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General Green’s function formalism for layered systems: Wave function approach
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The single-particle Green’s function (GF) of mesoscopic structures plays a central role in mesoscopic quantum
transport. The recursive GF technique is a standard tool to compute this quantity numerically, but it lacks
physical transparency and is limited to relatively small systems. Here we present a numerically efficient and
physically transparent GF formalism for a general layered structure. In contrast to the recursive GF that directly
calculates the GF through the Dyson equations, our approach converts the calculation of the GF to the generation
and subsequent propagation of a scattering wave function emanating from a local excitation. This viewpoint
not only allows us to reproduce existing results in a concise and physically intuitive manner, but also provides
analytical expressions of the GF in terms of a generalized scattering matrix. This identifies the contributions from
each individual scattering channel to the GF and hence allows this information to be extracted quantitatively
from dual-probe STM experiments. The simplicity and physical transparency of the formalism further allows us
to treat the multiple reflection analytically and derive an analytical rule to construct the GF of a general layered
system. This could significantly reduce the computational time and enable quantum transport calculations for
large samples. We apply this formalism to perform both analytical analysis and numerical simulation for the
two-dimensional conductance map of a realistic graphene p-n junction. The results demonstrate the possibility
of observing the spatially resolved interference pattern caused by negative refraction and further reveal a few
interesting features, such as the distance-independent conductance and its quadratic dependence on the carrier
concentration, as opposed to the linear dependence in uniform graphene.
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I. INTRODUCTION

The single-particle retarded Green’s function (GF) is a key
tool to calculate local and transport properties in mesoscopic
systems [1,2], such as conductance, shot noise [3], local
density of states, and local currents [4,5]. In the most popular
scheme in which a scatterer is connected to two (or more)
semi-infinite ballistic leads, the Landauer-Büttiker formula
[6–8] expresses the conductance σ = (e2/h)T (EF ) in terms of
the transmission probability T (EF ) across the scatterer on the
Fermi surface. Typically, the electronic structure and transport
properties of a mesoscopic system are described by a lattice
model with a localized basis in real space, e.g., discretization
of the continuous model [9], empirical tight binding [10],
or first-principles density-functional theory with a localized
basis set [11,12]. Then T (EF ) is constructed from the lattice
GF G(EF ) across the scatterer through either an expression
derived by Caroli et al. [13] or the Fisher-Lee relations [14–17]
that express the scattering matrix S(EF ) of the scatterer in
terms of the lattice GF G(EF ).

The recursive GF method (RGF) is a standard tool to
compute the lattice GF of a scatterer connected to multiple
leads [2,18]. This method is reliable, computationally efficient,
and allows for a parallel implementation [19]. It was pioneered
by Thouless and Kirkpatrick [20] and by Lee and Fisher
[21]. Then MacKinnon presented a “slice” formulation for a
general layered system, which is the form most used nowadays
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[22]. Variations of the method were also introduced to treat
multiple leads [23], arbitrary geometries [24,25], and local
scatterers inside an infinite periodic system [26,27]. With
the development of many numerical algorithms, such as
fast recursive or iterative schemes [28–39] and closed-form
solutions [40–44], the development of RGF has culminated in
many packages with different focus [45–49] and is applicable
to an arbitrary lattice Hamiltonian [50]. However, these
techniques and our knowledge about the lattice GF still suffer
from two drawbacks/limitations.

First, there are two widely used approaches in mesoscopic
quantum transport: the GF approach [1,51] that computes the
GF G(E) and the wave function mode matching approach
[52–54] that computes the unitary scattering matrix S(E).
However, the connection between the GF G(E) and S(E) and
hence the connection between these two approaches remain
incomplete. It is well known that S(E) can be constructed
from G(E) through the Fisher-Lee relations (see Fig. 1), as first
derived by Fisher and Lee [14] for a single parabolic band and
two-terminal structures and later generalized to multiple leads
[15–17] and arbitrary lattice models [25,41,55]. However, the
inverse of this relation is nontrivial [56]: explicit expressions
of G(E) in terms of S(E) were derived [15–17] only for a
single parabolic band and in regions far from the scatterer.
Generalization of this result to a general lattice model and
over other regions would not only complete the equivalence
[55] between the GF approach and the wave function mode
matching approach (Fig. 1), but also provides important tools
to analyze the multiprobe scanning tunneling microscopy
(STM), which has been applied to characterize a wide range
of systems (see Refs. [57,58] for recent reviews) in the past
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FIG. 1. Connection between two widely used approaches to
mesoscopic quantum transport: the GF approach and wave function
mode matching approach. The former calculates the GF G(E), while
the latter calculates the scattering matrix S(E). The Fisher-Lee
relations allow S(E) to be constructed from G(E), while the inverse
relation remains absent for a general lattice model.

few years, including nanowires [59–61], carbon nanotubes
[62], graphene nanoribbons [63,64], monolayer and bilayer
graphene [65–67], and grain boundaries in graphene [68,69]
and copper [70]. With one STM probe at R1 and the other
STM probe at R2, the Landauer-Büttiker formula expresses
the conductance between the STM probes in terms of the GF
G(R2,R1,EF ), which provides spatially resolved information
about the sample; e.g., with an analytical expression for the
GF of pristine graphene [26,27], Settnes et al. [71] were able
to identify the different scattering processes of local scatterers
in graphene. However, this analysis is still qualitative. To go
one step further to extract quantitatively the information about
the scatterers, an explicit expression of the GF in terms of the
scattering matrix is required.

Second, the time cost of RGF increases rapidly with the
number of localized basis required to subtend the sample.
This imposes a computational limit when addressing realistic
experimental samples; e.g., many quantum transport studies
on graphene consider narrow graphene “nanoribbons” rather
than large-area graphene. Three methods have been proposed
to lift this constraint. The modular RGF [17,36,72] is limited
to electrons in a single parabolic band and specific shape
of the sample. The other two methods essentially reduce
the number of transverse bases, either by projecting the
system Hamiltonian onto a small number of transverse modes
[73–75] or by assuming translational invariance [76] along the
transverse direction. They could significantly reduce the time
cost for wide samples, but the time cost still increases linearly
with the length of the scatterer (along which transport occurs).
To study a long sample, a more efficient method is desirable.

The origin of the above drawbacks/limitations is probably
that the RGF treats the GF as a matrix and constructs the GF
by a series of matrix recursion rules derived from the Dyson
equation. Interestingly, although the rules for constructing the
scattering matrix in terms of the GF (i.e., the Fisher-Lee
relation) are concise and physically intuitive, their rigorous
derivation (in which the GF is treated as a matrix) turns
out to be rather tedious (see, e.g., Refs. [15,16,25]). This
somewhat surprising fact suggests the possible existence of
a very different way to represent and calculate the GF. This
could not only enable a straightforward physical interpretation
of the final results, but also shed light on some previous debates
[53,55,77] on the relationship between different calculation
techniques in mesoscopic quantum transport.

In this work, we develop a numerically efficient and
physically transparent GF formalism to address the above
issues in layered systems, i.e., any system that is nonperiodic
along one direction, but is finite or periodic along the

other directions. This includes a wide range of physical
systems, such as interfaces and junctions, Hall bars, nanowires,
multilayers, superlattices, carbon nanotubes, and graphene
nanoribbons. Compared with the RGF that directly calcu-
lates the GF as a matrix through the Dyson equations, our
approach converts the calculation of the GF to the generation
and subsequent propagation of a scattering wave function
emanating from a local excitation. This viewpoint provides
several advantages. First, the procedures for calculating the
GF G(E) becomes physically transparent and existing results
from the RGF (such as the Fisher-Lee relation) can be derived
in a concise and physically intuitive manner. Second, the GF
G(E) can be readily expressed in terms of a few scattering
wave functions with energy E. This provides an on-shell
generalization of the standard spectral expansion in classic
textbooks on quantum mechanics [78–80], G(R2,R1,E) =∑

λ〈R1|�λ〉〈�λ|R2〉/(E + i0+ − Eλ), which involves all the
eigenstates {|�λ〉} and eigenenergies {Eλ} of the system. In
terms of a generalized scattering matrix S(E) that describes
the scattering of both traveling and evanescent waves, we
further establish a one-to-one correspondence between G(E)
and S(E) (see Fig. 1). This identifies the contributions
from each individual scattering channel (including evanescent
channels) to the GF and hence allows this information to
be extracted quantitatively from dual-probe STM. Third,
the simplicity and physical transparency of the formalism
further allows us to perform an infinite summation of the
multiple reflection between different scatterers and arrive at
an analytical construction rule for the GF of a general layered
system containing an arbitrary number of scatterers. This could
make the time cost independent of the length of the sample
along the transport direction and hence significantly speed
up the calculation. By further reducing the number of bases
along the transverse direction [73–76], our formalism enables
quantum transport calculations over macroscopic distances
and on large samples.

Recently, the chiral tunneling [81–83] and negative refrac-
tion [84–86] of graphene p-n junctions have received a lot
of interest and the anomalous focusing effect was observed
experimentally [87,88], but previous theoretical studies are
mostly based on the low-energy continuous model, whose
validity is limited to the vicinity of the Dirac points. Here we
apply our GF approach to perform an analytical analysis and
numerical simulation for the two-dimensional conductance
map of dual-probe STM experiments in a realistic graphene
p-n junction described by the tight-binding model. The
results demonstrate the possibility of observing the spatially
resolved interference pattern caused by negative refraction and
further reveals some interesting features (such as the distance-
independent conductance and its quadratic dependence on the
carrier concentration, as opposed to the linear dependence in
uniform graphene) that may also be observed in dual-probe
STM experiments.

This paper is organized as follows. In Sec. II, we introduce
the model, review the commonly used RGF technique, and
presents the key idea of our approach. In Sec. III, we derive
the GF of an infinite system containing a single scatterer, as
well as an analytical construction rule for the GF of a general
layered system containing an arbitrary number of scatterers.
In Sec. IV, we express the GF analytically in terms of a
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FIG. 2. (a) A layered 2D structure consisting of multiple periodic
slices (i.e., leads) and disordered slices (i.e., scatterers). (b) Regarding
each slice as a unit cell (filled squares), the structure in (a) becomes
a 1D lattice. (c) A semi-infinite lead connected to a scatterer. The
unit cell Hamiltonian (filled squares) and nearest-neighbor hopping
(double arrows) are m-independent inside the lead, but could be
disordered inside the scatterer.

generalized scattering matrix or in terms of a few scattering
states on the energy shell E. In Sec. V, we exemplify our
results in a 1D chain and then apply it to analyze and simulate
the two-dimensional conductance map of a realistic graphene
p-n junction. Finally, a brief conclusion is given in Sec. VI.

II. THEORETICAL MODEL AND KEY IDEAS

We consider a general layered system in the lattice repre-
sentation. When each layer is an infinite, periodic repetition
of a basic unit, we can make a Fourier transform to effectively
reduce each layer to a single basic unit. Disorder inside each
layer can also be introduced by using a sufficiently large
unit cell and repeating it periodically. Then we can regard
each layer as a finite-size unit cell, so the system becomes a
1D lattice, e.g., by taking each layer/slice of the structure in
Fig. 2(a) as a unit cell, Fig. 2(a) becomes Fig. 2(b). A general
1D lattice can always be decomposed into a few nonperiodic
regions (referred to as scatterers) consisting of different unit
cells sandwiched between periodic regions (referred to as
leads) consisting of identical unit cells; see Fig. 2(b) for an
example.

Without losing generality, we consider nearest-neighbor
hopping [89] and use Mm to denote the number of orthonormal
local bases in the mth unit cell. In the representation of
these bases, the lattice Hamiltonian is an infinite-dimensional
block-tridiagonal matrix:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · · · · · · · ·
· · · H−2,−2 H−2,−1 0 0 0 · · ·
· · · H†

−2,−1 H−1,−1 H−1,0 0 0 · · ·
· · · 0 H†

−1,0 H0,0 H0,1 0 · · ·
· · · 0 0 H†

0,1 H1,1 H1,2 · · ·
· · · 0 0 0 H†

1,2 H2,2 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

consisting of the Mm × Mm+1 hopping matrix Hm,m+1 between
neighboring unit cells, its Hermitian conjugate Hm+1,m =
H†

m,m+1, and the Mm × Mm Hamiltonian matrix Hm,m of

the mth unit cell. In a lead, Hm,m = h and Hm,m+1 = t are
independent of m. In a scatterer, Hm,m and Hm,m+1 could
depend on m arbitrarily. Here, as a convention, the region
of the scatterers is chosen such that the hopping between the
lead and the surface of a scatterer is the same as that inside this
lead, e.g., HmL−1,mL

= t in Fig. 2(c), where t is the hopping
inside the left lead. Except for the Hermiticity requirement
H = H†, the lattice Hamiltonian is completely general. The
(retarded) GF of the layered system is an infinite-dimensional
matrix: G(E) ≡ (z − H)−1, where z ≡ E + i0+. The GF from
the unit cell m0 to the unit cell m is an Mm × Mm0 matrix and
corresponds to the (m,m0) block of G(E), i.e., Gm,m0 (E) ≡
[(z − H)−1]m,m0 . Hereafter we consider a fixed energy E or
z ≡ E + i0+ and omit this argument for brevity.

To highlight the distinguishing features of our approach
and introduce relevant concepts, we first review the commonly
used RGF method before presenting our idea.

A. Recursive Green’s function method

The idea of the RGF is to build up the entire system out of
disconnected subsystems by the Dyson equation. Let us start
from two disconnected subsystems A and B characterized by
the Hamiltonian H(A) and H(B), respectively. The (retarded)
GFs of each subsystem are G(A) ≡ (z − H(A))−1 and G(B) ≡
(z − H(B))−1. Next we connect the interface (denoted by a) of
A and the interface (denoted by b) of B by local couplings Vab

and Vba . Thus the Dyson equation gives the GF

G =
[

GAA GAB

GBA GBB

]
(2)

of the connected system in terms of the GFs of each subsystem
[90]:

GAA = [
(G(A))−1 − VabG(B)

bb Vba

]−1
, (3a)

GBB = [
(G(B))−1 − VbaG(A)

aa Vab

]−1
, (3b)

GBA = G(B)
Bb VbaGaA, (3c)

GAB = G(A)
Aa VabGbB, (3d)

or vice versa:

G(A) = GAA − GAbVba(1 + GabVba)−1GaA, (4a)

G(B) = GBB − GBaVab(1 + GbaVab)−1GbB. (4b)

Equation (3) is the key to building up the entire system out
of disconnected subsystems, while Eq. (4) can be used to
calculate the GF of each subsystem when the GF of the
connected system is known (e.g., if the connected system is
infinite and periodic [27]). The first two equations of Eq. (3)
show that if we focus on one subsystem (say A), the presence
of the other subsystem B amounts to a self-energy correction
to the interface of A: H(A)

a,a → H(A)
a,a + VabG(B)

bb Vba .

1. General procedures of RGF

In RGF, to calculate the conductance of the general
layered system as described earlier [Eq. (1)], the system is
first partitioned into the semi-infinite left lead L (unit cells
m � 0), the central region C (unit cells 1 � m � N ), and the
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semi-infinite right lead R (unit cells m � N + 1). The entire
central region C is regarded as a scatterer [see Fig. 2(a) for an
example], so the GF is

G =
⎡
⎣GLL GLC GLR

GCL GCC GCR

GRL GRC GRR

⎤
⎦. (5)

Let us use H(C) for the Hamiltonian of the central region,
and H(p) (p = L,R) for the Hamiltonian of the lead p, as
characterized by the unit cell Hamiltonian hp and nearest-
neighbor hopping tp = H(p)

m,m+1. Then the central region part
of the GF is computed from

GCC = (z − H)−1, (6)

where H is the effective central region Hamiltonian: it equals
H(C) in the interior of C, but differs from H(C) at the two
surface unit cells:

H1,1 = H1,1 + �(L), (7a)

HN,N = HN,N + �(R), (7b)

due to self-energy corrections from the left and right leads:

�(L) = t†LG(L)
s tL, (8)

�(R) = tRG(R)
s t†R. (9)

Here G(L)
s = [(z − H(L))−1]0,0 is the GF of the left lead at the

right surface, and G(R)
s = [(z − H(R))−1]N+1,N+1 is the GF of

the right lead at the left surface, so they are referred to as
surface GFs in the literature. Finally, to compute the linear
conductance, we need to set E = EF and use the Landauer-
Buttiker formula [6–8] σ = (e2/h)T (EF ), where [13]

T (EF ) = Tr�(R)GN,1�
(L)(GN,1)† (10)

and �(α) ≡ i(�(α) − H.c.). Note that Eq. (10) only involves
GN,1, the (N,1) block of GCC . Instead of direct matrix
inversion [see Eq. (6)], GN,1 can be computed by building
up the central region layer by layer [2] through Eq. (3). Let us
use G(n)(n = 1,2, · · · ,N ) to denote the GF of the subsystem
consisting of the unit cells m = 1,2, . . . ,n. The RGF starts
from G(1) = (z − H1,1)−1, first uses the iteration

G(n)
n,n = (

z − Hn,n − Hn,n−1G(n−1)
n−1,n−1Hn−1,n

)−1
(11)

to obtain {G(n)
n,n}, and then uses the iteration

G(n)
1,n = G(n−1)

1,n−1Hn−1,nG(n)
n,n (12)

to obtain G1,N = G(N)
1,N . The number of iterations and hence

the time cost of the above recursive algorithm scales linearly
with the length of the scattering region.

Equation (10) gives the total transmission probability, i.e.,
the sum of the transmission probabilities of all channels. To
identify the contributions from each individual transmission
channel, it is necessary to use the GF to construct the
transmission amplitude S

(RL)
β,α from the αth traveling channel

in the lead L to the βth traveling channel in the lead R through
the Fisher-Lee relations [14–17,25,41,55] and then sum over

all the traveling channels:

T (EF ) =
∑

αβ∈traveling

∣∣S(RL)
β,α

∣∣2. (13)

Alternatively, it is also possible to calculate the transmission
amplitudes {S(RL)

β,α } (and more generally the entire scattering
matrix) by directly calculating the scattering of an incident
traveling wave through the wave function mode matching
approach [52–54]. The equivalence between Eqs. (10) and
(13), which establishes a connection between the GF approach
and the wave function mode matching approach, is well
known for a single parabolic band [1,2,14–17] . For a general
lattice model, there was suspicion [77] that Eq. (13) was
incomplete since the GF in Eq. (10) includes both traveling
waves and evanescent waves, while Eq. (13) only includes
the contributions from traveling waves. Later, a rigorous
equivalence proof was provided by Khomyakov et al. [55]
and others [25], but the presence of the evanescent states does
suggest that the GF is not completely equivalent to the unitary
scattering matrix.

There are still two remaining issues: the calculation of the
self-energies �(L,R) (or equivalently the surface GFs G(L,R)

s )
and a proper definition of the scattering channels and the
transmission amplitudes S

(RL)
β,α .

2. Self-energies: Recursive method and eigenmode method

The numerical algorithms for computing �(L,R) or equiva-
lently the surface GFs G(L,R)

s can be classified into two groups:
recursive methods and eigenmode methods (see Ref. [90] for
a review). The former calculates an approximate surface GF
through some recursive relations, while the latter provides
exact—within the numerical precision—closed-form solutions
to the surface GF.

The idea of the recursive methods is to split the left lead into
the surface unit cell m = 0 (subsystem A) and the remaining
part (subsystem B); the Dyson equation [Eq. (3a)] gives the
recursive relation

G(L)
s = (

z − hL − t†LG(L)
s tL

)−1

⇔ �(L) = t†L(z − hL − �(L))−1tL. (14)

Similarly, by splitting the right lead into the surface unit cell
m = N + 1 (subsystem A) and the remaining part (subsystem
B), Eq. (3a) gives the recursive relation

G(R)
s = (

z − hR − tRG(R)
s t†R

)−1

⇔ �(R) = tR(z − hR − �(R))−1t†R. (15)

Thus the surface GFs and self-energies can be obtained by
simple or more efficient iteration techniques [32,33].

The eigenmode method has been derived independently
several times [40,41,46,52,53,77,91] and has been shown to
be superior in accuracy and performance [40] compared to the
recursive methods. The central results are explicit expressions
for the self-energies:

�(L) = t†L(P(L)
− )−1, (16a)

�(R) = tRP(R)
+ , (16b)
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and surface GFs:

G(L)
s = [z − hL − t†L(P(L)

− )−1]−1 = (tLP(L)
− )−1, (17)

G(R)
s = (z − hR − tRP(R)

+ )−1 = P(R)
+ (t†R)−1, (18)

in terms of the (retarded) propagation matrices P(L,R)
± (also

referred to as Bloch matrices [55] or amplitude transfer
matrices [90] in the literature), which can be constructed from
the (retarded) eigenmodes of each lead.

Now we introduce the propagation matrices and eigen-
modes in some detail, since they will play a central role in
our GF approach. Let us consider a lead characterized by the
unit cell Hamiltonian h and nearest-neighbor hopping matrix
t = Hm,m+1. The wave propagation in this lead is governed by
the uniform Schrödinger equation

−t†|�(m − 1)〉 + (z − h)|�(m)〉 − t|�(m + 1)〉 = 0, (19)

where z ≡ E + i0+. Imposing the Bloch symmetry |�(m)〉 =
eikma|�〉 (a is the thickness of each unit cell) gives

z|�〉 = (e−ikat† + h + eikat)|�〉 ≡ H(k)|�〉 (20)

for the eigenvector |�〉. For an infinite lead, the wave function
|�(m)〉 must remain finite at m → ±∞. This natural boundary
condition dictates k to be real, so that Eq. (20) gives M real
energy bands of the lead, where M is the number of basis
states in each unit cell of this lead. For certain complex k’s, the
energies could still be real, which form the complex energy
bands of the lead.

Conversely, given the energy E and without imposing any
boundary conditions, Eqs. (19) or (20) can be solved to yield
2M(retarded) eigenmodes {k,|�〉} (see Appendix A) [52–55],
where the wave vector k could be either real (i.e., traveling
modes) or complex (i.e., evanescent modes). The eigenmodes
are just the collection of eigenstates on the energy shell E

in the real and complex energy bands of the lead. As a
convention, each eigenvector |�〉 should be normalized to
unity, but different eigenvectors are not necessarily orthogonal.
For a traveling eigenmode with wave vector k and eigenvector
|�〉, its group velocity is

v = ∂k〈�|H(k)|�〉 = −2a Im〈�|teika|�〉, (21)

where 〈�| is the conjugate transpose of |�〉, i.e., an M-
component row vector. Then the 2M eigenmodes are classified
into M right-going ones and M left-going ones: the former
consist of traveling modes with a positive group velocity and
evanescent modes decaying exponentially to the right (i.e.,
Im k > 0), while the latter consist of traveling modes with
a negative group velocity and evanescent modes decaying
exponentially to the left (i.e., Im k < 0). For clarity, we denote
the M right-going eigenmodes as {k+,α,|�+,α〉} and the M left-
going eigenmodes as {k−,α,|�−,α〉}, where α = 1,2, . . . ,M .
For every right-going evanescent mode (+,α) with wave vector
k+,α , there is always a left-going evanescent mode (−,α) with
wave vector k−,α = k∗

+,α [41,55,92].

The propagation matrix Ps for left-going (s = −) or right-
going (s = +) waves is constructed as [52–55]

Ps ≡ Us

⎡
⎢⎣

eiks,1a

. . .
eiks,Ma

⎤
⎥⎦U−1

s , (22)

where Us ≡ [|�s,1〉, · · · ,|�s,M〉] (i.e., its αth column is
|�s,α〉). The propagation matrices are standard tools in the
wave function mode matching approach [52–55] to describe
wave propagation; e.g., a general right-going wave that obeys
Eq. (19) can be written as |�(m)〉 = Pm

+|�(0)〉, while a
general left-going wave obeying Eq. (19) can be written as
|�(m)〉 = Pm

−|�(0)〉.

3. Scattering channels and Fisher-Lee relations

Since the GF G(E) describes the scattering of both traveling
and evanescent eigenmodes by the central region, while
the unitary scattering matrix S(E) describes the scattering
of traveling eigenmodes only, it is possible to construct
S(E) in terms of G(E), i.e., the Fisher-Lee-type relations.
Compared with the Caroli’s expression [Eq. (10)] that gives the
total transmission probability, the Fisher-Lee relations further
provide information about the scattering of each individual
traveling eigenmode. For a general lattice model, different
eigenmodes {|�s,α〉} are not orthogonal; then for each lead, it
is necessary to introduce 2M (retarded) dual vectors {|φs,α〉}
through [25,41,55] ⎡

⎢⎣
〈φs,1|

...
〈φs,M |

⎤
⎥⎦ ≡ U−1

s , (23)

where M is the number of bases in each unit cell of this lead.
In general, different left-going (right-going) eigenvectors are
not orthogonal, so Us is not necessarily unitary and |φs,α〉
is not necessarily equal to |�s,α〉, but we always have the
orthonormalization and completeness relations

〈φs,α|�s,β〉 = 〈�s,α|φs,β〉 = δα,β, (24)∑
α

|�s,α〉〈φs,α| =
∑

α

|φs,α〉〈�s,α| = I, (25)

which follow from UsU−1
s = U−1

s Us = I (I is the identity
matrix). By inserting the completeness relation, any column
vector |�〉 can be expanded as a linear combination of
either the M left-going eigenvectors or the M right-going
eigenvectors as |�〉 = ∑

α cs,α|�s,α〉 with cs,α = 〈φs,α|�〉. In
terms of the eigenmodes and their dual vectors, Eq. (22) can
be written as

Ps ≡
∑

α

eiks,αa|�s,α〉〈φs,α|, (26)

which has a clear physical interpretation. For example, a
general right-going wave is

|�(m)〉 = Pm
+|�(0)〉 =

∑
α

eik+,αma|�+,α〉〈φ+,α|�(0)〉; (27)

i.e., |�(0)〉 is first expanded as a linear combination of
right-going eigenmodes |�(0)〉 = ∑

α |�+,α〉〈φ+,α|�(0)〉 and
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then each right-going eigenmode propagates as |�+,α〉 →
eik+,αma|�+,α〉.

Now the scattering channel can be labeled by the eigen-
modes, which could be either traveling or evanescent. The
scattering matrix S(E) provides a complete description for
the scattering from one traveling eigenmode into another
traveling eigenmode. For a general lattice model, the Fisher-
Lee relations allow us to construct the scattering matrix
from the lattice GF; e.g., the transmission amplitude from
the right-going eigenmode |�(L)

+,α〉 of the left lead into the
right-going eigenmode |�(R)

+,β〉 of the right lead is [25,41,52,55]

S
(R,L)
β,α

∣∣
α,β∈traveling =

√√√√v
(R)
+,β/aR

v
(L)
+,α/aL

〈
φ

(R)
+,β

∣∣GN,1(g(L))−1
∣∣�(L)

+,α

〉
,

(28)

while the transmission amplitude from the left-going eigen-
mode |�(R)

−,α〉 of the right lead into the left-going eigenmode
|�(L)

−,β〉 of the left lead is [25,41,52,55]

S
(L,R)
β,α

∣∣
α,β∈traveling =

√√√√∣∣v(L)
−,β

∣∣/aL∣∣v(R)
−,α

∣∣/aR

〈
φ

(L)
−,β

∣∣G1,N (g(R))−1
∣∣�(R)

−,α

〉
,

(29)
where ap and g(p) are, respectively, the unit cell thickness and
free GF of the lead p [see Eq. (35)], and v

(p)
s,α is the group

velocity [see Eq. (21)] of the traveling eigenmode |�(p)
s,α〉 in the

lead p.

B. Our GF approach: Key ideas

Let us assume that there is a local excitation at the unit
cell m0, as described by an Mm0 -dimensional column vector
|�loc〉m0 . This excitation generates a casual scattering wave
|�(m)〉 that has an energy E and obeys the Schrödinger
equation with a local source at m0:

−Hm,m−1|�(m − 1)〉 + (z − Hm,m)|�(m)〉
−Hm,m+1|�(m + 1)〉 = δm,m0 |�loc〉m0 . (30)

The solution is given by

|�(m)〉 = Gm,m0 |�loc〉m0 ; (31)

e.g., for a unit excitation of the αth basis state, as described
by |�loc〉m0 = [0, . . . ,1,0, . . . ,0]T (only the αth element is
nonzero), Eq. (31) gives |�(m)〉 as the αth column of Gm,m0 .

Equation (31) shows that the GF can be immediately
obtained once the scattering state is determined, e.g., based
on physical considerations on how the local excitation evolves
to the scattering state. For example, if the local excitation
|�loc〉m0 occurs inside a lead, then it first generates an outgoing
zeroth-order wave consisting of a left-going one at m � m0

and a right-going one at m � m0. For an infinite lead, there
are no scatterers, so this outgoing wave is the total scattering
state [Fig. 3(a)]. For a semi-infinite lead connected to a
scatterer on its right [Fig. 3(b)], the zeroth-order right-going
wave will produce a first-order reflection wave, so the total
scattering state in the lead is the sum of the zeroth-order and
first-order waves. More generally, for a finite lead sandwiched

FIG. 3. Scattering state emanating from a local excitation at m0

in an infinite lead (a), a semi-infinite lead connected to a scatterer on
its right (b), and a finite lead sandwiched between two scatterers. The
zeroth-order, first-order, and second-order partial waves are denoted
by black, blue, and orange arrows, respectively.

between two scatterers [Fig. 3(c)], the right-going (left-going)
zeroth-order wave will propagate to the right (left) scatterer
and produce a first-order reflection wave, which in turn
will propagate to the left (right) scatterer and then produce
high-order reflection waves. The total scattering state would
be the sum of all these waves.

In contrast to the commonly used RGF that treats the
entire central region (regarded as a large scatterer) numerically
[see Fig. 2(a) for an example], our method need only regard
each truly disordered region as a scatterer for numerical
treatment, while all the periodic subregions [such as the middle
lead in Fig. 2(a)] inside the central region can be treated
semianalytically by fully utilizing the translational invariance
of these subregions. Physically, the wave propagation inside
these periodic subregions leads to complicated multiple
reflection between different scatterers, which is difficult to
handle analytically in the standard RGF technique in which
the GF is treated as a matrix. By contrast, in our approach, it is
straightforward to perform analytically an infinite summation
over all the multiple reflection waves, so that the time cost
can be significantly reduced. This approach also provides a
physically transparent expansion of the GF G(E) in terms of a
generalized scattering matrix S(E), which can be regarded
as a reverse of the well-known Fisher-Lee relations [14–
17,25,41,55] (see Fig. 1). In the next section, we will establish
the procedures for calculating the GF within this framework
in a physically transparent way.

III. OUR GREEN’S FUNCTION APPROACH

Our GF approach essentially consists of two steps: gener-
ation of the zeroth-order outgoing partial wave by the local
excitation and its propagation in the leads and scattering by
the scatterers. The wave function mode matching approach
[52–55] has developed useful tools to describe the latter
process. Below we begin with an infinite lead, then we consider
an infinite system containing a single scatterer. Finally, we give
the analytical construction rule for the GF of a general layered
system containing an arbitrary number of scatterers.

A. Infinite lead

Suppose that the lead is characterized by the unit cell
Hamiltonian h and hopping t. The scattering state |�(m)〉
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emanating from a local excitation |�loc〉m0 is determined by
the Schrödinger equation with a local source at m0:

−t†|�(m − 1)〉 + (z − h)|�(m)〉 − t|�(m + 1)〉
= δm,m0 |�loc〉m0 . (32)

In either the left region (m � m0 − 1) or the right region
(m � m0 + 1), the local source vanishes, so the general
solution would be a linear combination of left-going and
right-going eigenmodes with energy E. However, by causality
considerations (due to the infinitesimal imaginary part of the
energy z = E + i0+), the solution in the left (right) region
should be a left-going (right-going) wave [see Fig. 3(a)]:

|�(m)〉|m�m0−1 = (P−)m−m0 |�(m0)〉, (33)

|�(m)〉|m�m0+1 = (P+)m−m0 |�(m0)〉. (34)

Substituting into Eq. (32) gives |�(m0)〉 = g|�loc〉m0 , where

g ≡ (z − h − t†P−1
− − tP+)−1 (35a)

= [t(P− − P+)]−1 = [t†(P−1
+ − P−1

− )]−1. (35b)

Here we have used the equality [55]

E − h = t†P−1
± + tP± (36)

in arriving at Eq. (35b). From the scattering wave function, we
immediately identify the GF of an infinite lead as

gm,m0 ≡
{

Pm−m0+ g (m � m0),

Pm−m0− g (m � m0).
(37)

This recovers the previous result [41,55] obtained by directly
solving the equations of motion of the GF. For convenience,
hereafter we call gm,m0 the free GF of the lead since it describes
the generation of the zeroth-order outgoing wave |�(m)〉 =
gm,m0 |�loc〉m0 from a local excitation inside this lead.

B. Single scatterer

Let us consider a scatterer C connected to two semi-infinite
leads L and R [Fig. 4(a)]. The left (right) surface of the
scatterer is mL (mR). The unit cell Hamiltonian and hopping
inside the left (right) lead are hL and tL (hR and tR).

1. Local excitation inside the scatterer

The zeroth-order outgoing wave |�(m)〉 emanating from a
local excitation |�loc〉m0 at m0 ∈ C obeys Eq. (30) with mL �

FIG. 4. Scattering state emanating from a local excitation inside
a scatterer (a) or a lead (b). The black arrows denote the zeroth-order
partial wave and the blue arrows denote the first-order partial wave
due to scattering.

m � mR , i.e., inside the scatterer. Inside the left lead, |�(m)〉
obeys

− t†L|�(m − 1)〉 + (z − hL)|�(m)〉 − tL|�(m + 1)〉 = 0

(38)

with m � mL − 1. Inside the right lead, |�(m)〉 obeys

− t†R|�(m − 1)〉 + (z − hR)|�(m)〉 − tR|�(m + 1)〉 = 0

(39)

with m � mR + 1. By causality, the solution in the left (right)
lead is a left-going (right-going) wave [see Fig. 4(a)]:

|�(m)〉|m∈L = (P(L)
− )m−mL |�(mL)〉, (40)

|�(m)〉|m∈R = (P(R)
+ )m−mR |�(mR)〉, (41)

where P(p)
± are propagation matrices of lead p [see Eq. (22)].

Substituting |�(mL − 1)〉 = (P(L)
− )−1|�(mL)〉 and |�(mR +

1)〉 = P(R)
+ |�(mR)〉 into Eq. (30) gives a closed set of equations

for |�(m)〉 inside the scatterer. The solution is

|�(m)〉|m∈C = Gm,m0 |�loc〉m0 , (42)

where

G ≡ (z − H)−1 (43)

and H is the effective Hamiltonian for the scatterer: it is equal
to the scatterer part of the system Hamiltonian H, except for
the two surface unit cells:

HmL,mL
= HmL,mL

+ t†L(P(L)
− )−1, (44a)

HmR,mR
= HmR,mR

+ tRP(R)
+ . (44b)

Since G converts a local excitation inside the scatterer into a
scattering state inside the scatterer, we call it the conversion
matrix of the scatterer. Comparing Eqs. (43) and (44) to
Eqs. (6), (7), and (16), we see that G is just the scatterer
part of the GF. Actually, from the scattering wave function, we
immediately identify the GF:

Gm∈C,m0∈C = Gm,m0 , (45a)

Gm∈L,m0∈S = (P(L)
− )m−mLGmL,m0 , (45b)

Gm∈R,m0∈S = (P(R)
+ )m−mRGmR,m0 . (45c)

Equation (45b) shows that the local excitation first evolves
to an outgoing wave GmL,m0 |�loc〉m0 at the left surface
of the scatterer, and then propagates to the unit cell m

as (P(L)
− )m−mLGmL,m0 |�loc〉m0 . Equation (45c) has a similar

physical interpretation.

2. Local excitation in the lead

As shown in Fig. 4(b), for m0 ∈ L, the local excitation
first generates a zeroth-order outgoing wave in the left
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lead: |�(0)(m)〉 = g(L)
m,m0

|�loc〉m0 , where g(p)
m,m0 is the free GF of

the lead p [Eq. (37)]. Next the right-going partial wave reaches
the left surface of C and evolves into a scattering state |�(m)〉.
For m0 ∈ R, the local excitation first generates a zeroth-order
outgoing wave in the right lead: |�(0)(m)〉 = g(R)

m,m0
|�loc〉m0 .

Next the left-going partial wave reaches the right surface of
C and evolves to a scattering state |�(m)〉. For either case,
the total scattering state |�(m)〉 emanating from the local
excitation is the sum of the unscattered zeroth-order partial
wave and the scattering state |�(m)〉. The central issue is
to determine the scattering state emanating from a known
incident wave, in a way similar to the wave function mode
matching approach to mesoscopic quantum transport [52–55].

First we consider the scattering state |�(m)〉 emanating
from a right-going incident wave |�in(m)〉 in the left lead.
The key observation is that for arbitrary m1 � mL, the lo-
cal excitation |�loc〉m1 ≡ (g(L))−1|�in(m1)〉 generates a right-
going partial wave |�̃(m)〉|m�m1 = (P(L)

+ )m−m1 |�in(m1)〉 that
is equal to |�in(m)〉|m�m1 . Therefore, in the region m � m1,
the scattering state emanating from |�in(m)〉 is the same
as the scattering state emanating from this local excitation
(see Appendix B for a rigorous proof). Taking m1 = mL

immediately gives

|�(m)〉|m∈C = Gm,mL
(g(L))−1|�in(mL)〉; (46)

i.e., first the incident wave amplitude |�in(mL)〉 is converted
back to a local excitation |�loc〉mL

≡ (g(L))−1|�in(mL)〉, then
the conversion matrix G of the scatterer further converts
it to the total scattering state |�(m)〉|m∈C according to
Eq. (42). Inside the left lead, |�(m)〉 is the sum of the
right-going incident wave and a left-going reflection partial
wave |�r(m)〉|m∈L = (P(L)

− )m−mL |�r(mL)〉, where

|�r(mL)〉 = |�(mL)〉 − |�in(mL)〉
= [

GmL,mL
(g(L))−1 − I

]|�in(mL)〉. (47)

Inside the right lead, |�(m)〉 is the right-going transmission
wave: |�(m)〉|m∈R = (P(R)

+ )m−mR |�(mR)〉, where

|�(mR)〉 = GmR,mL
(g(L))−1|�in(mL)〉. (48)

Similarly, we can derive the scattering state |�(m)〉 ema-
nating from a left-going incident wave |�in(m)〉 in the right
lead. Inside the scatterer, the scattering state is

|�(m)〉|m∈S = Gm,mR
(g(R))−1|�in(mR)〉, (49)

as if it emanated from a local excitation |�loc〉mR
≡

(g(R)−1|�in(mR)〉 at the right surface of the scatterer [cf.
Eq. (42)]. Inside the right lead, |�(m)〉 is the sum of the
left-going incident wave and a right-going reflection partial
wave |�r(m)〉|m∈R = (P(R)

+ )m−mR |�r(mR)〉, where

|�r(mR)〉 = |�(mR)〉 − |�in(mR)〉
= [

GmR,mR
(g(R))−1 − I

]|�in(mR)〉. (50)

Inside the left lead, |�(m)〉 is the left-going transmission wave:
|�(m)〉 = (P(L)

− )m−mL |�(mL)〉, where

|�(mL)〉 = GmL,mR
(g(R))−1|�in(mR)〉. (51)

Using the above results, the scattering state emanating from
the zeroth-order right-going partial wave in the left lead is

given by Eqs. (46)–(48) with |�in(mL)〉 ≡ |�(0)(mL)〉. This
allows us to identify the GF:

Gm∈C,m0∈L = Gm,mL
(g(L))−1g(L)

mL,m0
, (52a)

Gm∈R,m0∈L = (P(R)
+ )m−mRGmR,mL

(g(L))−1g(L)
mL,m0

, (52b)

Gm∈L,m0∈L = g(L)
m,m0

+ (P(L)
− )m−mL

[
GmL,mL

(g(L))−1 − I
]
g(L)

mL,m0
.

(52c)

These expressions have clear physical interpretations; e.g.,
Eq. (52a) shows that the local excitation |�loc〉m0∈L first
evolves to a right-going partial wave and propagates rightward
to the left surface of the scatterer as g(L)

mL,m0
|�loc〉m0∈L. There

it is converted back to a local excitation by (g(L))−1, and
finally the conversion matrix of the scatterer Gm,mL

further
converts it to the scattering state inside the scatterer. As
another example, Eq. (52c) shows that the total scattering wave
inside the left lead is the sum of the zeroth-order partial wave
g(L)

m,m0
|�loc〉m0 and the reflection partial wave: first the local

excitation |�loc〉m0∈L evolves to a zeroth-order partial wave and
then propagates rightwards to the left surface of the scatterer
as g(L)

mL,m0
|�loc〉m0∈L, then GmL,mL

(g(L))−1 − I converts it to the

reflection wave. Finally, (P(L)
− )m−mL propagates this reflection

wave leftward to m.
Similarly, the scattering state emanating from the zeroth-

order left-going partial wave in the right lead is given by
Eqs. (49)–(51) with |�in(mR)〉 ≡ |�(0)(mR)〉. This allows us
to identify the GF:

Gm∈C,m0∈R = Gm,mR
(g(R))−1g(R)

mR,m0
, (53a)

Gm∈L,m0∈R = (P(L)
− )m−mLGmL,mR

(g(R))−1g(R)
mR,m0

, (53b)

Gm∈R,m0∈R = g(R)
m,m0

+ (P(R)
+ )m−mR

[
GmR,mR

(g(R))−1 − I
]
g(R)

mR,m0
.

(53c)

These can be interpreted in a similar way to Eqs. (45) and (52).
The above results cover previous results as special cases.

For example, by directly solving the equation of motion,
Sanvito et al. [41] and Krstić et al. [77] obtain the GF of
an infinite lead [Eq. (37)] and a semi-infinite lead consisting
of the unit cells m � 0 (m � 0) [Eq. (C2)], which can be
regarded as a single-unit-cell scatterer at m = 0 connected to
a semi-infinite left (right) lead. Khomyakov et al. [55] further
obtained the GF across a single scatterer [Eq. (52b)]. A sharp
interface between a semi-infinite left lead and a semi-infinite
right lead can also be regarded as a single-unit-cell scatterer
connected to two semi-infinite leads. For reference, the explicit
expressions of the GFs for these simple cases are given in
Appendix C.

C. Multiple scatterers

A general layered system containing an arbitrary number of
scatterers can be regarded as a composite scatterer connected
to one or two semi-infinite leads, e.g., a scatterer B connected
to a finite lead L and a semi-infinite lead R can be regarded
as a composite scatterer C = (A + B) connected to one semi-
infinite right lead [Fig. 5(a)], while two scatterers sandwiched
between three leads can be regarded a composite scatterer
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FIG. 5. (a) A scatterer B connected to a finite left lead L and a
semi-infinite right lead R can be regarded as a composite scatterer
C connected to one semi-infinite right lead R. (b) Two scatterers
sandwiched between three leads L,M,R can be regarded as a com-
posite scatterer C connected to two semi-infinite leads L and R.

C = (A + B) connected to two semi-infinite leads [Fig. 5(b)].
Therefore, we can use Eqs. (45), (52), and (53) to obtain
the GF of the entire system once the conversion matrix of
the composite scatterer is known. In the RGF method, the
conversion matrix (which coincides with the GF of the infinite
system within the composite scatterer) is calculated by a
numerical iteration algorithm that builds up the composite
scatterer slice by slice; thus the time cost increases linearly
with the total length of the composite scatterer. Here the
physical transparency of our approach allows us to treat the
multiple reflection between different scatterers analytically,
so that the conversion matrix of a composite scatterer can
be obtained by combining the conversion matrices of the
constituent scatterers analytically with a significantly reduced
time cost. The basic step is the combination of the conversion
matrices G(A) and G(B) of two scatterers A and B into the
conversion matrix G of a composite scatterer C ≡ (A + B).

1. Combining conversion matrices

As shown in Fig. 5(b), the left and right surfaces of the
scatterer A (B) are aL and aR (bL and bR) and the three leads
sandwiching the scatterers are the semi-infinite left lead L, the
middle lead M, and the semi-infinite right lead R. For a local
excitation |�loc〉m0 at m0 ∈ C, the total scattering state inside C

is |�(m)〉|m∈C = Gm,m0 |�loc〉m0 , which allows us to identifyG
once the total scattering state has been obtained. For m0 ∈ A,
the local excitation first produces a zeroth-order partial wave
in A and M . Next the right-going partial wave in M undergoes
multiple reflections between B and A and finally evolves to a
scattering state. For m0 ∈ B, the local excitation first produces
a zeroth-order partial wave inside B and M . Next the left-going
partial wave in M undergoes multiple reflections and finally
evolves to a scattering state. For m0 ∈ M , the local excitation
first produces a zeroth-order outgoing partial wave in M . Next
the left- and right-going partial waves each undergo multiple
reflections and evolve to a scattering state. For each case,
the total scattering state emanating from the local excitation
is the sum of the unscattered zeroth-order partial wave and
the scattering state(s) emanating from the scattered zeroth-
order partial wave. Therefore, the key issue is to calculate the
scattering state |�(m)〉 emanating from a right- or left-going
incident wave |�in(m)〉 in the middle lead through multiple
reflections between A and B.

In the middle lead, |�(m)〉 is the sum of the right-
going part |�+(m)〉 = (P(M)

+ )m−bL |�+(bL)〉 and the left-going
part |�−(m)〉 = (P(M)

− )m−aR |�−(aR)〉. Inside the scatterer A,
|�(m)〉 is equal to the scattering state emanating from the total
incident wave |�−(aR)〉 on A [cf. Eq. (49)]:

|�(m)〉|m∈A = G(A)
m,aR

(g(M))−1|�−(aR)〉. (54)

Inside the scatterer B, |�(m)〉 is equal to the scattering state
emanating from the total incident wave |�+(bL)〉 on B [cf.
Eq. (46)]:

|�(m)〉|m∈B = G(B)
m,bL

(g(M))−1|�+(bL)〉. (55)

Therefore, the scattering state inside C is completely deter-
mined by |�+(bL)〉 and |�−(aR)〉. For brevity, we introduce
the reflection matrices

RB ≡ G(B)
bL,bL

(g(M))−1 − I, (56)

RA ≡ G(A)
aR,aR

(g(M))−1 − I. (57)

The former (latter) converts a right-going (left-going) incident
wave on the left (right) surface of B (A) to a left-going
(right-going) reflection wave. To describe the multiple re-
flections between A and B, we introduce the following
renormalized propagation matrices that incorporate multiple
reflections:

PbL←aR
≡ [1 − (P(M)

+ )�mRA(P(M)
− )−�mRB]−1(P(M)

+ )�m,

(58)

PaR←bL
≡ [1 − (P(M)

− )−�mRB(P(M)
+ )�mRA]−1(P(M)

− )−�m,

(59)

PaR←aR
≡ (P(M)

− )−�mRBPbL←aR
= PaR←bL

RB(P(M)
+ )�m,

(60)

PbL←bL
≡ (P(M)

+ )�mRAPaR←bL
= PbL←aR

RA(P(M)
− )−�m,

(61)

where �m ≡ bL − aR is the distance between A and B.
For example, the renormalized propagation matrix PbL←aR

from aR to bL is the sum of the free propagation
term (P(M)

+ )�m, the propagation term with two reflections
(P(M)

+ )�mRA(P(M)
− )−�mRB(P(M)

+ )�m, and so on.
Using the above notations, when |�in(m)〉 is a right-going

incident wave on B, we have

|�+(bL)〉 = (
1 + PbL←bL

RB

)|�in(bL)〉, (62)

|�−(aR)〉 = PaR←bL
RB |�in(bL)〉. (63)

When |�in(m)〉 is a left-going incident wave on A, we have

|�+(bL)〉 = PbL←aR
RA|�in(aR)〉, (64)

|�−(aR)〉 = (
1 + PaR←aR

RA

)|�in(aR)〉. (65)
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Using the above results together with |�(m)〉|m∈C = Gm,m0 |�loc〉m0 , we identify

Gm∈B,m0∈A = G(B)
m,bL

(g(M))−1PbL←aR
G(A)

aR,m0
, (66a)

Gm∈A,m0∈B = G(A)
m,aR

(g(M))−1PaR←bL
G(B)

bL,m0
, (66b)

Gm∈A,m0∈A = G(A)
m,m0

+ G(A)
m,aR

(g(M))−1PaR←aR
G(A)

aR,m0
, (66c)

Gm∈B,m0∈B = G(B)
m,m0

+ G(B)
m,bL

(g(M))−1PbL←bL
G(B)

bL,m0
, (66d)

Gm∈M,m0∈A = [
(P(M)

+ )m−aR
(
1 + RAPaR←aR

)+ (P(M)
− )m−bLRBPbL←aR

]
G(A)

aR,m0
, (66e)

Gm∈A,m0∈M = G(A)
m,aR

(g(M))−1
[(

1 + PaR←aR
RA

)
g(M)

aR,m0
+ PaR←bL

RBg(M)
bL,m0

]
, (66f)

Gm∈M,m0∈B = [
(P(M)

− )m−bL
(
1 + RBPbL←bL

)+ (P(M)
+ )m−aRRAPaR←bL

]
G(B)

bL,m0
, (66g)

Gm∈B,m0∈M = G(B)
m,bL

(g(M))−1
[(

1 + PbL←bL
RB

)
g(M)

bL,m0
+ PbL←aR

RAg(M)
aR,m0

]
, (66h)

Gm∈M,m0∈M = g(M)
m,m0

+ (P(M)
+ )m−aRRAPaR←bL

RBg(M)
bL,m0

+ (P(M)
− )m−bLRBPbL←aR

RAg(M)
aR,m0

+ (P(M)
− )m−bL

(
RB + RBPbL←bL

RB

)
g(M)

bL,m0
+ (P(M)

+ )m−aR
(
RA + RAPaR←aR

RA

)
g(M)

aR,m0
. (66i)

These equations can be interpreted in a physically transparent
way. For example, Eq. (66a) shows that the local excitation at
m0 ∈ A evolves to the scattering wave at m ∈ B through the
following steps: first it is converted by G(A)

aR,m0
to a zeroth-order

partial wave at aR , next it undergoes renormalized propagation
from aR to bL, and finally it is converted back to a local
excitation and then to the scattering wave at m ∈ B.

2. Analytical construction rule for multiple scatterers

By repeatedly using Eq. (66), the conversion matrix of a
composite scatterer can be obtained analytically as functions
of the conversion matrices of the constituent scatterers. In
particular, the four surface elements of the conversion matrix
of the composite scatterer can be immediately obtained from
those of the constituent scatterers:

GbR,aL
= G(B)

bR,bL
(g(M))−1PbL←aR

G(A)
aR,aL

, (67a)

GaL,bR
= G(A)

aL,aR
(g(M))−1PaR←bL

G(B)
bL,bR

, (67b)

GaL,aL
= G(A)

aL,aL
+ G(A)

aL,aR
(g(M))−1PaR←aR

G(A)
aR,aL

, (67c)

GbR,bR
= G(B)

bR,bR
+ G(B)

bR,bL
(g(M))−1PbL←bL

G(B)
bL,bR

, (67d)

while the latter can be calculated through recursive techniques
[Eqs. (11) and (12)].

For example, let us consider an infinite layered system
with eight scatterers S1,S2, . . . ,S8 and calculate its GF Gm,m0 .
For simplicity we assume that m0 and m are both inside
the leads or at the surfaces of the scatterers (see Fig. 6),
so that Gm,m0 is just the (m,m0) element of the conversion
matrix G of the composite scatterer (S1 + S2 + · · · + S8),
i.e., Gm,m0 = Gm,m0 , and Gm,m0 is completely determined by
the surface elements of G(S1), . . . ,G(S8), which are readily
obtained through recursive techniques. First, we use Eq. (67) to
calculate the surface elements of G(A), G(B1), and G(B2) for the
three composite scatterers A ≡ (S1 + S2 + S3), B1 ≡ (S4 +
S5 + S6), and B2 ≡ (S7 + S8). Next we regard (B1 + B2) as
a composite scatterer B and calculate G(B)

m,bL
(bL is the left

surface of B) from Eq. (66e). Now the entire system contains

two scatterers A and B; thus Gm,m0 can be obtained from
Eq. (66h).

IV. INVERSE OF FISHER-LEE RELATION

In the previous section, we have developed a physically
transparent and numerically efficient way to calculate the GF
of a general layered system. There the GF is expressed as
a matrix, i.e., in terms of the propagation matrices P± and
conversion matrix g of the leads and the conversion matrices
G of the scatterers. In this section, we give further physical
insight into our GF approach by expressing the GF analytically
in terms of a generalized scattering matrix, which describes the
scattering of both traveling states and evanescent states. This
could be regarded as the inverse of the well-known Fisher-Lee
relations [14–17,25,41,55] (see Fig. 1). The key is to express
the conversion matrix G in terms of a generalized scattering
matrix.

A. Generalized scattering matrix

Let us consider an infinite system consisting of a single
scatterer (with the left surface at mL and the right surface at
mR) connected to two semi-infinite leads L and R (see Fig. 4).
For a right-going eigenmode |�in(m)〉 = eik

(L)
+,α (m−mL)aL |�(L)

+,α〉
incident on the scatterer from the left lead, the resulting
scattering state |�(m)〉 follows from Eqs. (46)–(48). Using

FIG. 6. Green’s function Gm,m0 of an infinite system containing
eight scatterers, where m0 and m are both inside the leads or at the
surfaces of the scatterers.
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Eq. (26) for the propagation matrix, we obtain

|�(m)〉|m�mR
=
∑

β

eik
(R)
+,β (m−mR )aR

∣∣�(R)
+,β

〉
S (RL)

β,α , (68)

|�(m)〉|m�mL
= |�in(m)〉 +

∑
β

eik
(L)
−,β (m−mL)aL

∣∣�(L)
−,β

〉
S (LL)

β,α ,

(69)

where

S (RL)
β,α ≡ 〈

φ
(R)
+,β

∣∣GmR,mL
(g(L))−1

∣∣�(L)
+,α

〉
(70)

is a generalized transmission amplitude from |�(L)
+,α〉 at the left

surface of the scatterer into |�(R)
+,β〉 at the right surface of the

scatterer, and

S (LL)
β,α ≡ 〈

φ
(L)
−,β

∣∣[GmL,mL
(g(L))−1 − I

]∣∣�(L)
+,α

〉
(71)

is a generalized reflection amplitude from |�(L)
+,α〉 into |�(L)

−,β〉
at the left surface of the scatterer. Similarly, for a left-
going incident wave |�in(m)〉 = eik

(R)
−,α (m−mR )aR |�(R)

−,α〉 in the
right lead, the resulting scattering state |�(m)〉 follows from
Eqs. (49)–(51) as

|�(m)〉|m�mL
=
∑

β

eik
(L)
−,β (m−mL)aL

∣∣�(L)
−,β

〉
S (LR)

β,α , (72)

|�(m)〉|m�mR
= |�in(m)〉 +

∑
β

eik
(R)
+,β (m−mR )aRS (RR)

β,α

∣∣�(R)
+,β

〉
,

(73)

where

S (LR)
β,α ≡ 〈

φ
(L)
−,β

∣∣GmL,mR
(g(R))−1

∣∣�(R)
−,α

〉
(74)

is a generalized transmission amplitude from |�(R)
−,α〉 at the

right surface of the scatterer into |�(L)
−,β〉 at the left surface of

the scatterer, and

S (RR)
β,α ≡ 〈

φ
(R)
+,β

∣∣[GmR,mR
(g(R))−1 − I

]∣∣�(R)
−,α

〉
(75)

is a generalized reflection amplitude from |�(R)
−,α〉 into |�(R)

+,β〉
at the right surface of the scatterer.

Equations (70)–(75) define a generalized scattering matrix
S(E) and express it in terms of the surface elements of
the conversion matrix. They were first derived in the wave
function mode matching approach [52–54] and its connection
to the GF approach was established later [55]. They are valid
for both traveling modes and evanescent modes. In our GF
approach, these expressions have clear physical meanings.
Taking S (RL)

β,α as an example, GmR,mL
(g(L))−1 converts the

incident eigenmode |�(L)
+,α〉 at the left surface of the scatterer

back to a local excitation and then to the scattering wave
at the right surface of the scatterer. Then the dual vector
〈φ(R)

+,β | projects the scattering wave onto the eigenmode |�(R)
+,β〉

[see Eqs. (24) and (25)]. The transmission and reflection
amplitudes of the unitary scattering matrix connecting two
traveling eigenmodes are obtained by normalizing with respect
to the current [55]:

S
(q,p)
β,α

∣∣
α,β∈traveling =

√√√√∣∣v(q)
sout,β

∣∣/aq∣∣v(p)
sin,α

∣∣/qp

S (q,p)
β,α ; (76)

where sin = sout = + for (q,p) = (R,L); sin = sout = − for
(q,p) = (L,R); sin = +, sout = − for (q,p) = (L,L); and
sin = −, sout = + for (q,p) = (R,R), thus Eqs. (70) and (74)
lead to Eqs. (28) and (29), respectively.

B. Inverse of Fisher-Lee relations

The inverse of Eqs. (70)–(75) gives the surface elements of
G(E) in terms of the generalized scattering matrix S(E):

GmR,mL
=
∑

α

⎛
⎝∑

β

S (RL)
β,α

∣∣�(R)
+,β

〉⎞⎠〈φ(L)
+,α

∣∣g(L), (77a)

GmL,mR
=
∑

α

⎛
⎝∑

β

S (LR)
β,α

∣∣�(L)
−,β

〉⎞⎠〈φ(R)
−,α

∣∣g(R), (77b)

GmL,mL
=
∑

α

⎛
⎝∣∣�(L)

+,α

〉+∑
β

S (LL)
β,α

∣∣�(L)
−,β

〉⎞⎠〈φ(L)
+,α

∣∣g(L),

(77c)

GmR,mR
=
∑

α

⎛
⎝∣∣�(R)

−,α

〉+∑
β

S (RR)
β,α

∣∣�(R)
+,β

〉⎞⎠〈φ(R)
−,α

∣∣g(R).

(77d)

These expressions have very clear physical interpretations.
For example, Eq. (77a) shows that a local excitation |�loc〉mL

at the left surface of the scatterer evolves to the scattering
wave at the right surface of the scatterer through two steps.
First, it evolves to a partial wave g(L)|�loc〉mL

, then it is
expanded into linear combinations of right-going eigenmodes∑

α |�(L)
+,α〉〈φ(L)

+,α|g(L)|�loc〉mL
and each eigenmode transmits

across the scatterer to its right surface as∣∣�(L)
+,α

〉 → ∑
β

S (RL)
β,α

∣∣�(R)
+,β

〉
. (78)

Similarly, Eq. (77c) shows that a local excitation at the left sur-
face of the scatterer first evolves to a partial wave g(L)|�loc〉mL

,
then it is expanded as

∑
α |�(L)

+,α〉〈φ(L)
+,α|g(L)|�loc〉mL

and each
eigenmode evolves to a scattering wave:∣∣�(L)

+,α

〉 → ∣∣�(L)
+,α

〉+∑
β

∣∣�(L)
−,β

〉
S (LL)

β,α , (79)

which consists of the incident wave and the reflection wave.
Next, we can express other blocks of the GF, i.e., Eqs. (45)–

(53) with m,m0 inside the leads, in terms of the generalized
scattering matrix:

Gm∈R,m0∈L =
∑

α

⎛
⎝∑

β

eik
(R)
+,β (m−mR )a

∣∣�(R)
+,β

〉
S (RL)

β,α

⎞
⎠

× eik
(L)
+,α (mL−m0)a

〈
φ

(L)
+,α

∣∣g(L), (80a)

Gm∈L,m0∈R =
∑

α

⎛
⎝∑

β

eik
(L)
−,β (m−mL)a

∣∣�(L)
−,β

〉
S (LR)

β,α

⎞
⎠

× eik
(R)
−,α (mR−m0)a

〈
φ

(R)
−,α

∣∣g(R), (80b)
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Gm∈L,m0∈L = g(L)
m,m0

+
∑

α

⎛
⎝∑

β

eik
(L)
−,β (m−mL)a

∣∣�(L)
−,β

〉
S (LL)

β,α

⎞
⎠

× eik
(L)
+,α (mL−m0)a

〈
φ

(L)
+,α

∣∣g(L), (80c)

Gm∈R,m0∈R = g(R)
m,m0

+
∑

α

⎛
⎝∑

β

eik
(R)
+,β (m−mR )a

∣∣�(R)
+,β

〉
S (RR)

β,α

⎞
⎠

× eik
(R)
−,α (mR−m0)a

〈
φ

(R)
−,α

∣∣g(R). (80d)

The above expressions have clear physical meanings. For
example, Eq. (80a) shows that a local excitation |�loc〉m0 in
the left lead first evolves to a partial wave g(L)|�loc〉m0 and
then propagates freely to the left surface of the scatterer
as

∑
α eik

(L)
+,α(mL−m0)a|�(L)

+,α〉〈φ(L)
+,α|g(L)|�loc〉m0 . Finally each

eigenmode |�(L)
+,α〉 evolves to a transmission wave:∣∣�(L)

+,α

〉 → ∑
β

eik
(R)
+,β (m−mR )aR

∣∣�(R)
+,β

〉
S (RL)

β,α . (81)

As another example, Eq. (80c) shows that Gm∈L,m0∈L is the
sum of the free GF g(L)

m,m0
and the reflection wave contribution,

which emerges as follows: the local excitation |�loc〉m0 in
the left lead first evolves to a partial wave g(L)|�loc〉m0 and
then propagates freely to the left surface of the scatterer as∑

α eik
(L)
+,α (mL−m0)a|�(L)

+,α〉〈φ(L)
+,α|g(L)|�loc〉m0 . Finally, each mode

evolves to a reflection wave:∣∣�(L)
+,α

〉 → ∑
β

eik
(L)
−,β (m−mL)aL

∣∣�(L)
−,β

〉
S (LL)

β,α . (82)

Equation (80) not only allows us to construct the GF from the
generalized scattering matrix, but also reveals the contribution
of each individual scattering channels to the GF.

C. On-shell spectral expansion

The Fisher-Lee relations [14–17,25,41,55] and its inverse
[Eq. (80)] provide a complete one-to-one correspondence
between the lattice GF approach and the wave function mode
matching approach [52–55] to mesoscopic quantum transport
(see Fig. 1). Next we show that we can construct the GF G(E)
analytically in terms of a few scattering states on the energy
shell E. Since the latter can be readily obtained from standard
textbook technique and approximation methods (such as the
WKB approximation), this provides a convenient way to obtain
the GF.

Let us introduce 2M advanced eigenmodes {k̃s,α,|�̃s,α〉} of
each lead [55],

k̃s,α ≡ ks,α, |�̃s,α〉 ≡ |�s,α〉 (α ∈ evanescent ),

k̃s,α ≡ k−s,α, |�̃s,α〉 ≡ |�−s,α〉 (α ∈ traveling), (83)

and their dual vectors:⎡
⎢⎣

〈φ̃s,1|
...

〈φ̃s,M |

⎤
⎥⎦ ≡ Ũ−1

s , (84)

where Ũs ≡ [|�̃s,1〉, . . . ,|�̃s,M〉]. The advanced eigenvectors
{|�̃s,α〉} and dual vectors {|φ̃s,α〉} obey exactly the same

orthonormal and completeness relations as their retarded
counterpart [Eqs. (24) and (25)]. Using [55]

g−1 =
∑

α

|φ̃−,α〉 iv+,α

a
〈φ+,α| =

∑
α

|φ̃+,α〉−iv−,α

a
〈φ−,α|,

(85)
and the completeness relations Eq. (25), we obtain

g =
∑

α

|�+,α〉 a

iv+,α

〈�̃−,α| =
∑

α

|�−,α〉 a

−iv−,α

〈�̃+,α|
(86)

−→
∑

α

|�+,α〉 a

iv+,α

〈�+,α| =
∑

α

|�−,α〉 a

−iv−,α

〈�−,α|,
(87)

where the second line holds when all the eigenmodes are
traveling modes. Here a is the unit cell spacing of the lead and
vs,α is the generalized group velocity of the eigenmode (s,α):
for a traveling mode, it equals the group velocity [Eq. (21)];
for an evanescent mode, it is defined as

v+,α = v∗
−,α = −ia〈�−,α|(eik−,αa)∗t† − eik+,αat|�+,α〉. (88)

Note that for an evanescent (traveling) mode, vs,α depends
(does not depend) on the choice of the phases of the
eigenvectors {|�s,α〉}.

To express the GF in terms of on-shell scattering states, we
introduce the eigenmode wave functions

|�+,α(m)〉 ≡
{

eik+,α (m−m0)a|�+,α〉 (m � m0),

0 (m < m0),
(89a)

|�−,α(m)〉 ≡
{

0 (m � m0),

eik−,α (m−m0)a|�−,α〉 (m < m0),
(89b)

for the lead in which m0 locates. Note that so-defined |�s,α(m)〉
depends on m0, which is regarded as fixed and hence omitted
for brevity. If there were no scatterers, then Gm,m0 would
coincide with the free GF of this lead [Eq. (37)], which can be
written as

gm,m0 = a
∑

α

( |�+,α(m)〉〈�̃−,α|
iv+,α

+ |�−,α(m)〉〈�̃+,α|
−iv−,α

)
.

(90)

Due to the presence of scatterers, each eigenmode |�s,α(m)〉
evolves to a corresponding scattering state |�s,α(m)〉, so
replacing |�s,α(m)〉 in Eq. (90) with |�s,α(m)〉 gives
the GF:

Gm,m0 = a
∑

α

( |�+,α(m)〉〈�̃−,α|
iv+,α

+ |�−,α(m)〉〈�̃+,α|
−iv−,α

)
.

(91)

Since the total scattering state |�s,α(m)〉 can be decomposed
into the sum of the incident wave |�s,α(m)〉 (which vanishes
outside the lead in which m0 locates) and the outgoing
scattering wave |�(out)

s,α (m)〉 ≡ |�s,α(m)〉 − |�s,α(m)〉, Eq. (91)
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can also be written as

Gm,m0 = gm,m0 + a
∑

α

(∣∣�(out)
+,α (m)

〉〈�̃−,α|
iv+,α

+
∣∣�(out)

−,α (m)
〉〈�̃+,α|

−iv−,α

)
, (92)

where gm,m0 is nonzero only for m in the same lead as m0.
Equations (91) or (92) shows that the GF Gm,m0 (E) is

essentially certain scattering states {|�s,α(m)〉} (on the energy
shell E) that obey outgoing boundary conditions; i.e., they
emanate from the on-shell eigenmodes |�s,α(m)〉 of the lead in
which the local excitation occurs. Compared with the standard
spectral expansion in classic textbook on quantum mechanics
[78–80] that expresses the GF in terms of all the eigenstates
(both on-shell eigenstates and off-shell ones) of the system,
Eqs. (91) or (92) deepens our physical understanding about
the GF and allows analytical reconstruction of the GF from a
few scattering states of the system.

As an example, let us consider an infinite system containing
a single scatterer (Fig. 4). For m0 in the left lead, the left-going
eigenmode |�(L)

−,α(m)〉 is not scattered, so |�(L,out)
−,α (m)〉 = 0,

while the right-going eigenmode |�(L)
+,α(m)〉 produces an

outgoing scattering wave

∣∣�(L,out)
+,α (m)

〉∣∣
m∈L

=
⎛
⎝∑

β

eik
(L)
−,β (m−mL)a

∣∣�(L)
−,β

〉
S (LL)

β,α

⎞
⎠

× eik
(L)
+,α(mL−m0)a, (93)

∣∣�(L,out)
+,α (m)

〉∣∣
m∈R

=
⎛
⎝∑

β

eik
(R)
+,β (m−mR )a

∣∣�(R)
+,β

〉
S (RL)

β,α

⎞
⎠

× eik
(L)
+,α(mL−m0)a. (94)

Substituting into Eq. (92) gives Eqs. (80a) and (80c). Similarly,
for m0 in the right lead, the right-going eigenmode |�(R)

+,α(m)〉
is not scattered, so |�(R,out)

+,α (m)〉 = 0, while the left-going
eigenmode |�(R)

−,α(m)〉 produces the outgoing wave

∣∣�(R,out)
−,α (m)

〉∣∣
m∈L

=
⎛
⎝∑

β

eik
(L)
−,β (m−mL)a

∣∣�(L)
−,β

〉
S (LR)

β,α

⎞
⎠

× eik
(R)
−,α (mR−m0) a, (95)

∣∣�(R,out)
−,α (m)

〉∣∣
m∈R

=
⎛
⎝∑

β

eik
(R)
+,β (m−mR )a

∣∣�(R)
+,β

〉
S (RR)

β,α

⎞
⎠

× eik
(R)
−,α(mR−m0)a. (96)

Substituting them into Eq. (92) gives Eqs. (80b) and (80d).

V. EXAMPLE AND APPLICATIONS

Here we first exemplify our general results in a 1D chain and
then apply the formalism to graphene p-n junctions described
by the tight-binding model.

A. Simple example: 1D chain

We consider a 1D chain characterized by one basis
state in each unit cell, the unit cell Hamiltonian h = ε0,
and the nearest-neighbor hopping t = −t < 0. For a given
wave vector k, Eq. (20) can be solved to yield the energy
E(k) = ε0 − 2t cos(ka), which is real in two cases: (1) k ∈ R;
(2) k = iκ or k = π/a + iκ with κ ∈ R. The former gives
the real energy band, while the latter gives the complex
energy bands. For specificity we consider the energy E ∈ [ε0 −
2t,ε0 + 2t], so there is one right-going traveling eigenmode
k+ = k with group velocity v = 2at sin(ka) > 0 and one left-
going traveling eigenmode k− = −k with group velocity −v,
where k is the positive solution to E = E(k). The eigenvectors
of the eigenmodes and dual vectors are �± = φ± = 1. The
propagation matrices are P± = e±ika , the conversion matrix
of the lead is

g = 1

2it sin(ka)
= 1

iv/a
, (97)

and the free GF of the lead is

gm,m0 = eik|m−m0|a

iv/a
. (98)

When the on-site energy of the unit cell m1 of the infinite
1D chain is replaced by ε0 + δ, the unit cell m1 becomes a
scatterer characterized the conversion matrix

G = 1

iv/a − δ
, (99)

or equivalently the transmission amplitude T = Gg−1 =
(iv/a)/(iv/a − δ) and reflection amplitude R = Gg−1 − 1 =
δ/(iv/a − δ). The GFs of the entire system are given by
Eqs. (45), (52), and (53) as

Gm�m1,m0�m1 = eik(m−m1)aT eik(m1−m0)a

iv/a
= T eik(m−m0)a

iv/a
,

(100)

Gm�m1,m0�m1 = e−ik(m−m1)aT e−ik(m1−m0)a

iv/a
= T e−ik(m−m0)a

iv/a
,

(101)

Gm�m1,m0�m1 = eika|m−m0|

iv/a
+ e−ik(m−m1)aReik(m1−m0)a

iv/a
,

(102)

Gm�m1,m0�m1 = eika|m−m0|

iv/a
+ eik(m−m1)aRe−ik(m1−m0)a

iv/a
.

(103)

The above results are also consistent with Eq. (80).
Finally, when the on-site energies of unit cell m1 and unit

cell m2 (>m1) are both replaced by ε0 + δ, then each unit cell
becomes a scatterer characterized by the conversion matrix
in Eq. (99). The conversion matrix G(C) of the composite
scatterer (m1 + m2) is given by Eq. (66). In particular, the
surface elements are obtained from Eq. (67) as

G(C)
m2m1

= G(C)
m1m2

= eik(m2−m1)a T (1 − e2ik(m2−m1)aR2)−1T
iv/a

,

(104)
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G(C)
m1m1

=G(C)
m2m2

=G + e2ik(m2−m1)a T R(1 − e2ik(m2−m1)aR2)−1T
iv/a

,

(105)

from which we can obtain the generalized transmission
amplitude across the composite scatterer as

T (C) ≡ G(C)
m2,m1

g−1 = T (1 − e2ik(m2−m1)aR2)−1eik(m2−m1)aT ,

(106)

and the generalized reflection amplitude as

R(C) ≡ G(C)
m1m1

g−1 − 1

= R + e2ik(m2−m1)aT R(1 − e2ik(m2−m1)aR2)−1T . (107)

B. Chiral tunneling and anomalous focusing
in graphene p-n junction

Graphene is a single layer of carbon atoms in a honeycomb
lattice that hosts massless Dirac fermions [93–96]. One of the
unique properties of electrons in graphene is chiral tunneling
[81–83]: an electron normally incident on a potential barrier
will always be perfectly transmitted, independently of its
kinetic energy and the height and width of the potential barrier
(for oblique incidence, the transverse momentum serves as a
gap-opening mass term, so the transmission is not perfect, and
bound states may be created by a 1D potential well [103,104]).
In recent years, the chiral tunneling in graphene p-n junctions
has attracted a lot of attention (see Ref. [97] for a review).
Another interesting phenomenon for electrons in graphene p-n
junctions is the anomalous focusing due to negative refraction,
which was initially proposed by Veselago for electromagnetic
waves [98–101]: a spatially diverging pencil of rays is focused
to a spatially converging one during the transition from a
medium with positive refractive index across a sharp interface
into a negative index medium. In 2007, Cheianov et al. [84]
proposed that ballistic graphene p-n junctions can also exhibit
negative refraction and hence focus the electron flow: in the
electron-doped n (hole-doped p) region, the carrier group
velocity is parallel (antiparallel) to its momentum, in analogy
to light propagation in a positive (negative) refractive index
medium. Ever since then, there have been a lot of works
on the negative refraction in graphene (see Refs. [85,86] for
examples) and on the surface of topological insulators [102].
Recently, the Veselago lens effect in graphene was observed
experimentally [87,88].

On the theoretical side, most of the previous studies focus
on traveling states and are based on the low-energy continuous
model, whose validity is limited to the vicinity of the Dirac
points. A very recent work [105], based on the tight-binding
model, calculates numerically the propagation of a wave
packet in a large but finite graphene flake to approximate the
Klein tunneling and caustics of electron waves. Here we apply
our general GF formalism to study the chiral tunneling in
an infinite graphene p-n junction and pay special attention
to the evanescent eigenmode. Our approach provides a clear
physical picture and allows us to calculate the GF over long
distances, so we further perform both analytical analysis and
numerical simulations of dual-probe STM measurements. Our
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FIG. 7. (a) Sketch of graphene p-n junction with a smooth
interface. Panels (b)–(d) show the choice of primitive vectors and
x,y axes when the interface is along the zigzag direction (b), the
armchair direction (c), or a more general direction (d). The filled
dots mark the Bravais lattice (A sublattice) of graphene. The shaded
regions mark the unit cells. In panel (b), the X and Y axes of the
Cartesian coordinate system are also shown.

results demonstrate the possibility of observing the spatially
resolved interference pattern caused by the negative refraction
in graphene p-n junctions and further reveal a few interesting
features, such as the distance-independent conductance and its
quadratic dependence on the carrier concentration, as opposed
to the linear dependence in uniform graphene.

We consider a graphene p-n junction with an interface that
can be either sharp or smooth, as shown in Fig. 7(a). In the
tight-binding model, the interface could align along different
crystalline directions. To provide the simplest description, a
tilted coordinate system is usually necessary: we choose one
primitive vector a2 (defined as the y axis) of the Bravais
lattice of uniform graphene to be parallel to the interface, and
choose the x axis of our tilted coordinate system to be parallel
to the other primitive vector a1; i.e., the two nonorthogonal
unit vectors of the tilted coordinate are ex ≡ a1/|a1| and
ey ≡ a2/|a2|, as shown in Figs. 7(b)–7(d) for the interface
along the zigzag direction, armchair direction, and a more
general direction. This choice of the primitive vectors and the
tilted coordinate system ensures that the lattice Hamiltonian is
invariant upon translation by |a2| along the y axis, so that the
original 2D lattice model can be reduced to a 1D lattice model.

1. Reduction from 2D to 1D

For specificity, we assume that the interface is along the
zigzag direction [Fig. 7(c)], where |a1| = |a2| = √

3aC-C ≡ a

and aC-C is the C-C bond length. The vanishingly small spin-
orbit coupling in graphene makes the GF spin-independent, so
we neglect the electron spin. In the tight-binding model, each
unit cell of graphene consists of M = 2 orbitals, i.e., |A,m,n〉
and |B,m,n〉 for the unit cell (m,n), where m (n) is the index
along the x (y) axis of the tilted coordinate and A,B labels
the sublattice [see Fig. 7(c)]. The Hamiltonian Ĥ = Ĥ0 + V̂

is the sum of the uniform part

Ĥ0 =
∑
m,n

t(|A,m + 1,n〉 + |A,m,n − 1〉

+ |A,m,n〉)〈B,m,n| + H.c.) (108)
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and the p-n junction potential

V̂ =
∑
m,n

Vm(|A,m,n〉〈A,m,n| + |B,m,n〉〈B,m,n|), (109)

where t ≈ 3 eV is the nearest-neighbor hopping constant [94].
The junction potential Vm depends arbitrarily on m inside the
interface (mL � m � mR), but equals VL inside the left lead
L (m � mL − 1) and equals VR inside the right lead R (m �
mR + 1).

Due to the invariance of Ĥ upon translation by |a2| along
the y axis, the problem can be reduced from 2D to 1D by a
Fourier transform

|ky〉 ≡ 1√
Ny

∑
n

eikyna|n〉, |n〉 ≡ 1√
Ny

∑
ky

e−ikyna|ky〉,

(110)

where Ny is the number of unit cells along the y axis. In the new
basis, the Hamiltonian Ĥ = ∑

ky
Ĥ1D(ky)|ky〉〈ky | is diagonal

with respect to ky , where Ĥ1D(ky) describes a 1D lattice with
the unit cells labeled by m and each unit cell containing 2
basis states |A〉,|B〉. Let us use Rmn ≡ ma1 + na2 to denote the
Bravais vector of the unit cell (m,n) and use G(Rm2n2 ,Rm1n1 ,E)
to denote the retarded GF from the unit cell (m1,n1) to the unit
cell (m2,n2) of the original 2D system, which is connected to
the retarded GF Gm2,m1 (E,ky) of the 1D lattice from the unit
cell m1 to the unit cell m2 via a Fourier transform:

G
(
Rm2n2 ,Rm1n1 ,E

) = 1

Ny

∑
ky

eiky (n2−n1)aGm2,m1 (E,ky),

(111)

where G(Rm2n2 ,Rm1n1 ,E) and Gm2,m1 (E,ky) are both 2 × 2
matrices. Below we consider fixed E and ky and apply our
general results to calculate the GF Gm2,m1 of the 1D lattice,
with E and ky omitted for brevity.

2. Green’s function of 1D lattice

In the 1D lattice, the hopping is uniform:

H(1D)
m,m+1 = (

H(1D)
m+1,m

)† = t =
[

0 0
t 0

]
. (112)

The unit cell Hamiltonian H(1D)
m,m = Vm + h0 is the sum of the

unit cell Hamiltonian of pristine graphene,

h0 =
[

0 t(1 + eikya)
t(1 + e−ikya) 0

]
, (113)

and the p-n junction potential Vm. The entire infinite system
consists of a single scatterer (mL � m � mR) connected to
two semi-infinite leads L and R [cf. Fig. 7(a)], whose GFs can
be constructed from the conversion and propagation matrices
of the leads and the conversion matrix G of the p-n interface
(see Sec. III and Sec. IV).

The remaining issue is to calculate the eigenmodes of each
lead, as characterized by the hopping t and the unit cell
Hamiltonian h = V + h0, where V = VL (left lead) or VR

(right lead). Given a complex wave vector k, we can solve the
eigenvalue problem Eq. (20) and obtain the energy bands of
the lead as V ± E0(k), where E0(k) ≡ t

√
f (k,ky)f (−k, − ky)

FIG. 8. Real energy band (black lines) and complex energy bands
(orange lines) of pristine graphene at a fixed ky ≈ 0.14 × 2π/a.

and f (k,ky) ≡ 1 + eikya + e−ika . Here E0(k) is real in two
cases: (1) k + ky/2 = κ; (2) k + ky/2 = iκ or π/a + iκ ,
where κ ∈ R. The former gives the real energy bands, while the
latter gives the complex energy bands, as shown in Fig. 8. Con-
versely, given the energy E, we can solve Eq. (20) and obtain
a right-going eigenmode k+,|�+〉 and a left-going eigenmode
k−,|�−〉, where k± are the two solutions to |E − V | = E0(k)
or equivalently the two intersection points of E − V with the
real and complex energy bands of pristine graphene. When
E − V lies in the range of the real energy bands (dashed black
line in Fig. 8), the wave vectors k± are both real and both
eigenmodes are traveling modes. When E − V lies outside
the range of the real energy bands (dashed gray line in Fig. 8),
the wave vectors k+ = k∗

− are complex and both eigenmodes
are evanescent. A more convenient method to obtain the
eigenmodes is to define λ ≡ eika and rewrite Eq. (20) as

λ2bt + λ[|b|2 + t2 − (E − V )2] + tb∗ = 0 (114)

with b ≡ t(1 + eikya), so that λ± = eik±a are obtained as the
two solutions to this quadratic equation for λ. In addition
to the two normal eigenmodes, there are also a pair of
ideally evanescent eigenmodes, including a right-going one
λ+,0 = eik+,0a = 0, |�+,0〉 = [1,0]T and a left-going one
λ−,0 = eik−,0a = ∞, |�−,0〉 = [0,1]T (see Appendix A). The
ideally evanescent eigenmodes do not propagate, so they
do not directly contribute to the GF, but their existence
does influence the generalized transmission and reflection
amplitudes of the normal eigenmodes.

Using the eigenmodes, we can calculate the conversion
matrix G of the p-n interface using Eq. (43) and then obtain
the generalized transmission and reflection amplitudes S (LL),
S (RL), S (LR), and S (RR) of the normal eigenmode from
Eqs. (70)–(75). For m 
= m0, the free GF of the left lead is
essentially the sum of the left-going eigenmode |�(L)

− (m)〉 and
the right-going eigenmode |�(L)

+ (m)〉 [cf. Eq. (89) for their
definitions]:

g(L)
m,m0

= a

iv
(L)
+

|�(L)
+ (m)〉〈�̃(L)

− | + a

−iv
(L)
−

|�(L)
− (m)〉〈�̃(L)

+ |.

(115)
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Due to the p-n interface, the eigenmode |�(L)
+ (m)〉 produces

a reflection wave in the left lead and a transmission wave in
the right lead:

|�(L,out)
+ (m)〉

=
{

eik
(L)
− (m−mL)a|�(L)

− 〉S (LL)eik
(L)
+ (mL−m0)a (m ∈ L),

eik
(R)
+ (m−mR )a|�(R)

+ 〉S (RL)eik
(L)
+ (mL−m0)a (m ∈ R),

(116)

so the GF from the left lead to the right lead is essentially the
transmission wave:

Gm∈R,m0∈L = a

iv
(L)
+

|�(L,out)
+ (m)〉〈�̃(L)

− |, (117)

while the GF inside the left lead is essentially the sum of the
incident eigenmode |�(L)

± (m)〉 and the reflection wave:

Gm∈L,m0∈L = g(L)
m,m0

+ a

iv
(L)
+

|�(L,out)
+ (m)〉〈�̃(L)

− |. (118)

3. Green’s function of 2D graphene p-n junction:
Anomalous focusing

Compared with the standard RGF method, the advantages
of our GF method lie in its physical transparency and numerical
efficiency. Here we demonstrate the first point by using our
method to provide a clear physical picture of the anomalous
focusing effect [84–88] across the graphene p-n junction
described by the tight-binding model. For this purpose, we
first obtain the GF of the 2D graphene p-n junction from the
1D GFs by a Fourier transform [Eq. (111)]. In particular, the
GF from the unit cell (m1,n1) in the n region to the unit cell
(m2,n2) in the p region,

G
(
Rm2n2 ,Rm1n1 ,E

) =
∫

dky

2π

∣∣�(L,tran)
+

(
Rm2n2

)〉 a

iv
(L)
+

〈�̃(L)
− |,
(119)

is essentially the sum of all transmission wave functions∣∣�(L,tran)
+

(
Rm2n2

)〉
≡ eik(R)

+ ·(Rm2n2 −RmR,0)|�(R)
+ 〉S (RL)eik(L)

+ ·(RmL,0−Rm1n1 ), (120)

which emanates from the incident eigenmode |�(L)
+ (Rm,n)〉 =

eik(L)
+ ·(Rm,n−Rm1n1 )|�(L)

+ 〉 through three steps: propagation to the
left interface RmL,0 of the junction with wave vector k(L)

+ ,
transmission across the interface, and propagation from RmR,0

to Rm2n2 with wave vector k(R)
+ . Here k(L)

± (k(R)
± ) are the wave

vectors of the normal eigenmodes in the left (right) region,
i.e., in the tilted coordinate [Fig. 7(b)]: k(p)

± · ex = k
(p)
± and

k(p)
± · ey ≡ ky (p = L,R). The GF from Rm1n1 to Rm2n2 can be

measured as the conductance between one STM probe coupled
to Rm1n1 and another STM probe coupled to Rm2n2 through
the Landauer-Büttiker formula [1] (2e2/h)T (EF ), where
the transmission probability T (EF ) ∝ |G(Rm2n2 ,Rm1n1 ,EF )|2.
Therefore, Eq. (119) directly connects the transmission wave
function to the experimentally measurable conductance and
hence provides a clear physical picture for observing the
anomalous focusing in dual-probe STM measurements, and
further reveals some interesting effects.

Let us consider a sharp, symmetric interface at mL = mR =
0 and VR = −VL = V0 > 0. In this case, the transmission
wave simplifies to∣∣�(L,tran)

+
(
Rm2n2

)〉 ≡ ei(k(R)
+ ·Rm2n2 −k(L)

+ ·Rm1n1 )|�(R)
+ 〉S (RL). (121)

Here k(R)
+ , k(L)

+ , |�(R)
+ 〉, and S (RL) all depend on ky weakly.

The strongest dependence on ky comes from the phase factor

ei(k(R)
+ ·Rm2n2 −k(L)

+ ·Rm1n1 ), which usually oscillates rapidly as a
function of ky when Rm2n2 and Rm1n1 are far away. However,
when the energy of the incident electron lies midway in
between the Dirac point of the n region and the Dirac
point of the p region (i.e., E = EF = 0), in the Cartesian
coordinate system spanned by the orthogonal unit vectors
eX and eY [see Fig. 7(b)], the electron-hole symmetry of
graphene dictates that the Fermi wave vector k(L)

+ of the
right-going eigenmode in the n region and the Fermi wave
vector k(R)

+ of the right-going eigenmode in the p region
to have the same component along the p-n interface (i.e.,
k(L)

+ · eY = k(R)
+ · eY ), but opposite components perpendicular

to the p-n interface (i.e., k(L)
+ · eX = −k(R)

+ · eX). Therefore,
when Rm1n1 and Rm2n2 are mirror symmetric about the p-n
interface, the rapidly oscillating phase factor equals unity for
all ky . In this case, all the transmitted waves have nearly the
same phase factor for all ky , so they contribute constructively to
the GF. This corresponds to electrons flowing out of an electron
source at Rm1n1 being focused to Rm2n2 , i.e., the anomalous
focusing [84]. According to the Landauer-Büttiker formula,
the constructive enhancement of the GF could be detected as
an enhanced conductance in dual-probe STM measurements.

In addition to locally enhancing the GF, the construc-
tive interference of all the transmission waves also gives
rise to two interesting behaviors. First, the phase factor
ei(k(R)

+ ·Rm2n2 −k(L)
+ ·Rm1n1 ) and hence the transmission wave and the

GF remain invariant when Rm2n2 and Rm1n1 are moved equally
but in opposite directions perpendicular to the p-n interface.
This would give rise to distance-independent conductance.
Second, since each transmission wave contributes construc-
tively to the GF, we have G(Rm2n2 ,Rm1n1 ,EF ) ∝ density of
states on the Fermi surface ∝V0 ∝ carrier concentration. Thus
the locally enhanced conductance should increase quadrat-
ically with increasing doping level V0 (or equivalently the
carrier concentration), in contrast to the linear dependence
in uniform graphene [71]. These points will be verified in
our subsequent numerical simulations of the dual-probe STM
measurements, which provide a useful tool, with high spatial
resolution, to measure such local transport properties and
detect possible zero-energy bound states of the Dirac fermions
caused by suitable 2D potential well [106,107].

4. Comparison of the standard RGF and our GF approach

Compared with the standard RGF that treats the entire
central region numerically [see Fig. 2(a) for an example], an
important advantage of our approach is that it fully utilizes
the translational invariance of all the periodic subregions
[even if they lie inside the central region, such as the middle
lead in Fig. 2(a)] to treat these subregions semianalytically,
so that only the truly disordered subregions need numerical
treatment. Therefore, our GF approach is more efficient if
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the central region contains periodic subregions; otherwise
the two approaches are equally efficient. Here we calculate
G(R2,R1,E) across a sharp graphene p-n junction using these
two methods to demonstrate their equivalence and highlight
the numerical efficiency of our approach. In the calculation,
R1 is fixed at a randomly chosen A sublattice site in the n

region; R2 is swept over all the B sublattice sites along the x

axis from the n region to the p region. The range of the sweep
is from 0.25 μm on the left of R1 to 0.75 μm on the right
of R1. For the RGF method, the central region (infinite along
the p-n interface) is the smallest region that encloses R1, R2,
and the p-n interface. For our GF method, the scatterer region
(infinite along the p-n interface) consists of one slice at the
p-n interface. The numerical results from the two approaches
always agree with each other up to the machine accuracy. The
time cost, however, differs by two orders of magnitude: with
90 Intel cores, the time cost of the standard RGF approach
varies from 260 s to 540 s, depending on the position of R1

relative to the p-n interface, while the time cost of our approach
is always less than 3 s. Similar speedup is expected in long
multilayer structures with sharp interfaces, such as quantum
wells, superlattices, or sharp p-n-p junctions.

5. Numerical examples

In the following (main text and all the figures), we always
use the C-C bond length of graphene aC-C = 0.142 nm as the
unit of length and the nearest-neighbor hopping amplitude
t = 3 eV as the unit of energy. For specificity, we focus on
symmetric graphene p-n junctions with VR = −VL = V0 > 0.
Unless explicitly specified, we always take a typical doping
level V0 = 0.2 and set the energy E = EF = 0, so we denote
G(R2,R1,E) by G(R2,R1) for brevity.

As shown in Fig. 9, at V0 = 0.2, the tunneling of a
right-going traveling eigenmode reproduces the well-known

FIG. 9. Transmission and reflection of a right-going eigenmode
of energy E = 0 incident from the n region of a sharp (solid lines and
dotted lines) or 5-nm-wide smooth (dashed lines), symmetric (i.e.,
−VL = VR = V0) graphene p-n junction. For V0 = 0.2, the range of
ky in which the eigenmode is traveling is marked by the double arrow.
For V0 = 0.02, the range of ky in which the eigenmode is traveling is
much narrower.

results from the continuum model [97], such as the perfect
transmission at normal incidence. For the evanescent eigen-
mode in a sharp p-n junction, however, |S (RL)|2 shows a peak,
indicating enhanced tunneling of certain evanescent states.
When the Fermi level is tuned closer to the Dirac point, i.e., for
V0 = 0.02, this enhanced tunneling becomes more pronounced
and may be observed by dual-probe STM measurements.

Next we visualize the contributions from different scatter-
ing channels to the GF and their interference. For a smooth
junction, the spatial map of the GF [Fig. 10(a)] shows imperfect
focusing [84] due to negative refraction across a finite-width
p-n junction. Let us consider Rm2n2 and Rm1n1 both in the n

region and Rm2n2 on the right of Rm1n1 (i.e., m2 > m1); the GF

G
(
Rm2n2 ,Rm1n1

)
=
∫

dky

2π

a

iv
(L)
+

[∣∣�(L)
+
(
Rm2n2

)〉+ ∣∣�(L,refl)
+

(
Rm2n2

)〉]〈�̃(L)
− |

(122)

is essential the sum of all right-going eigenmodes
|�(L)

+ (Rm2n2 )〉 and all reflection waves

∣∣�(L,refl)
+

(
Rm2n2

)〉
≡ eik(L)

− ·(Rm2n2 −RmL,0)|�(L)
− 〉S (LL)eik(L)

+ ·(RmL,0 −Rm1n1 ). (123)

The incident wave contribution coincides with that of pris-
tine graphene [Fig. 10(b)]. The reflection wave contribution
[Fig. 10(c)] tends to vanish perpendicularly to the junction
interface, indicative of the chiral tunneling. The interference
between the incident and reflection waves [Fig. 10(d)] is
responsible for the interference pattern in the total GF
[Fig. 10(a)], which would be directly manifested in dual-probe
STM measurements.

Finally we simulate dual-probe STM measurements
[71,108] over the graphene p-n junction at zero temperature.
Following Refs. [71,108], we assume that each probe couples
to a single carbon site for simplicity, so the Landauer-
Büttiker formula [1] gives the interprobe conductance as
σ (R2,R1) = (2e2/h)T12(EF ) = �1�2|Ḡ(R2,R1,EF )|2, where
Ḡ(R2,R1,EF ) is the GF incorporating the self-energy correc-
tions from the STM probes and �1,2 are coupling constants
between the STM probes and the graphene. Usually, �1,2 have
a sensitive exponential dependence on the distance between the
STM probe and the graphene sample, but their specific values
do not affect the shape of the signal. Therefore, following
Ref. [108], we always rescale the maximum of T12 to unity. In
Fig. 11, the real-space conductance map shows a pronounced
focusing due to negative refraction [84]. Other observable
electron optics features include the high transparency of the
junction near normal incidence, i.e., chiral tunneling [82], and
the interference pattern between the incident and reflection
waves. Recently, negative refraction in graphene p-n junctions
was observed [87], but the measurement via macroscopic con-
tacts only gives a spatially averaged result. Here our simulation
shows that dual-probe STM measurements can further provide
spatially resolved interference pattern; i.e., dual-probe STM
could be an ideal experimental technique for studying local
transport and quantum interference phenomenon.
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FIG. 10. Contributions of different scattering channels to the Green’s function G(R2,R1) for a smooth linear graphene p-n junction
extending from 65 to 135 along the x axis (junction width ≈10 nm). Here R1 ≡ (X1,Y1) is chosen to be fixed at (0,0) on the A sublattice, while
R2 ≡ (X2,Y2) is swept over all the B sublattice sites of the entire structure. (a) Contour plot of |G(R2,R1)| vs R2 − R1. Panels (b) and (c) extract
the contributions to |G(R2,R1)| from the incident wave and reflection wave, respectively. Panel (d) shows the contribution to |G(R2,R1)|2 due
to the interference between the incident wave and the reflection wave.

Now we demonstrate numerically some interesting features
of the dual-probe STM measurements in graphene p-n
junctions [see the physical analysis following Eq. (121)]. First,
when the two probes are mirror symmetric about the junction
interface, T12 is nearly independent of the interprobe distance
[Fig. 12(a)], in contrast to the 1/R decay in uniform graphene
[71]. For a sharp junction, this behavior can be attributed
to the anomalous focusing [84]. However, the existence of
the same behavior for a smooth junction interface indicates

FIG. 11. Spatial map of the scaled conductance (i.e., the trans-
mission coefficient T12 times |R2 − R1|) in a sharp graphene p-n
junction as a function of R2 − R1. Here R1 ≡ (X1,Y1) is fixed at the
A sublattice of the unit cell (0,0) and R2 ≡ (X2,Y2) is swept over
all the lattice sites (including both A and B sublattices) of the entire
structure.

that it has a different physical origin, i.e., the cancellation of
the propagation phases due to the matching of the electron
Fermi surfaces in the n region and the hole Fermi surface
in the p region [109]. The distance-independent response
could change qualitatively the spatial scaling of many physical
quantities, such as the Friedel oscillation induced by an
impurity and the carrier-mediated RKKY interaction between
two localized magnetic moments. Second, the conductance
across a sharp junction scales quadratically with the junction
potential: T12 ∝ V 2

0 [red line in Fig. 12(b)], which differs

FIG. 12. Transmission coefficient T12 between two STM probes
at mirror symmetric locations about the junction interface. (a) T12

vs interprobe distance. (b) T12 vs V0. Here, the width of the smooth
junction is 5 nm for (a) and inset of (b), and the maximum of T12 is
always rescaled to 1 in each panel.
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qualitatively from the linear scaling T12 ∝ V0 of uniform
graphene [71]. When the junction becomes smooth [inset of
Fig. 12(b)], the quadratic dependence still persists for small V0

(electron’s Fermi wavelength � junction width), but recovers
the linear scaling behavior in uniform graphene for large
V0. This can be attributed to the gradual destruction of the
anomalous focusing when the junction width becomes larger
than the Fermi wavelength [83].

VI. CONCLUSIONS

We have presented a numerically efficient and physically
transparent formalism to calculate and understand the Green’s
function (GF) of a general layered structure. In contrast to the
commonly used recursive GF method that directly calculates
the GF through the Dyson equations, our approach converts
the calculation of the GF to the generation and subsequent
propagation of a scattering wave function emanating from a lo-
cal excitation. This viewpoint provides analytical expressions
of the GF in terms of a generalized scattering matrix. This
identifies the contributions of individual scattering channels
to the GF and hence allows this information to be extracted
quantitatively from dual-probe STM experiments. We further
derive an analytical rule to construct the GF of a general
layered system, which could significantly reduce the computa-
tional time cost and enable quantum transport calculations for
large samples. Application of this formalism to simulate the
two-dimensional conductance map of a realistic graphene p-n
junction demonstrates the possibility of observing the spatial
interference caused by negative refraction and further reveals
a few interesting features, such as the distance-independent
conductance and its quadratic dependence on the carrier
concentration, as opposed to the linear dependence in uniform
graphene. In addition to conventional mesoscopic quantum
transport, it would be interesting to apply our GF approach
to the investigation of other electron interference phenomena,
such as the carrier-mediated RKKY interaction between local
magnetic moments, the impurity-induced Friedel oscillation,
and using dual-probe STM measurements to detect possible
zero-energy bound states in graphene caused by suitable 2D
potentials [106,107].
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APPENDIX A: CALCULATION OF EIGENMODES

When the determinant of the M × M hopping matrix t† or t
is nonzero, the 2M eigenmodes can be obtained by letting λ ≡
eika and rewriting Eq. (20) or equivalently [−t† + λ(z − h) −
λ2t]|�〉 ≡ 0 as a generalized 2M × 2M eigenvalue problem[

0 1
−t† z − h

][ |�〉
λ|�〉

]
= λ

[
1 0
0 t

][ |�〉
λ|�〉

]
, (A1)

where z = E + i0+. In the numerical calculation, we remove
the infinitesimal imaginary part of z, i.e., z = E. Then Eq. (A1)
is solved for 2M solutions {λ ≡ eika,|�〉}, where k could be
either real (traveling modes) or complex (evanescent modes).
Next the 2M eigenmodes are classified into M right-going
ones and M left-going ones: the former consists of traveling
modes (i.e., Im k = 0) with a positive group velocity and
evanescent modes decaying exponentially to the right (i.e.,
Im k > 0), while the latter consists of traveling modes (i.e.,
Im k = 0) with a negative group velocity and evanescent
modes decaying exponentially to the left (i.e., Im k < 0). There
is an alternative but less accurate method to calculate and
classify the eigenmodes. In this approach, the infinitesimal
imaginary part of z is replaced by a finite but small positive
number η, i.e., z = E + iη. Then Eq. (A1) is solved for the
2M solutions {λ ≡ eika,|�〉}. Next, according to the sign of
Im k, the 2M eigenmodes are classified into M right-going
ones with Im k > 0 and M left-going ones with Im k < 0. In
the limit η → 0+, the imaginary part Im k may either vanish
(i.e., traveling modes) or remain finite (i.e., evanescent modes).
Obviously, the second approach is accurate only in the limit of
η → 0+, so we always use the first approach in the main text.

When the determinant of the hopping matrix t vanishes,
solving Eq. (A1) would give some trivial evanescent eigen-
modes. Suppose that M0 out of the M eigenvalues of the
hopping matrix t† or t are zero, and the corresponding
eigenvectors are {|�+,α〉} (for t†) and {|�−,α〉} (for t), where
α = 1,2, . . . ,M0. Then there would be 2M0 trivial evanescent
eigenmodes, including M right-going ones λ+,α = 0,|�+,α〉
and M0 left-going ones λ−,α = ∞, |�−,α〉. The former cor-
respond to |�(m − 1)〉 = |�+,α〉,|�(m)〉 = |�(m + 1)〉 = 0
in Eq. (19), while the latter correspond to |�(m + 1)〉 =
|�−,α〉, |�(m)〉 = |�(m − 1)〉 = 0 in Eq. (19). As a result,
propagation matrices P− and P−1

+ both diverge. However,
this does not affect our formulas, which only contain P+
and P−1

− due to causality. The only problem is that for a
trivial evanescent eigenmode (s,α), the generalized group
velocity vs,α [Eq. (88)] is not well defined. For example,
when λ+,α = 0 and hence λ−,α = ∞, the generalized velocity
v+,α = v∗

−,α = −iaλ∗
−,α〈�−,α|t†|�+,α〉 involves the product

of λ∗
−,α = ∞ and t†|�+,α〉 = 0. This singular problem can be

avoided by adding sufficiently small numbers {ε} to t and t† to
make their determinant nonzero and take the limit {ε → 0} at
the end of the calculation.

Taking the graphene junction as an example, the 1D left
or right lead is characterized by the hopping matrix t and
unit cell Hamiltonian V + h0, where V = VL (left lead) or
VR (right lead) and h0, t are given by Eqs. (112) and (113).
Here the hopping matrix t has one zero eigenvalue with
eigenvector |�−,0〉 = [0,1]T , while t† has one zero eigenvalue
with eigenvector |�+,0〉 = [1,0]T . This gives rise to two trivial
evanescent eigenmodes: the right-going one λ+,0 = 0,|�+,0〉
and the left-going one λ−,0 = ∞, |�−,0〉, for which the
generalized group velocities v+,0 = v∗

−,0 are not well defined.
To cure this problem, we add a small number ε to the
off-diagonal of the hopping matrix, so that t and t† become

t(ε) =
[

0 ε

t 0

]
, t†(ε) =

[
0 t

ε 0

]
. (A2)
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Then using the first-order perturbation theory, we obtain

λ+,0(ε) ≈ −ε

t(e−iaky +1)
, |�+,0(ε)〉 ≈

[
1

−εE

t2(e−iaky +1)

]
, (A3)

λ−,0(ε) ≈ t(eiaky + 1)

−ε
, |�−,0(ε)〉 ≈

[ −εE

t2(eiaky +1)
1

]
. (A4)

Substituting into Eq. (88) and taking the limit ε → 0 gives

v+,0 = v∗
−,0 = iat(e−iaky + 1). (A5)

APPENDIX B: SCATTERING OF A PARTIAL WAVE

Let us consider a scatterer connected to a semi-infinite left
lead (whose conversion matrix is g) and prove that a right-
going incident partial wave |�in(m)〉 is equivalent to a local
excitation |�loc〉m0 ≡ g−1|�in(m0)〉 at an arbitrary site m0 �
mL (mL is the left surface of the scatterer), in the sense that they
produce the same scattering state at m � m0. For this purpose,
we use |�(m)〉 for the conventional scattering state emanating
from the incident wave |�in(m)〉 and |�(m)〉 for the scattering
state emanating from the local excitation |�loc〉m0 at m0. We
notice that |�(m)〉 and |�(m)〉 obey the same Schrödinger
equation for m � m0 + 1, and the same uniform Schrödinger
equation

−t†|�(m − 1)〉 + (z − h)|�(m)〉 − t|�(m + 1)〉 = 0 (B1)

for m � m0 − 1. The difference lies at m = m0:

−t†|�(m0 − 1)〉 + (z − Hm0,m0 )|�(m0)〉
−Hm0,m0+1|�(m0 + 1)〉 = 0, (B2)

−t†|�(m0 − 1)〉 + (z − Hm0,m0 )|�(m0)〉
−Hm0,m0+1|�(m0 + 1)〉 = |�loc〉m0 , (B3)

and the boundary conditions |�(m)〉 should be finite at
m → −∞, while the right-going part of |�(m)〉 should
equal the incident wave on the left of the scatterer, i.e.,
|�+(m)〉 = |�in(m)〉 for m � mL. The former gives |�(m0 −
1)〉 = P−1

− |�(m0)〉, while the latter gives

|�(m0 − 1)〉 = P−1
+ |�+(m0)〉 + P−1

− |�−(m0)〉 (B4)

= P−1
− |�(m0)〉 + (P−1

+ − P−1
− )|�in(m0)〉. (B5)

Using these relations to eliminate |�(m0 − 1)〉 and |�(m0 −
1)〉 from the equations for |�(m)〉 and |�(m)〉 at m = m0,
and using Eq. (36), we see that they become identical and
contain the same source |�loc〉m0 . Therefore, |�(m)〉|m�m0 and
|�(m)〉|m�m0 obeys exactly the same set of closed equations
and natural boundary conditions (i.e., they should be finite for
m → +∞); thus they are identical. Applying this equivalence

principle to a scatterer connected to a semi-infinite left lead L

and a semi-infinite right lead R gives Eqs. (46) and (49) of the
main text.

APPENDIX C: GREEN’S FUNCTION OF ONE
SCATTERER: SIMPLE EXAMPLES

Here we give a few simple examples for the GF of an infinite
(or semi-infinite) system containing a single scatterer. As the
first example, a semi-infinite lead (with unit cell Hamiltonian
h, hopping t, and propagation matrices P±) consisting of the
unit cells m � 0 can be regarded as a single-unit-cell scatterer
at m = 0 connected to a semi-infinite left lead. Then the
conversion matrix of this scatterer is

G(L) = (z − h − t†P−1
− )−1 = (tP−)−1, (C1)

where we have used Eq. (36) in the second step. The GF of the
entire system is

G(L)
m,m0

= gm,m0 + Pm
−(G(L)g−1 − I)g0,m0 . (C2)

Taking m = m0 = 0 gives G(L)
0,0 = G(L). By using Eqs. (C1)

and (35), we have G(L)g−1 − I = −P−1
− P+ and hence re-

cover the results by Sanvito et al. [41]: G(L)
m,m0

= gm,m0 −
Pm−1

− P1−m0+ g.
As the second example, a semi-infinite lead consisting of the

unit cells m � 0 can be regarded as a single-unit-cell scatterer
at m = 0 connected to a semi-infinite right lead. Then the
conversion matrix of this scatterer is

G(R) = (z − h − tP+)−1 = (t†P−1
+ )−1. (C3)

The GF of the entire system is

G(R)
m,m0

= gm,m0 + Pm
+(G(R)g−1 − I)g0,m0 , (C4)

where G(R)g−1 − I = −P+P−1
− . Taking m = m0 = 0 gives

G(R)
0,0 = G(R).
The third example is an interface at m = 0 (with unit cell

Hamiltonian H0,0) connected to two semi-infinite leads L and
R. In this case the conversion matrix of the interface is

G(I) = [z − H0,0 − t†L(P(L)
− )−1 − tRP(R)

+ ]−1, (C5)

where tL (tR) is the nearest-neighbor hopping in the left (right)
lead. The GFs of the entire system are given by

Gm�0,m0�0 = (P(R)
+ )mG(I)(g(L))−1g(L)

0,m0
, (C6)

Gm�0,m0�0 = (P(L)
− )mG(I)(g(R))−1g(R)

0,m0
, (C7)

Gm�0,m0�0 = g(L)
m,m0

+ (P(L)
− )m[G(I)(g(L))−1 − I]g(L)

0,m0
, (C8)

Gm�0,m0�0 = g(R)
m,m0

+ (P(R)
+ )m[G(I)(g(R))−1 − I]g(R)

0,m0
. (C9)
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