states fill the region
inside the diamond as shown in Fig. 1(c) [50]. When 1, > 1],
the nodal loop is centered at Z [(0,0,77)] and the surface states
fill the region outside the projected nodal loop [Figs. 1(d)
and 2(b)]. It worthwhile to note that for fixed bulk hopping
parameters the drumhead surface states can be either inside
or outside the projected nodal loop depending on surface
terminations (see Appendix C), which is essentially due to
the properties of 1D SSH chains. Therefore, the surface states
covering a large portion of the surface BZ as shown in Fig. 1(d)
can also be realized when #; < ¢, if the system is terminated
at the other sublattice.
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Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable Rashba
spin-orbit splittings in the surface states. Such surface Rashba
splittings have been observed in the surfaces of nonmagnetic
and magnetic metals [51-53], as well as semiconductor
heterostructures [54]. Thus we also take the surface Rashba
effects into account by adding a Rashba-type first-neighbor
spin-dependent hopping within the surface atomic layer, of
which the amplitude is denoted by Ag. The spin-degenerate
drumhead surface states are splitted by such surface SOC
[see Figs. 2(c) and 2(d)]; moreover, the surface states acquire
nontrivial spin textures. We thus expect that the effects of
Coulomb interactions in these two situations (with and without
surface SOC) would be different.

III. EFFECTS OF HUBBARD INTERACTIONS
A. Without surface Rashba spin-orbit coupling

We first consider the situation without surface Rashba split-
tings, and apply Hubbard interactions, Hy = U ), i;+/i;y,
to the above noninteracting tight-binding model in a slab
geometry. As the Coulomb interaction at the surface is
expected to be strongly screened due to the large surface
density of states (DOS), a Hubbard-type local interaction is
a good description if we are mainly interested in the effects
on the surface states. On the other hand, unlike the surface
states of topological insulators, there is no simple low-energy
effective Hamiltonian describing the drumhead surface states
of NLSMs. Thus we have to construct a slab and apply Hubbard
interactions to all the electrons in the slab. Hereafter we will
only consider half-filled systems, and we say the system is
charge homogeneous with zero charge density if each site is
exactly half filled, i.e., there is one electron at each site.

The Hubbard interactions are treated by self-consistent
Hartree-Fock (HF) approximation (see Appendix A for de-
tails). The HF ground states for a slab of 50 primitive cells
are shown in Fig. 3(a). When U = 0, the system is in the
NLSM phase. When U ~ 10-20% ¢, the system enters into
a surface FM (denoted by “surf FM” in the figure) phase
with the ferromagnetic order localized at the surface. As U
is further increased, a surface charge-ordered phase becomes
energetically favored over the surface FM phase. The system
enters into the surface CDW phase through a first-order
transition. The inset in Fig. 3(a) shows the local charge density
along the z direction for U = 0.5¢; and #, = 1.25¢,. Clearly
the charges are strongly localized at the surface, as the density
oscillation decays rapidly into the bulk.

The smallness of the critical U for the instability of the
NLSM surface states, demonstrated in the figure, is expected
from the flatness of the surface band. More specifically, we
would expect from the Stoner criteria of ferromagnetism that
the critical U should be of order of the inverse density of
states at the Fermi level, i.e., proportional to the surface stand
bandwidth, or 4¢y. Since #y = 0.01, the critical U may actually
appear surprisingly large. This is due to the fact that the surface
states have a nonzero width, and so the effective interaction is
reduced by the wave-function amplitude at the surface.

To study the nature of the surface FM transition, we have
calculated the spin susceptibility of a 30-primitive-cell slab in

PHYSICAL REVIEW B 95, 075426 (2017)

1-‘ 0.2\

2 4 6
Z (number of primitive cells)

surf CDW

Uht

stripe CDW S
0.8
D
L - canted FM
t‘_ 06' e O -
- T
0.4} e te
B )
0-2¢ NLSM
O L 1 1 1 1
0.8 1 1.2 1.4 1.6
t2/'[1

FIG. 3. Phase diagram of the NLSMs with Hubbard interactions
in the , — U parameter space: (a) without surface Rashba SOC, with
the inset shows the local charge density distribution in the surface
CDW phase when t, = 1.25¢; and U = 0.5¢;, and (b) with surface
Rashba SOC, where Ag = 0.0625¢,.

the random-phase approximation (RPA) [55] (see Appendix B
for details). Fig. 4(a) shows the eigenvalues of static RPA
spin susceptibility at different wave vectors at U = 0.25¢; and
t, = t1. As clearly shown in the figure, there are a large number
of quasidegenerate bands with small amplitudes; moreover,
there are two degenerate bands with much larger amplitudes
which tend to diverge at I'. The eigenvectors of the RPA spin
susceptibility indicate that those quasidegenerate bands with
small amplitudes are from the bulk spin fluctuations, while
the two bands with much larger amplitudes are dominated
by acoustic and optical surface fluctuation modes. This is
consistent with the expectation that the drumhead surface
states are much more sensitive to Coulomb interactions than
the bulk states due to the much smaller bandwidth. From
Fig. 4(a) it is also evident that the surface spin-fluctuation
modes tend to diverge at T = (0,0), indicating a continuous
quantum phase transition at the surface driven by Hubbard
interactions. We refer the readers to Appendix B for technical
details of the implementation of RPA on the slab as well as the
properties of the eigenvalues and the eigenvectors of the spin
susceptibility.

In Fig. 4(b) we show the parameter dependence of the
RPA surface spin susceptibility at T' = (0,0) calculated in a
slab geometry including 30 primitive cells, which is denoted
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FIG. 4. (a) Dispersion of the spin susceptibility (x..(¢)) for a
60-layer slab of nodal-loop metal with #, = #; and U = 0.25¢,. (b)
The U dependence of the surface spin fluctuations at I' (denoted by
x5y for different 1, values.

by X;;"f(F). As is clearly seen from the figure, for a given
f2, the surface fluctuation modes at T increase with U, and
diverge at some critical U, indicating the transition from a
nonordered phase to a surface FM phase. The gray dotted
line in Fig. 3(b) marks the numeric threshold above which
X ;;‘rf (") is considered as diverging. It is interesting to note that
as t, increases from 0.75¢; (denoted by blue crosses) to 1.5¢
(denoted by cyan diamonds), the critical U value is reduced
by ~50%. This is because the surface DOS becomes larger for
greater f, values [Figs. 1(b)-1(d)], thus the system becomes
more sensitive to Coulomb interactions [56].

B. Hubbard interactions with surface Rashba SOC

We continue to study the effects of Hubbard interactions
on NLSMs including surface Rashba splittings with Ag =
0.0625t,. Since the surface electric field decays quickly into
the bulk, it is assumed that the Rashba SOC A applies only to
the topmost and bottommost layers of the slab. The system with
such surface SOC expects to be more robust against Coulomb
interactions due to the lifted spin degeneracy of the drumhead
surface states as shown in Figs. 2(c)-2(d). Moreover, as the
surface states at the Fermi level acquire nontrivial spin textures
due to Rashba SOC, it is unlikely that a charge-ordered phase
would be favored.

Both of the above two conjectures are numerically verified
as shown in Fig. 3(b). When surface SOC is turned on, our
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noncollinear self-consistent HF calculations (see Appendix A
for technical details) suggest that the system tends to enter
into a surface canted FM phase around some moderate U
values (U, ~ 35-65%t,). The surface canted FM phase is
characterized by ferromagnetically coupled z components of
spins (m_) which are exponentially localized at the surface,
and possibly with small spin cantings toward the in-plane
directions.

‘We have also checked the U dependence of m, at the surface
layer, and find that |m,| increases continuously with U when
U > U,, indicating a continuous quantum phase transition.
The critical value U, decreases with the increase of ¢, due to
the larger surface DOS for greater #, values. The continuous
quantum phase transition is further verified by the divergence
of surface spin susceptibility (data not shown). Moreover, it
turns out that |m,| is likely to have a square-root dependence
onU — U, (lm;| ~ ~/U — U,), which is in agreement with the
behavior of Stoner ferromagnetism [57].

The spin susceptibilities are expected to be anisotropic
due to the surface Rashba SOC, thus the in-plane spin
susceptibilities ., and y,, deserve further discussions. The
RPA surface in-plane spin susceptibilities [denoted by x *(q)
and X;;rf(q)] are shown in Fig. 5. The blue circles, magenta
crosses, red diamonds, and cyan plus signs represent the cases
oft, = 0.75t1,1, = 11,1, = 1.25¢;,and , = 1.5¢; respectively;
the U value is fixed as 0.5¢;. As shown from the figure,
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FIG. 5. Wavevector dependence of the surface-mode in-plane
spin susceptibilities for different #, values at fixed U = 0.5¢y, (a) x>
and (b) x,,. The high-symmetry points M = (,0), M, = (0,7),
X = (w,mr),and I' = (0,0).
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when 7, < 1.25¢, both X;ff(q) and X;;rf(q) are peaked at I,
indicating that the in-plane spin fluctuations tend to preserve
the lattice translational symmetry. While when #, = #, the
peak of X;ﬂrf(q) is shifted to M, = (0,7), and correspondingly
X;;rf(q) becomes peaked at M| = (;r,0). It implies that the
in-plane spin components might develop some interesting
winding textures in such a way that the x component (y
component) is ordered antiferromagnetically along the y (x)
direction. More details of computing the surface RPA spin
susceptibilities are shown in Appendix B.

More interestingly, when 7, > #; the system tends to go
to a surface stripe charge-ordered phase [indicated by “stripe
CDW” in Fig. 3(b)] at large U values, in which there are
alternating positive and negative charge stripes along either
the x or the y direction at the surface. There is a transition
from such a surface stripe CDW phase to a surface CDW with
homogeneous in-plane charge density as U further increases.
Both of these transitions (from canted FM to stripe CDW
phase, and from stripe CDW to in-plane homogeneous CDW
phase) turn out to be first-order transitions whose phase
boundaries are marked by solid lines as shown in Fig. 3(b).
Again, we emphasize that the charge and spin order parameters
in all of these phases are exponentially localized at the surface
and the bulk remains nonordered.

In concluding this section, we remark that the mean-
field treatment is of course approximate, and so that some
quantitative differences from exact results should be expected.
This may be exacerbated by the gapless bulk quasiparticle
states, which remain gapless even in the ordered phases
[58]. However, we believe the mean-field results should be
qualitatively correct, and that the results capture the proper
variation with coupling constants, etc. To go beyond this
approach, it would be interesting for the surfaces of nodal-loop
metals using more advanced many-body numerical techniques
such as quantum Monte Carlo or dynamical mean field theory.
However, this is certainly beyond of the scope of the present
paper, and we leave it for future study.

IV. FERROMAGNETIC QUANTUM CRITICALITY
AT THE SURFACE

A. Framework and general considerations

In this section we discuss the quantum critical (QC)
behavior near the ferromagnetic transition at the surface of a
nodal-loop semimetal neglecting effects of surface SOC. The
prototypical description of the quantum phase transition in an
itinerant ferromagnet is that of Hertz-Millis theory [45,46],
in which the system is described by an effective action for
the order parameter in which the itinerancy of the electrons is
reflected by a term representing Landau damping, due to the
coupling with Fermi-surface fluctuations [59]. The Landau
damping gives rise to a term quadratic in the order parameter
with a dynamical coefficient ~|v,,|/q in the effective action
of the spins. Based on this, Hertz derived the dynamical
critical exponent z =3 for FM transitions in 2D and 3D
Fermi-liquid systems [45]. The dynamical critical exponent
determines the quantum critical phenomenology such as the
dependence of critical temperatures on U, the specific heat,
and the crossover behavior from quantum to classical regime
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at finite temperatures [45,46]. In two dimensions, there are
known flaws in the purely order parameter description, and
much theoretical work has gone into improving it [60-62].
Nevertheless, the dynamical scaling z & 3 is believed to still
be quite a good approximation, if not exact.

In NLSMs, we have shown in Sec. I1I that the FM transition
occurs only at the surface and no order occurs in the bulk,
so that one may naively expect purely two-dimensional FM
quantum criticality with z &~ 3. However, in reality the situa-
tion is more complicated due to the gapless bulk states. The
electron-hole excitations which couple to the surface spin order
parameter arise both from the surface bound states and the
extended bulk states, which have an amplitude at the surface.
Given the critical role of Landau damping in the theory, we may
expect that the quantum critical behavior would be different
for such a surface FM transition with gapless bulk excitations.

We confine our analysis here to the level of Landau
damping, i.e., the Hertz-Millis order-parameter description,
which is sufficient to distinguish the difference between purely
2D critical behavior and something else. This is already
somewhat subtle because several distinct processes may con-
tribute to the damping, i.e., the nonanalytic part of the surface
spin susceptibility, and one must carefully take into account
the momentum and frequency behavior of surface Green’s
functions in describing this. It is convenient to decompose the
electron-hole excitations into different types. In the first type,
both the electron and the hole are created in the surface bound
states as denoted by “s — s” in Fig. 6(a), in the second type, that
both the electron and the hole are created in the bulk continuum
which is denoted as “b — b” in Fig. 6, and finally in the last
type, a hole is created in the surface states while an electron is
added to the bulk states as denoted by “s — b” in Fig. 6(b).

We consider two different situations. The first situation is
that the system is (slightly) hole-doped with partially filled
surface bands as schematically shown in Fig. 6(a). In the
second situation, the Fermi level is very close to the nodal
energy and the drumhead surface states are almost completely
filled as sketched in Fig. 6(b). In the first situation we only
consider the s — s and b — b type excitations, since the s — b
process requires a large momentum transfer, and we are
only interested in low-frequency long-wavelength excitations;
while in the second case we only consider the s — b and b — b
excitations since the surface bands are fully occupied.

| g

)

M«— X ——T M<—— X ——>T

FIG. 6. Schematic illustration of different types of electron-hole
excitations that couple to surface spins. (a) When the surface bands are
partially filled. (b) When the surface bands are (nearly) completely
filled. The electron-hole excitations purely from the surface (bulk)
states are denoted by “s-s” (“b-b”), while the process of creating a
hole in the surface states and an electron in the bulk states is denoted
by “s-b.”
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B. Surface Green’s function and dynamical susceptibility

We start by calculating the surface Green’s function (SGF)
of NLSMs using the method reported in Ref. [63]. Note that the
SGF includes contributions from both extended and localized
eigenstates, and by using an exact method for calculating the
SGF, we capture subtle behaviors due to varying contributions
of the two types of states. For the tight-binding model given
in Sec. II, the surface Green’s function [G,(k),w)] can be
calculated analytically at low energies when the size of the
nodal loop is much smaller than that of the BZ. It turns out
that the SGF has a simple analytic solution,

~

—
nly*—4+y)/2 — /il
1 o

N —— ) (])
15 2~
2 S k) — a2+ R

G(ky,w) =

where ky = (k..k,), y = (7 + 1} — 3&%)/(i12), and
» = [w — 2tg(cos ky + cosky) + 1]/ 1,
~ o = [to(k2 +k2) — 410] + 7}/ 2 ©)
where 11 = i/t with  being the Fermi level, and
71 = 1 + 2t3(cos ky + cos ky)
~1y — 4+ n(k + k). 3)

We consider the situation that the nodal loop is centered at
(mr,m,m), the radius of which is much smaller than the size of
the Brillouin zone, and assume that #, = t3, which is nothing
but saying that the bulk Fermi velocity is isotropic [64]. Then
the second lines in Eqgs. (2) and (3) follow by expanding
cosk, and cosk, around k, =7 and k, = 7. In Eq. (1) ko
is introduced as a parameter characterizing the size of the
nodal loop:

N —t=13(kj — ko) = ta(kj — k7). @)

Again, we have assumed that 7, = #3 so that the bulk Fermi
velocity is isotropic. Starting from Eq. (1) it is straightforward
to show that when —|kﬁ -kl <a< |kﬁ — k3|, w is in the
bulk gap (the gap is locally defined at each k and vanishes
at the nodal loop), and there is a pole at @ = 0 for k; < ko
corresponding to the drumhead surface states (the surface
is prepared by making a truncation at the A sublattice),
while when @ > |kf — k| or @ < [kf — kjl, @ is in the bulk
continuum. Hereafter we will set the bulk nodal energy as 0, so
o is shifted by a small constant: @ = @ — t()(kﬁ — k) + 1.
We refer the readers to Appendix C for details in calculating
the surface Green’s function.

Equation (1) may be expressed using the spectral represen-

tation as
1
GS(kH,a)) = —/dé
1)

where &, is an infinitesimal quantity which is greater than (less
than) zero if € > [t (¢ < 1). Or, in the Matsubara formalism,

oy L [ geS®iO)
Gk iwy) = n /de iwg/th — (e — )’

fKp,e€)
w/ty — (e — ) +i8

&)

(6)
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The spectral density f(k;,e) consists of two terms:

f&Ky,e) = fiky,e) + fiky,e). 7

fr(K),€)is from the bulk continuum, and f;(k,€) corresponds
to the surface bound state:

Jo(ky,€) = =~ 0(le — toxi,| — |xx, D),
€ — l‘oka
f&(kllie) = I-xk” |(S(6 - %Xk” )0(_xk‘|)7 (8)

where x; = ki — kg, and o =to/t.

Now it is straightforward to calculate the dynamical
susceptibility using the surface Green’s function shown in
Eq. (5)—(8). To be specific, using the Matsubara formalism,
the dynamical susceptibility is expressed as

, 1 . . .
x(qy,ivm) = _E/ ZGs(kllslwn)Gs(kll + 4. oy + 1Vy),
ki

C))

where ka = [dk,dk,/(27)*, B =1/(kgT) is the inverse
temperature, and (k, w) and (q, v) denote Fermionic and
Bosonic wave vectors and frequencies respectively. k; (q;)
represents an in-plane wave vector. Plugging Eq. (5) in
to Eq. (9), and summing over the Matsubara frequencies
using the standard contour technique, then taking the analytic
continuation iv,, — v + i8, one obtains

—HEHY e -
Im x (q),v, ) =/ / — f(=e k) fO — ek +qp),
ky J—

poh
(10)

where & = u/f, and vV =v/f,, with u being the Fermi
level. Since f = fs + fp, x(qy,v) can be decomposed into
four terms which are the bulk-bulk (xup), surface-bulk (xsp),
bulk-surface (xps), and surface-surface (xss) contributions. We
will discuss these contributions separately in the following
paragraphs.

C. Partially filled surface bands

Let us first consider the situation with partially filled surface
bands as shown in Fig. 6(a) with u < 0. The dynamical
susceptibility contributed by the s — s process [denoted by
Xss(qy,v)] behaves similarly to the 2D Linhard function
because the SGF has a pole at @ = 0 for kj < ko, which looks
similar to that of 2D free electrons with quadratic dispersion.
Thus the imaginary part of zero-temperature susceptibility
Imy,,(qy,v) ~ v/g; at small in-plane wave vector g; and
low frequency v < /fivgg; with v referring to the Fermi
velocity of the surface bands [in the finite-temperature formal-
ism Xs(q, V) ~ |vml/q with v, being Bosonic Matsubara
frequency]. On the other hand, the dynamical susceptibility
contributed by the b — b process xph(qy,v) with |v| < [u| is
expressed as

Im xou(qy, v, 1)

—4v dE
= / / — fo(=e kD v — ek +qp), (A1)
Kk J— 15)

i
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After some algebra, it turns out that when v < hivgg) (v is
the bulk Fermi velocity):

v
Im xob(qy, v, p) ~ o (12)

Therefore yxpp is equally important as xss for the hole-doped
case. In other words, the dominant Landau damping is from
both the surface and the bulk, and they make comparable
contributions. Thus we expect the usual theory of 2D FM
quantum critical still applies, with consequently dynamical
critical exponent z &~ 3. It is also interesting to note that as
a result of the fluctuations in the third spatial dimension,
Xxbb(qy, ) is nonvanishing even when ¢ = 0. It turns out that

Imypp(q) = 0,v, 1) ~ v, 13)
which is unusual for a ferromagnetic phase transition. We refer
the readers to Appendix D for the derivations of Eqs. (12)
and (13).

The analytic results shown in Eqgs. (11) and (13) are
supported by direct numeric calculations of the surface
dynamical susceptibility of a 500-cell slab of the tight-binding
model introduced in Sec. II. The Fermi level u = —0.036 as
schematically indicated by the gray dashed line in Fig. 6(a),
tp =0.01, r, =0.8, , =0.3, and 3 = 0.2. The frequency
dependence of surface dynamical susceptibility at g; = 0 is
shown in Fig. 7(a). Clearly at low frequencies, xu,(0,v) is
linear in v, in agreement with Eq. (13).

We also study the wave-vector dependence of xph(qy,V)
for a given frequency v = 0.008 as shown in Fig. 7(b).
Im xpb(qy,v) is linearly dependent on 1/g, for 0.065 < g <
0.085 (in units of 1/a, where a =1 is the in-plane lattice
constant). When g < 0.06, we are no longer in the regime that
V < hivgg) and in the meanwhile 1/g; becomes comparable
to the k-mesh density, so that Eq. (12) is no longer valid;
while when g is large (¢ 2 0.085), the wave vector becomes
comparable to the radius of the bulk “Dirac cone” above
which the electron-hole excitations are rigorously truncated.
This explains why the 1/g; behavior is observed only for
0.065 < gy < 0.086. The details of computing the surface
dynamical susceptibility are explained in Appendix E.

3 -4
(a)zx‘IO (b)6.5X10
1.5 6
) % y=1.706e-5"x+3.184e-4
= y=0.081x §
=} ~
3 1 =55
E
0.5 5
50
D
8 4.5
0.005 0.01 0.015  0.02 10 12 14 16
v ‘I/qx

FIG. 7. Numerical calculations of the surface dynamical suscep-
tibility of slightly hole-doped nodal-loop semimetals with partially
filled surface bands: (a) frequency dependence at ¢ = 0; and (b)
wave-vector dependence at v = 0.008. Note the horizontal axis in (b)

is 1/q,.
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D. Nearly full surface bands

We continue studying the case when the surface bands
are nearly completely filled as shown in Fig. 6(b). In such
a situation, the Fermi level © =0, and the dominating
contribution is either a b — b or s — b process. The surface
dynamical susceptibility from the s — b process is expressed as

Im xg(qy,v,u = 0)
Vde
= / / — fs(=e kD f(v — ek +qp), (14)
K Jo 2

and the b — b contribution is expressed in Eq. (11) with © = 0.
After solving these integrals, it turns out that

s)
(16)

Im o (qy, v, = 0) ~ v /qy,
Im xo(qy, v, = 0) ~ gy [v — n(t0.q))].

where n(ty,q)) = 2t0(2kog) — qﬁ)/3 is the energy gap of the
s — b particle-hole excitations. Physically Eq. (16) implies
that a minimal frequency ~n(fy,q) is required to create an
electron-hole pair of the s — b type with finite wave vector
q|- Such a minimal excitation energy ~fy, and vanishes when
the surface bands are perfectly flat (remember that the surface
bandwidth arises due to 7)) or when g — 0. We refer the
readers to Appendix D for the derivations of Egs. (15) and (16).

Equations (15) and (16) indicate that when x = Othe s — b
process dominates over the b — b process at low frequencies
and small wave vectors. If we follow the Hertz-Millis pro-
cedure, a straightforward analysis then predicts the dynamical
critical exponent z & 1. Subtleties similar to those in the purely
2D case may still occur here, of course, but this result is
sufficient to show that the quantum critical behavior at this
transition is fundamentally different from that of a purely 2D
itinerant ferromagnet. We once again note that, when g = 0,
Im x,,(0,v) is nonvanishing and ~v? for i = 0 due to the
Fermionic fluctuations in the z direction.

Again, the analytic results in Eqgs. (15) and (16) are
numerically verified by directly computing the surface-layer
dynamical susceptibility of a 500-cell slab. The Fermi level is
very close to the nodal loop in the calculations as indicated by
the gray dashed line in Fig. 6(b). The surface bound states
are almost completely filled. The other parameters of the
tight-binding model are the same as those in the previous

x10”°

(a)0.04 (b) 14
curve fit: y=0.6075x-0.0033 12
0.03 y=0.0343x+0.0018
= S 10
<
- S
< <
9% 0.02 = 8
= gl
£ E 6
0.01
4
© é
0 0.02 0.04 0.06 05 01 015 02 025 03

\ q

FIG. 8. Numerical calculations of the surface dynamical suscepti-
bility of charge neutral nodal-loop semimetals with nearly completely
filled surface bands: (a) the frequency dependence at ¢y = 0.4, and
(b) the wave-vector dependence at v = 0.025.
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TABLE 1. Linear fits to the frequency dependence of surface
susceptibility at different wave vectors.

a 04 03 025 02 0I5 01 005
c 0.6075 0.5099 0.4536 0.3892 03143 0.2294 0.1377
n(io,qy) 0.0054 0.0041 0.0036 0.0030 0.0025 0.0017 0.0014

susceptibility calculation. The frequency dependence of the
surface susceptibility at gy = 0.4 [denoted by Im x,(0.4,v)]
is shown in Fig. 8(a). Clearly Im x4 (0.4,v) ~ v at low
frequencies and there is a small energy gap around v ~ #,
in agreement with Eq. (16).

In order to study the wave-vector dependence of the energy
gap n(fo.q), we have calculated the frequency dependence
of the surface dynamical susceptibility of a 500-cell slab for
different wave vectors from g = 0.4 to ¢ = 0.05. Then we
fit the data with linear functions y = ¢ [x — n(t,q))] [y is
Im xw(qy.v), x is v]. The parameters cs and n(fy,q))s are
shown in Table I. As clearly shown in the table, n(#,q;)
decreases with g and tends to vanish as g — 0 [65].

We also numerically calculate the wave-vector dependence
of the surface dynamical susceptibility at v = 0.025 as shown
in Fig. 8(b). Clearly Im x4,(q),0.025) ~ ¢ at small g, in
agreement with the analytic prediction of Eq. (16). It should
be noted that when the Fermi level is at the nodal energy, the
b — b process is suppressed at relatively large wave vector
(qy 2 0.05), thus the data shown in Figs. 8(a) and 8(b) are
mostly contributed by a s — b process. We refer the readers
to Appendix E for details in the the numeric calculations of
surface dynamical susceptibility.

V. BULK QUANTUM OSCILLATIONS

We turn to discussing the bulk quantum oscillations of
NLSMs neglecting Coulomb interactions. We introduce the
following low-energy effective Hamiltonians describing nodal
loops with different in-plane dispersions:

B (k2 + k%))
_ 027
2m

Hy" =hvk, oy + (A — hvg,/ k2 + k§>az, 7)

J

H"™ =hvk, 0y + (A —
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where o, and o, are the Pauli matrices representing the
lowest conduction band and highest valence band at some
high-symmetry point [k = (0,0,0)], v, is the Fermi velocity
along the z direction, and A is the gap at k = (0,0,0).
H(‘)]”"l describes a circular nodal loop with quadratic in-plane
dispersion, of which the in-plane effective mass is denoted
by m; while Héin describes a nodal loop with linear in-plane
dispersion with in-plane Fermi velocity vy. The nodal energies
described by Eq. (17) are exactly zeros.

The Landau levels for the above two effective Hamiltonians
with B = Bé, are readily obtained:

EY(n.k;) = i\/ (A —hw(n +1/2))* +Hvk2,

E™(n,k,) = :t\/(A —lwey/n +1/22 +hv2k2,  (18)
where the cyclotron frequency

{eB /m for quadratic in-plane dispersion
W =

N o 19
/2¢Bv} /h for linear in-plane dispersion

for the case of linear dispersion. If the chemical potential
is exactly at the nodal energy, i.e., u =0, in general the
Landau-level spectrum is gapped and the chemical potential
is in the middle of the gap. However, the gap closes at k, = 0
whenever A =/iw.(n + 1/2) for quadratic in-plane disper-
sion, and A =/liw./(n + 1/2) for linear in-plane dispersion.
Note that the above gap-closure condition is nothing but the
equality between the area of the nodal loop Anp and the area
of the nth quantized magnetic orbit Ag(n), i.e., Anp = Ag(n),
where Anp = nA2/(h2v§) [Ane = 2rmA /(7?)] for a nodal
loop with linear (quadratic) in-plane dispersions, and the area
of nth magnetic orbit Ag(n) = 2mweB(n + 1/2)/h.

In other words, the Landau levels become gapless whenever
the nodal loop exactly overlaps with a quantized magnetic
orbit. At the gapless point there expects to be a sharp change in
the free energy because a fully occupied Landau level becomes
completely unoccupied due to the gap closure and reopening.
Thus some singular behavior is expected at the gapless critical
point.

To confirm the above conjecture, we calculate the magnetic
susceptibility x (B) = —*F /3 B for the Landau levels shown
in Eq. (18) in the limit w — 0 and T — 0. It turns out that
the magnetic susceptibility consists of a term which diverges
logarithmically when the Landau level is gapless:

lw, & VIAJwe—n+ 1/ + A2+ A
l. B) ~ c 1 2 21 c 20
X B~ e, ;OH /2 n( A oo — (n + 1/2)] ) (20)
for quadratic—in-plane dispersion, and
eB vt 2A & VAo, —n 1722+ A2+ A
lim B) ~ -0 Vn+1/21n = 21
M%O,T»OX( ) 2n%h @ v, WX:(; / ( A /w, — &/n+1/2] ) @D

for linear in-plane dispersion, where A = (wv,)/(w.a) is a
cutoff parameter with a being the lattice constant on the
order of 1 A. More detailed results about the dHVA quantum
oscillations of NLSMs are presented in Appendix F.

(

The logarithmic divergence indicates a magnetic-field-
driven quantum phase transition in the NLSM. In Ref. [25],
it was pointed out that the Berry phase of the nth Landau
level along the k, direction would be changed by 7 through
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the gap closure at k, = 0, which shows that such a quantum
phase transition is indeed a topological one. Here we discuss
the nature of such a transition in a bit more detail, and try to
make a connection to the transition between two topologically
distinct insulating phases in 1D SSH chains. In the SSH model,
each energy band is the nondegenerate Bloch band, and the
Berry phase is quantized to O or 7 as a result of the chiral
symmetry (i.e., there are only intersublattice hoppings in the
model) [66]. In our case, the 3D tight-binding model defined
in Sec. II (which has a chiral symmetry when 7y = 0) can be
reduced to the first line of Eq. (17) after a k - p expansion
around the high-symmetry k point about which the nodal loop
is centered. Then such a 3D low-energy Hamiltonian is reduced
to an effective 1D problem as the in-plane electrons’ motions
are confined by external magnetic field. The resulted Landau
spectra shown in Eq. (18) may be considered as massively
degenerate Bloch bands of some effective 1D systems (as there
is translational symmetry along z). Then it is meaningful to
ask what is the Berry phase of the occupied Landau bands of
such an effective 1D system,

¢ = Zf dke i (Yn.1(k2)| O, Yn 1 (K2))s (22)
nl VT

where n is the Landau-level index, and [ is the index of
the degenerate eigenstate within the nth Landau level, and
the summation is restricted to occupied states. We notice
that if the original 3D model [Eq. (17) or the tight-binding
model introduced in Sec. II] possesses chiral symmetry, then
the chiral symmetry should be preserved in the presence
of external magnetic field along the z direction (neglecting
Zeeman splitting), so that the resulting Landau spectra are
exactly symmetric about 0. Thus the argument that applies to
the SSH chains can be carried over to such Landau bands with
such chiral symmetry, i.e., the Berry phase of the Landau bands
expressed in Eq. (22) have to be exactly quantized as O or . In
this sense, the transition of two gapped Landau spectra through
the band touching at k, = 0 is indeed a topological phase
transition, and we have shown that the quantum critical point
of the topological transition is characterized by the logarithmic
divergence of magnetic susceptibility.

It worthwhile to note that quantum-oscillation behavior is
not expected when an in-plane magnetic field is applied. In our
simplified model the nodal loop has zero cross section normal
to the x or y direction, so that Landau levels cannot be formed
for in-plane magnetic fields. It implies that Zeeman splitting
would dominate over orbital effects for in-plane magnetic
fields, and the spin-degenerate nodal loop might be splitted
into a pair of nondegenerate “Weyl loops,” or splitted into pairs
of isolated Weyl nodes. In realistic systems, the nodal loop is
not necessarily confined within the k,-k, plane, so quantum
oscillations with in-plane magnetic fields are allowed, but
the period is expected to be much larger than that when the
magnetic field is along the z direction.

VI. CONCLUSION

To summarize, we have studied the effects of Hubbard
interactions and bulk quantum oscillations in NLSMs. Our
HF calculations indicate that Hubbard interactions tend to
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drive the system into surface-ordered phases through quantum
phase transitions at the surface. In particular, in the absence of
surface Rashba SOC, the system becomes ferromagnetic at the
surface at small U, and enters into a surface charge-ordered
phase at slightly increased U through a first-order transition.
On the other hand, surface Rashba SOC splits the otherwise
twofold degenerate drumhead surface states and endows them
with nontrivial spin textures, so that a surface canted FM phase
becomes stable for moderate U values. The quantum critical
behavior of the surface ferromagnetic transition is distinct
from that in conventional 2D or 3D metals. This is due to
Landau damping of the 2D spin fluctuations into electron-hole
excitations near the nodal loop in the third dimension. This
“mixed dimensionality” of the system is argued to result in a
modified dynamical critical exponent, with z ~ 1 at the level
of a Hertz-Millis analysis, when the Fermi level is close to
the bulk nodal energy. We have also studied the bulk quantum
oscillations of NLSMs in the noninteracting case, and find that
in the limit of zero temperature and zero chemical potential,
there is a logarithmic divergence in the magnetic susceptibility
whenever the nodal loop overlaps with a quantized magnetic
orbit. Such a logarithmic divergence is accompanied by the
gap closure of the Landau levels, and is periodic in 1/B. The
predictions of interaction-driven surface ordering and bulk
quantum oscillations may stimulate future experimental and
theoretical studies of NLSMs.

Note added. Recently we became aware of three related
works by Pal et al. [67], Roy [68], and Pamuk er al. [69].
Pal et al. have thoroughly studied the quantum-oscillation
behaviors of various physical quantities in a model of two-
dimensional valence and conduction bands that touch along a
loop, and in this context explored the temperature dependence
of the quantum oscillations. Roy has discussed effects of
Coulomb interactions in the bulk of nodal-loop semimetals.
Pamuk er al. have performed first-principles calculations on
slabs of rhombohedral graphite (which has been proposed
to be a bulk nodal-loop metal [70]), and found interesting
ferrimagnetic spin order localized at the surface.
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APPENDIX A: SELF-CONSISTENT HARTREE-FOCK
APPROXIMATION

In Sec. III, the self-consistent Hartree-Fock (HF) approx-
imation is adopted to calculate the ground states of the
interacting Hamiltonians, i.e.,

Uhpiyy, — Uiy, + Uy () — Ul ) (), (A
where 7, refers to the density operator of electrons with spin
o (o0 = 1,])) atsite I, (f1;,) is the self-consistent mean field
applied to the electrons of spin —o at site /; U denotes the
amplitude of the Hubbard repulsion. The linear tetrahedron
method [71] is implemented as an interpolation scheme so
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that the self-consistent calculations can be carried out with
improved numeric efficiency.

Including SOC, the noncollinear HF is slightly more
complicated than its collinear version:

Unignyy = Ulcly.c] 1) —my - splery.e )
— Ulniy)(ny) + Ulclen) el an). (A2)

where c;ﬂ 1 (cip)) represents the creation (annihilation)
operator of electrons at site i with 1 ({) denoting electrons’
spins. n;, = c}aclg (o = 1,]) is the number operator at site i
with spin o, and n; = nyy + ny, is the total number operator.
(...) represents the expectation value of some operator in
the HF ground state. s; = [s;',s;,s{] are the Pauli matrices
representing an electron’s spin at site /, which couples to the
self-consistent vector field m; = [m;] ,mly ,m;], where

my = (clyeiy, + ¢l cir)s
mlv = i(CLCM - ClTTcll>’

mi = (clycip — clyeny). (A3)

APPENDIX B: GENERALIZED RPA SUSCEPTIBILITY

The generalized susceptibility in the random-phase approx-
imation (RPA) xRPA can be expressed as [55]

X =1 - xOU) (@, (B1)

where ¥ and U are the matrices representing the bare
susceptibility and the Coulomb interactions respectively. To
be specific, the bare susceptibility can be calculated from the
noninteracting Green’s function,

. dk? .
Xo(z(/)s)l,a’ﬂ’l’(qvl Un) = - kBT (271_)2 Z tho’;/,al(k’lwn)

x G g+ quio, +iv,),  (B2)

where the «, «’, 8, and B’ are the spin indices, while [ and I’
label the lattice sites in the slab; k is the wave vector of the
noninteracting Bloch functions, and the sum over Matsubara
frequency w, can be taken analytically in the basis that
diagonalizes the noninteracting Hamiltonian at each k. kg is
the Boltzmann constant and 7 is the temperature; kg T is fixed
as 1/100 in the RPA calculations in Sec. III. Note that in the
nonordered phase without spin-orbit coupling, all kinds of
spin fluctuations are equivalent to each other, i.e., X;OT)I, VS
X = Xigar = X\ - With SOC included, terms
like Xﬁ)l’ 1y are also allowed, and spin fluctuations become
anisotropic.

The interaction matrix for Hubbard interactions is defined
as

Ul,l

b ap = ~(UbL18padpaba—a — UbLrSap Sparda,—p).

(B3)
The over minus sign on the right-hand side (RHS) of Eq. (B3)
is from the minus sign in the time-ordered exponential of the S

matrix [57]. The first term on the RHS of Eq. (B3) represents
a direct Coulomb interaction, while the second term is the

PHYSICAL REVIEW B 95, 075426 (2017)

exchange interaction. Then the matrix element of the static
RPA spin susceptibilities are expressed as

xR @r = XM @O — XK@y

— XA @00+ xX@ 0
XA @ = XXM @ 0 + X BN@ g
+ x B @y 00+ XN@ 410

X @ = x5 = X @ g

— X" @10+ XX @ e (B4

The eigenvalues of XZIEPA(q) attp = t; and U = 0.25t; (1
and f, are defined in Sec. II) are shown in Fig. 4(a). As
discussed in Sec. III, the surface modes of xX"(q) are much
stronger than the bulk modes, and tend to diverge at T as
U approaches some critical value U, indicating a continuous
quantum phase transition at the surface. The surface modes
of the in-plane RPA spin susceptibilities x 3t (q) and x 37 (q)
are shown in Fig. 5.

APPENDIX C: SURFACE GREEN’S FUNCTION

In this section we derive the surface Green’s function
of NLSMs using the method reported in Ref. [63]. To
be specific, using the Dyson equation, the surface Green’s
function G,(Kkj,w) can be expressed as

G, = Gy + GoVG,, (C1)

where G, is the full surface Green’s function with the
corresponding Hamiltonian H, V = H — Hy is the potential
difference between a crystal with and without a surface, and
Gy is the noninteracting bulk Green’s function. In the basis
of the “hybrid Wannier functions” [72] which are extended in
the x-y plane and localized in the z direction, Eq. (C1) can be
written as

Gs(k”,a)) = Go(kH,a); O) + G()(kH,a); l)V(—l,O)GX(kH,a)),
(€2

where Go(k),w;/) (I is an integer labeling the primitive cells
in the z direction) is the bulk Green’s function defined in the
hybrid Wannier function basis:

N LT
Go(k”,a),l) = —e Go(k,a)), (C3)
2w
and the bulk Green’s function Gy(k,w) is
Golk.o) —&Ihys — (i + tacosk,) T, — 1y sink, T, ()

7 +13 + 21t cosk, — 15 @?

In the above equation I, is the 2 x 2 identity matrix, t, Ty,
and 7, are the Pauli matrices defined in the sublattice space. 1;
and o are defined in Eq. (2) in Sec. I'V. If the bulk tight-binding
model introduced in Sec. II is truncated at sublattice A with
an ideal surface termination, the surface perturbation potential
V(—1,0) can be expressed as

0 0
V(—1,0)=<_t2 o)'

(€5)
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Plugging Eqs. (C3)—(C5) into Eq. (C2), one obtains

Go(ky,w;0
Gk, w1 = ol ; O ’ (C6)
1+ 6Goky,w; D12
where
Golky; 1) / " fi + he 't
o Dia=—| e~ 1) @
olky.@: D12 ko TG 2 cosk, — 130
(e0))
and
GO0 = [ e @8)
,@;0)1,1 = T o
ST B+ 3 4 i cosk, — 1387
where [, = 2” dk,/(27). Again, @ is defined in Eq. (2).

Defining n = e'*, the integral over k., in Eq. (C7) can be
replaced by a contour integral around a unit circle in the

J

it — |k

if @> |kﬁ—k§| or < —|kﬁ

where ko characterizing the size of the nodal loop is defined in
Eq. (4), and @ is defined in Eq. (2).
Plugging Eqgs. (C9) and (C10) into Eq. (C6), we obtain

1
T (x/y —4+y)2-n/ii

Plugging 7; = t,(1 + k — k3) into Eq. (C11), considering the
low- -energy excitations around the nodal loop so that k k2
and @ are small, one obtains the final expression of the surface
Green’s function shown in Eq. (1) by dropping some terms
higher order in kﬁ — kZ and @.

When w is in the bulk gap, Eq. (1) can be re-expressed as

G (kH a))

(Cl14)

-
Gs(kH ,a)) = —

%

— — - .
2k = &I =&/ (6~ k) ]+ K = k)
(C15)
From the above equation we see that for k; < ko,
(ko — ki)
G(kj,w) ¥ ————, (Cl16)
Hhw

corresponding to the drumhead surface states at @ = 0.

From the above analysis we see that when the surface is
terminated at sublattice A there are drumhead surface states
with dispersion to(kﬁ — k2) inside the projected nodal loop. On
the other hand, when the surface is terminated at sublattice B,
the role of 7; and 1, is interchanged, so that there are drumhead
surface states only when 7l > 1, i.e., outside the projected

—ky| <@ < |k — kg,

- k(% | w in the bulk continuum,
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complex plane of n, and can be solved exactly:

nny + 1

Gokj,w;1)12 = —0—F7———, (C9)
nht(/y*—4)
and
Go(ky,w;0) Lo | (C10)
w; =,
ORI L1 TN
where
y =@ +3-83)/0n), (C11)
and
Ny ==y +vVy?—4)/2. (C12)

From Eq. (C9) one may notice that G(k,w; 1)1 > is real only
if 2 —4 > 0, which implies that G,(kj,w);,; may have a
pole on the real axis only when y2 — 4 > 0. It follows that
y2 — 4 = 0 defines the bulk spectral edge: when y? — 4 < 0,
w is in the bulk continuum; while when y2 —4>0,wisin
the bulk gap and there may be bound-state solutions. Then it
is straightforward to show that

o in the bulk gap,
(C13)

(

nodal loop (k > ko). This explains the termination-dependent
surface states as shown in Figs. 2(a) and 2(b).

APPENDIX D: DERIVATIONS OF SURFACE DYNAMICAL
SUSCEPTIBILITY

1. Derivations of Eqs. (12) and (13)

We first derive the low-energy, long-wavelength behavior
of the surface dynamical susceptibility of a hole-doped NLSM
contributed by the extended bulk states projected at the surface,
which are expressed by Eqgs. (12) and (13) in Sec. IV. Such
contributions are labeled as “b — b in Fig. 6(a). In principle
we need to calculate the imaginary part of x;,(q,v, ) which
is expressed in Eq. (11).

Again, we consider the situation that the nodal loop is
centered at (r,7,7) whose size is small compared to the BZ.
Then we expand 7; around (,7) up to quadratic order of
ky as shown in Eq. (3). Since we are interested in Fermi-
surface fluctuations from the bulk continuum, we neglect
the dispersion from 7y, so the spectral density of the bulk
continuum f;, becomes

2
“6(e] —

€2 —x

So(Ky,€) ~ (D1)

Xk, -

Without loss of generality, the Bosonic wave vector q is
chosen to point along the x direction, q; = (g,0). Then we
define

(D2)

2 2
ka = kH — kO'
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We also define
ﬁzu/lz, Y= U/l‘z, ?E)Zlo/lz. (D3)
Plugging the expression of f; in Eq. (D1) into Eq. (11), one obtains
7”” xiu \/(F]j -’ - xl%n +q
tm (a0 = | / . B(lel — It DOV — €l — k1,
K J— —e(V —¢€)
/er (e~ v)/(Zkqu) Zkqu\/ —-X \/(l) — 6)2 koq”)
= de f dx /
—e (e~ V)/(Zkoqu) —e(v - e)\/l —[y—(&+ qﬁ)/(2/’<oq||)]2
—[a+v (e— V)/(2koqu) 2koq||v €?—x \/(N - 6)2 kqu)
~ / de f dx /
i — (e v)/(ZkUqH) —e(V —€)
/’”"d /‘ JVe? —x(e—v)
= €
it T 2keqe
—a+v _~ 1
= / de €V [ v isn
- 2kogqy J-1
—+v
(€3/3 —7Ve?)2)
4k061|| -
(V= 7°/6), (D4)

 dkog

where the second line of the above equation follows due to
the heaviside 6 function, and y = (x + qﬁ)/(Zkqu) + cos @,
with ¢ being the angle between k| and q;;. We have made the
approximation that v'1 — [y — (x + ¢{)/(2kog))]* ~ 1 when
going from the second to the third line in Eq. (D4). The fourth
line of Eq. (D4) follows by using the integral identity:

b
/ dy\/b? — y2 = %bz
—b

where b = (¢ —V)/(2koq). Finally in the fifth line we define
ex’ = x, and it follows that Im y;,(q,v, ) ~ v/q;. Equation
(12) is proved.

As discussed in the main text, the surface susceptibility is
anonvanishing even at q; = 0 due to the bulk fluctuations. As
expressed in Eq. (13),Im x (¢ = 0,v,u) ~ vfor u < 0. Using
some similar tricks as those in Eq. (D4), it is straightforward
to show that when ¢ = 0,

(D5)

Im x(q) = 0,v,u)

—a+v 1
=2n/ de/
-7 1

x V1 —x2/1—(1—=7/€e)2x?

4
~ (R —7%/2),

dx' (e = V)

(Do)

(

where the integral over x’ is approximated by a constant 2/3.
Such an approximation is valid as long as the frequency is
much smaller than the Fermi level, i.e., v < |u|. Thus Eq. (13)
is proved. L.

2. Derivations of Eqgs. (15) and (16)

Now we turn to the case of Fig. 6(b), i.e., the surface
bands are filled and the electron-hole excitations are mostly
contributed by the b — b and s — b processes.

Let us first consider the b — b process. Since we are inter-
ested in the bulk-state fluctuations, we neglect the dispersions
from £y in the bulk continuum spectral density, i.e., @ ~ w/1,,
and Eq. (D1) applies. One may still use Eq. (D4), except that
now the Fermi level is right at the nodal energy i = 0. Then it
immediately follows from Eq. (D4) that Im x(q;,v,t = 0) ~
v3/q), which proves Eq. (15).

Next we consider the process that an electron is created in
the bulk conduction band and a hole is left in the otherwise
occupied surface bands as denoted by s — b in Fig. 6(b). Let
us consider a simplified case that #p = 0 so that the surface
bands are perfectly flat and completely occupied. Then,

2
L6 (Je| —

€ —x

So(Ky,e) ~

1k, D,

fs(ky,€) = |xg, | 5(€) O (—x, ). D7)
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Plugging the above equation into Eq. (16), one obtains

1 (. vojt = 0) = / / de fi(—eky — ) fol® — €.k))
k, JO

PHYSICAL REVIEW B 95, 075426 (2017)

¥ /(F—e)z—xﬁH _
= /k \/O d6|ka7qH | 8(_6) 9(_-xk\|7qu) ~—6(|V - 6| - |-ka |)
Il

dcos¢

v 1
~ | dx / " (2g cos \/kE + x
/—v (x+qD)/kog)) /1 — cos? ¢

D2 2

NOZ V52 — 42 1
= 2qu0/~dx \/1 (x +qﬁ)2/( koqll) / %(x + qﬁ)

Ji s y
~ Zquo/ dx ——— \/1 (x+ qﬁ)z/(4k0q”) ~ Zquo /Ndx — = = JTk()qHU.

— k3, and we have
made the approximation xx,_q, = ([kj —q)* —kj ~ x +
qﬁ — 2koqj cos¢. We have used the integral identity,
[ dx(1/4/1T = x) = —24/1 — x, when going from the third to
the fourth line, and we have dropped the second term on the
right-hand side of the fourth line because it is higher order,
~qﬁ3 or ~V2g,. Finally we have made the approximation

VI = (x + qﬁ)z/(4k0qH ~ 1 from the fifth to the six line.
We see that the final result presented in Eq. (D8) is consistent
with Eq. (16) in the main text when 7y = 0. It follows that
when the © = 0, the s — b process dominates over the b — b
process, and leads to a dynamical critical exponent z ~ 1.

Now we consider the case of nonvanishing fy, i.e., the
surface bands are not perfectly flat, but with a bandwidth ~,.
Plugging Eq. (8) into Eq. (16), then integrating over €, one
obtains

In the above equation, x = xi, = kj

Im Xsb(qH 7V7M = O)

= / Xk, —qy | 0(—x1 ;) o(lv + t~0ka —apl)
K

\/(v + t()ka q) xﬁH

v+ toka q

; D9)

where xy, is defined in Eq. (D2). Let us define x = xi, and
Y = Xk —q;- Since x is around 0, we make the following
approximation to y:

Y = Xk—q

=x—2\/x2+kiq Cos¢+qﬁ

~ x — 2kog) cos ¢ + qj. (D10)

Plugging Eq. (D10) into Eq. (D9), and imposing the constraints
on the limits of integrations from the two Heaviside 6
functions, one obtains

Im Xsb((IIl 71)7“ = O)

_ / ’ dy
x—2koqy+g? 2Kod|

[V+70y

VO +10y)? — x2 <

—[V+7oy

v+ loy

— X
—x—q)——=—
dcos¢
- (+g])/kogy) 4/ 1 — cos? ¢
(D8)
v
[
b1 0 o~
N — / dyy (v +1oy), (D11)
4koq) J-2kyq+4?

where the second line of the above equation follows due
to the following approximation on the limit of integration

of y:
0 0
/ — [ , (D12)
x—2koq)+q] —2koqy+af
and we have used the integral identity
[V+70y! - v+ )2
/ A /G T oy — a2 = TU Ny
—[V+Toyl 2

Now we need to discuss two different situations: ¥ + 7y y >0,
and ¥+ 7y < 0. If V+7yy > 0, it follows from Eq. (D11)
that

~3
I “(qp,v) = . D14
m x g (qy,v) 24kod (D14)
If V + 7y < 0, it turns out that
Im ) ~ -y TR g 1)
m W) — Vv — . .
Xsp g 24k0qu nlio.q)

Combining the above two equations,

Im xg(qy,v) = Im xg(q),v) + Im xg(qy,v)

k 2
- %( - 2oy - q2>). (D16)

Equation (D16) has the same analytic behavior as Eq. (D8)
when fy = 0, although the coefficients differ by a factor
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of 2. We attribute such a difference in the coefficients to
the approximation shown in Eq. (D12), and we believe it
is not important because it dose not change the analytic
behavior of y. It is also clearly seen from Eq. (D16)
that the excitation gap 7(t.q)) = 2t0(2koq — gj})/3, which
is proportional to fy and vanishes as g — 0. This is also
in agreement with our numeric simulations as shown in
Table I.

APPENDIX E: NUMERIC CALCULATIONS OF
SURFACE DYNAMICAL SUSCEPTIBILITY IN
SLAB GEOMETRY

In this section we explain the technical details in the
numerical calculations of the surface dynamical susceptibility
for a slab of NLSMs, as shown in Figs. 7 and 8. When both the
surface Rashba SOC and Coulomb interactions are neglected,
the system can be considered as spinless, and we use /,I’ to
label the lattice sites in the z direction in a slab of NLSMs. The
matrix element of zero-temperature dynamical susceptibility

J

PHYSICAL REVIEW B 95, 075426 (2017)

is expressed as

[ dk.dk, [do
@) =i | 555 [ 526 (k. w0)Gly Ky + g+ ),

(EL)

where the G (k;,w) is the noninteracting Green’s function
for a slab of NLSMs which can be expressed in matrix form
as follows:

GOky.0) = V(k)G (ko) Vi), (E2)
where Gg?;g isa2N x 2N (N is the number of primitive cells
in the slab, and there are two sublattices in each primitive cell)
diagonal matrix whose jth diagonal element Ggi)zg(ku ,W)jj =
1/[o — €;(Ky) + i§; k1. 8k, is an infinitesimal quantity which
is greater than (less than) O if the eigenenergy €;(k)) is
occupied (unoccupied). V (k) is the eigenvector matrix of
the Hamiltonian for the slab at k; [denoted by Hjap(k))]:
> Haao(&pr Vi (k) = €;(kV, (k). Then Eq. (E1) be-
comes

[ dkydk, [® do & Wy (K, qp)
X (gy.v) = i 2 / — Y : L2 . : (E3)
@Qr)* Jooo 21 T [0 — €k + ikl +v — €k +qp) + 8 k+q)]
where the spectral weight Wy (K, q)) is defined as
Wi jjr (K, qp) = Vi RV Ve ek + @) Vi (ky + qpp)- (E4)
The integration over w can be carried out by closing the contour in the upper half plane, then Eq. (E3) becomes
2N
. dkydky Wiy (R, q){01 1 — €; (k] — 0L — €. (& + qp)1}
X Qv +i8) = i Z LRSS (Iu/ ALY T (P (E5)
2m) Pyt Ej(k” —l—qH)—ej(kH)—v—zS

If the top-surface layer is labeled as the Oth layer, then the
surface susceptibility xeurt(q).v) = Xo00(q),v). The numeric
integrations over k,, k, are replaced by discrete summations
on a 280 x 280 k mesh, and the infinitesimal quantity § is
chosen as 0.001 in our numerical calculations. The number of
primitive cells in the slab is 500.

APPENDIX F: BULK QUANTUM OSCILLATIONS

In this section we derive the dHVA quantum oscillations of
bulk NLSMs neglecting Coulomb interactions. We consider
two types of low-energy effective Hamiltonians of NLSMs as
shown in Eq. (17). The energies of H(;]ua (H(%i“) in Eq. (17)
have quadratic (linear) in-plane dispersions. The tight-binding
model introduced in Sec. II can be reduced to a k - p model
around the center of the NLSM that is similar to H,"; the
terms linear in k| are killed by tetragonal symmetry. However,
we would like to discuss both situations (nga and Héi“) for
the sake of generality.

Landau levels are formed when a magnetic field is applied
along the z direction. The expressions of the Landau levels for
Hé’ua and Héi“ are shown in Eq. (18). As discussed in Sec. V, the
Landau levels become gapless whenever the nodal loop exactly
overlaps with a quantized magnetic orbit. It is also mentioned
that at the gapless point there is expected to be a sharp change

(

in the free energy and the magnetic susceptibility shows
logarithmic divergence at zero temperature and zero Fermi
level. In the remaining part of this section, we will explicitly
derive the magnetic susceptibilities x(B) as expressed in
Egs. (20) and (21).

The free energy of the Landau levels with chemical potential
W is expressed as

eB d ad
_ —[Ex(n,k)—ulB
F = BonTh /ﬂ dk, § § In(1 4 ¢ 15 KBy (F1)

n=0 A=+

where the A = =+ labels the branch of Landau levels, and the
Landau levels E(n,k,) are expressed in Eq. (18) for both nga
and H}". Summing over A, Eq. (F1) becomes

eB

Fe—pre /_ ) dkzglngw(n,kz),u,ﬂ), (F2)

where

g(E(nk),u,p) =1+ e [Ek)—plp 4 plEMk)+ulf ezltﬁ’
(F3)

E(n,k;) = E.(n,k,) [see Eq. (18)], and B = 1/(kgT).
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Then it is straightforward to calculate the magnetic susceptibility x (B) =

x(B )—

where

IE(n,k,)
9B

h(E(n,k;),u,pB) is defined as follows:

hl :h(E(nvkz)7l‘L7ﬁ) ’ h2

B h(E(n,k:),1x.f)

PHYSICAL REVIEW B 95, 075426 (2017)

—9%>F /3B
— dk Z(h1+h2+h3) (F4)
2En,k, AN(E(n,k.), 1, IE(m,k.)\>
(k) | OMEME).LB) (DEMKIN
32B IE(n,k;) 9B
PlEMk) 1B _ p—[E(nk)—plp
(F6)

h(E(nka)VI’LnB) =

1+ elEGk) B - o—[Emk)—plp 1 o2up

For NLSMs with quadratic in-plane dispersions, the Landau levels are defined in the first line of Eq. (18). Then the partial

derivatives of E(n,k,) with respect to B are readily obtained:

DEmK) _ e +1/)[on+1/2)—A]  9Ek) _ en+1/27 vk (F7)
0B mPRAB-wn+ DP 0B [0k 4 [A—wun 1 1P}
Plugging Eq. (F7) into Eq. (F4), one obtains that when & = 0 and 8 — oo (T — 0), one obtains the expression of the magnetic
susceptibility:
2e2 (n + [we(n + l) —A] e e
B) = dk dk; )
x(B) 2w / Z E(n k) 27 %im / Z < 2) En,k;)

2

e? oc[wc(n + %) — 4]
" n%m / .y (” * ) : (F8)

n=0

The integration over k, in Eq. (F8) can be carried out as follows:

N

/” L2 \/[(n+l)—é]2+A2+A

dk, —— =
o CEmk) v I+ 1-

.

where A = mv/w, is a dimensionless cutoff parameter (the
in-plane lattice parameter is set to unity).
Plugging Eq. (F9) into Eq. (F8), one obtains

B =22 3 | (04 1) 2t
— — —In c»
X 27 2hm e Try) e
1 1 A\2
+2{n+ - n+-—-——— —ln[](n,a)caA)]
2 2 w.)v
(n+ 1>2 A (F10)
J— n — 9
2 v+ -2 a2
where
Vo) - 2T+ 2t
j(n,w.,A) = - (F11)

|n+%—A

We

The first term on the RHS of Eq. (F10) diverges logarithmi-
cally whenever A /w, — (n 4+ 1/2). On the other hand, it is
evidently seen that when A = (n 4+ 1/2)w, is satisfied, the
two Landau levels & E(n,k,) become gapless at k, = 0, and
the size of the quantized magnetic orbit associated with the

. CEmk)

E(n.k;)?

4 1 2A

dk

L) 4 A2
(F9)

A7 S+t -

val(n+ 5 —

(

nth Landau level becomes exactly the same as the size of the
nodal loop.

One may reproduce the above derivations for a NLSM with
linear in-plane dispersions [see H(l)in in Eq. (17)]. It turns out
that for linear in-plane dispersions, the magnetic susceptibility

is expressed as
B) =5 zi + LA e A)
= n+ —-——-—Inln,w,,
X = e 2w v

ezvg > 1
_ZZ n+§ f’l+___ lnl(na)c,A)

T n=
eB <ev3)2§: 2A(n + 1)
C 2%\ o, — ’
T (&) = va)z\/(A n+ ) +A2
(F12)
where
\/((f Jr+ DA a
l(n,0:,A) = . (F13)

&=y
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The first term on the RHS of Eq. (F12) diverges logarithmically
whenever A = w.4/n + 1/2. Again, such a condition is
exactly the gap-closure condition of Landau levels; in the

PHYSICAL REVIEW B 95, 075426 (2017)

meanwhile, the nth magnetic orbit exactly overlaps with the
nodal loop when A = w.+/n + 1/2.
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