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Twistronics: Manipulating the electronic properties of two-dimensional layered
structures through their twist angle
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The ability in experiments to control the relative twist angle between successive layers in two-dimensional (2D)
materials offers an approach to manipulating their electronic properties; we refer to this approach as “twistronics.”
A major challenge to theory is that, for arbitrary twist angles, the resulting structure involves incommensurate
(aperiodic) 2D lattices. Here, we present a general method for the calculation of the electronic density of states
of aperiodic 2D layered materials, using parameter-free Hamiltonians derived from ab initio density-functional
theory. We use graphene, a semimetal, and MoS2, a representative of the transition-metal dichalcogenide family
of 2D semiconductors, to illustrate the application of our method, which enables fast and efficient simulation of
multilayered stacks in the presence of local disorder and external fields. We comment on the interesting features
of their density of states as a function of twist angle and local configuration and on how these features can be
experimentally observed.
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I. INTRODUCTION

A few short years after the experimental demonstration of
the existence of monolayer graphene [1], many other two-
dimensional (2D) materials have been successfully fabricated
[2–6]. Although single-layer 2D systems have intriguing
physical properties, there has also been great interest in
developing and understanding artificial heterostructures com-
posed of multiple atomic layers weakly bonded by van der
Waals forces [7]. Mechanical or chemical exfoliation and
positioning of one layer on top of another allows for a
relative twist between successive layers, which can destroy
the alignment and thereby break the translational symmetry
in the combined system [8,9]. The resulting structures may
have commensurate stacking for special orientations, but more
generally are incommensurate. This allows for interesting
new behavior: studies of bilayer graphene have found clear
twist-dependent features in both the electronic density of states
and the conductivity [10,11]; at very small twist angles, a
domain-wall phase appears, related to the stacking config-
uration [12]. Similar effects may occur in transition-metal
dichalcogenide (TMDC) semiconductors, with their band gaps
affected by the substrate and the relative twist-angle orientation
[13]. Incommensurate structures pose a great challenge to
theoretical studies since the standard description of solids
with crystalline order, a periodic Bravais lattice and the
associated Bloch states of electrons, is entirely absent in the
combined system although each layer may still be a perfect 2D
crystal.

In the effort to capture the physics of incommensurate
systems, a simple approximation is to consider large supercells
that can mimic the incommensurate system; in the case of first-
principles calculations like density functional theory (DFT),
that can afford relatively small cells, this approximation limits
the physical system rather severely to special values of the
twist angle [11]. This leaves important questions unaddressed:
Are there distinct physical characteristics that distinguish
the incommensurate from the commensurate case? Do the

properties of commensurate systems approach the proper limit
of the incommensurate systems as the twist angle is varied?

In the present paper we introduce a robust framework for
the calculation of the properties of truly incommensurate
2D heterostructures that can address such questions for
situations involving arbitrary twists between successive layers.
Our method is inspired by previous mathematical works
on disordered tight-binding models, which can be classified
into two distinct concepts: first, an algebraic treatment of
electronic transport in disordered systems [14,15] that allows
for a rigorous definition of quantum-mechanical operators in
a disordered material; second, the fact that local tight-binding
models create exponentially localized observables, that is,
they make it possible to controllably remove finite-size and
edge effects from calculations [16]. We have already provided
a rigorous mathematical discussion of this method [17],
but here investigate its implications and results for physical
systems. Our modeling is based on effective tight-binding
Hamiltonians without any adjustable parameters, obtained
from first-principles DFT results [18,19]. As a demonstration
of the capabilities of the method, we study some prototypical
systems of 2D stacked layers, including bilayer graphene, a
semimetal, and bilayer MoS2, a representative semiconductor
of the TMDC family.

II. FORMALISM

We here provide a simplified discussion of the mathematical
work which examines the stability and convergence of our
finite-sized approach to twisted 2D material modeling [17].
The essence of our approach consists of the following ideas: A
tight-binding model in d dimensions is described by localized
orbitals φi in a d-dimensional lattice, i ∈ Zd , and the hopping
matrix elements between them labeled tij . To describe disorder
in this model, we consider the space of all possible defects and
calculate physical properties for a carefully chosen subset of
configurations. This is formulated by defining a configuration
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space � with specific local configurations ω ∈ � with a
probability distribution dP (ω). � describes all possible envi-
ronments that an atom in the infinite crystal can experience, and
we simulate physical observables by sampling over this space
of disordered configurations. This is in contrast to periodic
approaches, which instead use the Bloch wave number, k, as
the sampling space. In incommensurate systems translational
symmetry has been completely broken, and there is no Bril-
louin zone. �, referred to as the “noncommutative Brillouin
zone” for this reason [14], is an alternative to this notion;
neither � nor the Brillouin zone provide a diagonalized band
structure with a finite number of eigenvalues at each point.

Viewing the interlayer interaction as a perturbative poten-
tial, the relative twist angle can be interpreted as an aperiodic
disorder field applied to the single-layer system. For a fixed
twist angle, the location of the orbital φi in the field created
by another layer varies. This variation in location can be
completely described by the offset, or shift, between the two
layers’ unit cells, and thus � can be viewed as the compact
two-dimensional space of all shifts. For each shift, we construct
a system of finite radius which contributes a finite-size error.
The error decays exponentially with the radius, so it can be
made to approach zero in a controllable fashion. Our results
prove that this is a computationally feasible strategy.

In this picture, the difference between an incommensurate
and commensurate twist angle becomes trivial: a commen-
surate angle has a finite number of possible configurations
because a periodic supercell exists, while an incommensurate
angle has an infinite number. If two twist angles, θ commensu-
rate and θ ′ incommensurate, are extremely close then a specific
shift configuration will look effectively identical between
them. Therefore, the results of a single ω calculation will not
vary significantly between θ and θ ′; rather, it is the sampling
of � that varies. A physical observable can show a sharp
change as one varies the twist angle between commensurability
and incommensurability only if it varies strongly over � and
the commensurate twist angle does not sample � too finely.
This distinction only holds for each layer being a perfect
infinite crystal. In real materials, the difference between an
incommensurate and a commensurate twist angle is less clear,
as the presence of imperfections (strain, tears, ripples) may
make even a commensurate system sample � continuously.
The effect of disorder on twisted bilayer graphene’s electronic
properties has begun to be investigated theoretically [20,21],
but we do not study it here.

Our approach can also handle other sources of disorder
straightforwardly. Magnetic and electric fields can be easily
introduced through a Peierls substitution or an on-site energy
term, respectively. Physical defects such as vacancies, ripples,
and edges are easy to implement, provided that it has
been established how the hopping terms of the tight-biding
Hamiltonian change in the presence of defects. This is handled
by introducing extra dimensionality to � to represent all
possible forms of disorder and applying them directly in each
ω tight-binding model.

Our implementation of these ideas on a high-performance
computing system is as follows.

(i) Create a heterostructure model out of layers that are
disks of radius R; these disks are centered at a point with
“zero shift,” which is just one specific ω configuration.

(ii) Determine all relevant hopping indices Hij in the sparse
Hamiltonian by only looking for pairs of orbitals that are within
the range of the hopping matrix elements tij .

(iii) For each desired configuration ω, displace one layer
with respect to the other layer, and compute of Hω

ij for each
nonzero hopping term; from this, we then calculate the local
electronic density of states (LEDoS), or any other useful
physical property like the conductivity. The LEDoS is derived
from the global EDoS, g(ε), by considering all eigenstates
(indexed by s) and orbitals (indexed by x):

g(ε) =
∑

x

1

N

N∑

s=1

δ(ε − εs)|φs(x)|2 =
∑

x

gx(ε). (1)

(iv) Apply the operator of interest to Hω
ij with the kernel

polynomial method (Chebyshev polynomials) [22,23]; the
Chebyshev polynomials Ti form a complete basis for square
integrable functions which take values in the range [−1,1] and
a linear combination of them can be chosen to approximate the
eigenspectrum of a tight-binding Hamiltonian after a simple
rescaling to ensure all eigenvalues lie in [−1,1].

An additional advantage of the method is that it can be
formulated into a code with excellent parallel efficiency,
especially compared to DFT supercell calculations. This is
a consequence of the fact that to obtain the global operator
requires a large number of independent computations of the
local operator in different configurations that can be run in
parallel (we use MVAPICH 2.2b). Since each local operator is
computed using only sparse matrix-vector operations, a second
layer of parallelization can be added by using multithreaded
implementations of highly optimized matrix-vector operator
subroutines, which further enhances efficiency (we use Intel
MKL 11.0).

III. BILAYER GRAPHENE

Twisted bilayer graphene (tBLG) provides an excellent
candidate for a test of our method, since it has been well
characterized by many experimental works and analytical
theory [24–27]. To compute the EDoS of tBLG we used a
two-band model that describes the π bonding and antibonding
combinations of pz orbitals associated with the two-atom
basis of the honeycomb lattice; the tight-binding Hamiltonian
is derived from first-principles calculations with the use of
Wannier orbitals and involves no adjustable parameters, other
than the range of hopping matrix elements [18].

The main feature of twisted bilayer graphene is the presence
of van Hove singularities (VHS) above and below the Fermi
energy. The origin of these VHS can be best understood
by considering the low-energy band structure of tBLG as
consisting of four Dirac cones at the valleys Kl and K ′

l ,
where l = (1,2) labels the layers. At θ = 0◦ twist, K1 and
K2 are at the same point in momentum space. For θ > 0◦,
the Dirac cones move away from one another in momentum
space, and a partial band-gap opening occurs where the
cones now overlap. These hybridizations at the overlap of
the Dirac cones produce the VHS [28], which have already
been investigated by scanning tunneling microscope (STM)
experiments [29–32].
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FIG. 1. Simulated local electronic density of states (LEDoS)
at four different angles of twisted bilayer graphene. Each line
corresponds to a different real-space configuration along the line
connecting AA to AB stacking. The insets show a real-space image of
the density of states in the bilayer system at the energy value identified
by a dashed line. For the 0.88◦ angle (a) an orange line showing the AA
to AB configuration path is shown in the real-space image. The figure
was constructed to facilitate comparison with experiment [32], which
shows excellent agreement in the positions and relative heights of the
VHS. For these calculations we use a disk cutoff radius R = 500 Å
which contains 591 344 atoms.

As a first test of the method, in Fig. 1 we compare the spatial
dependence of tBLG at four twist angles to experimental
results [32]. This is possible because sampling shifts over
the diagonal of one layer’s unit cell is the same as moving
linearly from an AA to AB type stacking in the real-space
moiré pattern. The simulated features of the VHS for the four
selected angles are identical to those from experiment [32],
but the scaling between the VHS feature and the background
graphene DoS is different between theory and experiment. This
can be partly explained by the fact that in STM measurements
states with lower in-plane momentum k have shorter decay
lengths [33,34]. Our method gives the DoS independent of the
momentum of electronic states that contribute to it, so it is
expected that the VHS will be less pronounced in experiment.

Next, we sample the configuration space � for a fixed
twist angle of θ = 5.73◦ (0.1 rad) for 100 configurations along
the diagonal of the unit cell (see Fig. 2). The LEDoS varies
smoothly as a function of ω, with the only regions of significant
configuration dependence being those near the VHS, as shown
in Fig. 2(b). The AB (BA) type stacking has much lower DoS at
the VHS than any other stacking configuration. Since we fit the
DoS to a smooth polynomial, the divergent nature of the DoS
at the VHS is only partially recovered. We can still compare
the intensity of the VHS by examining its spectral weight. In
Fig. 2(c) we plot the DFT ground-state energy calculations for

nontwisted bilayer graphene over the same range of relative
shifts. There are interesting similarities between the VHS
LEDoS in (b) and the non-doped ground-state energy in (c),
namely, the LEDoS at the VHS has the same dependence
on relative shift as the energy. An important question is: can
one controllably induce a relative twist between two graphene
layers in samples of macroscopic size? We suggest that use of
intercalants may facilitate this process. In particular, Li ions
are known to be easily intercalated between graphene layers,
with both insertion and removal being fast processes. Inspired
by this observation, we have also calculated the ground-state
energy as a function of relative shift for a graphene bilayer
including Li-ion intercalation. In the fully lithiated structure,
the relative stability of the AB and AA stacking is inverted,
suggesting that Li-ion intercalation may indeed act as a way
to facilitate changes in the relative twist angle even for
macroscopic samples.

In Fig. 3(a) we plot the angle-dependent EDoS for tBLG.
The first, second, and third VHS are visible in the low-angle
regime and they move away from the Fermi level linearly with
twist angle. At the VHS, we find that the real-space local DoS
is highly localized at the AA stacking sites as in Fig. 1, in
agreement with experimental STM results [31,35]. It is easy
to identify in Fig. 3(a) the first and second “magic angles”
of tBLG (near 1.1 and 0.5◦, respectively), explained by band
flattening near the Fermi level [24,26]. In Fig. 3(b) we plot
the calculated EDoS of monolayer graphene in the presence of
out-of-plane magnetic field. The Landau levels (LL’s) in the
monolayer and the VHS in the twisted bilayer both represent
tunable, localized electronic states. This similarity may sup-
port the interpretation of the twisted interlayer interaction as
a non-Abelian gauge field, the exact nature of which is still
being investigated [26,32,36,37]. These calculations allow a
very robust determination of the monolayer’s Fermi velocity
without a band-structure calculation, using the low-energy
model for the LL’s [28]:

E(n) = ±vF

√
2eBN (2)

with the result for the Fermi velocity vF = 1.2 × 106 m/s.
Finally, we test the interaction between twist and magnetic
field in Fig. 3(c): at the AA stacking with a 3.1◦ twist there are
many clear LL’s and at a field of 5 T the peak of the VHS is
significantly altered relative to its zero-field shape. At a twist of
1.1◦, the magnetic field dependence of the peak is not visible.
These results are in good agreement with experimental STM
measurements [30,32].

The Streda formula [38] relates the fluctuations in the
integrated electronic density n under small changes in the
magnetic field strength B to the Hall conductance σxy , while
the Fermi energy E of the system lies in a gapped region,
E ∈ Eg:

σxy = e
∂n(E)

∂B

∣∣∣∣
E∈Eg

. (3)

Averaging over 100 configurations of the LEDoS on both
layers gives values for σxy that jump from −2 to +2 in units of
e2/h across the central LL in the 3.1◦ simulation. This change
of +4e2/h, before taking into account spin, corresponds to the
fourfold degeneracy for the N = 0 LL of bilayer graphene,
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FIG. 2. Local electronic density of states as a function of shift distance across the unit-cell diagonal. (a) Scan of a single orbital’s LEDoS
with the coloring corresponding to distance across the diagonal. The insets show the real-space configurations ω for three types of stacking
with the atoms in each layer represented by different color circles (red and blue for top and bottom). The unit cell of the bottom layer is outlined
in blue and the shifted orbital is highlighted as a filled red dot. (b) LEDoS at the selected VHS peak as a function of shift for one orbital
(triangles) and for the average of both orbitals (circles), which is properly symmetric. The peak varies smoothly with shift and has critical points
at the three special stacking configurations. For the calculations in (a,b) we use a disk cutoff radius R = 500 Å which contains 591 344 atoms.
(c) Ground-state energy (GSE) of θ = 0◦ twist angle with and without Li-ion doping (see text for details).

FIG. 3. (a) Average EDoS as a function of twist angle for tBLG. (b) Average EDoS for monolayer graphene in the presence of varying
magnetic field. (c) LEDoS for AA stacked tBLG with 3.1◦ (solid line) and 1.1◦ (dashed line) twist angle at different values of the magnetic
field and Hall conductivity σxy in units of e2/h, with the horizontal red dashed lines at ±2e2/h. For these calculations we use a disk cutoff
radius R = 750 Å (1 330 550 atoms) and averages are over 100 configurations across the unit cell (10 × 10 grid).
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with the four states originating from the monolayer’s K,K ′
valley degeneracy (factor of 2) and the two sheets (another
factor of 2). A change of +8e2/h is observed in experiment
for tBLG, which is in agreement with our results when we take
into account spin degeneracy [8]. If only the AA configuration
is used in the calculation we do not obtain good quantization of
σxy . Just like integrating over the entire Brillouin zone when
computing in momentum space, integrating over the entire
configuration space � is required in the case of tBLG. This
allows us to compute the Chern number for the wave functions
in the gapped region by taking the difference in σxy in units
of the conductance quanta (+4e2/h), which indicates that our
method can capture accurately certain topological properties
of the electronic band structure.

IV. BILAYER TMDC

Unlike bilayer graphene, transition-metal dichalcogenides
will not be well described by low-energy theory due to
their large band gaps (about 2 eV). For bilayers of TMDCs
we use an 11 band model, consisting of five d orbitals on
the transition-metal atom and three p orbitals on each of
the two chalcogen atoms [19]. The interlayer interaction is
modeled only between the chalcogen atoms closest to the
bilayer interface. Here we present results for MoS2, the model
Hamiltonian of which includes the GW approximation for
more accurate representation of the electronic structure. Since
we are mainly interested in studying twist-angle dependent
effects, we will neglect spin polarization, but an ab initio
model with spin-orbit coupling can be easily substituted if
such effects are important.

Some twist-angle dependent features were seen in the
LEDoS for both WSe2 and MoS2, but most were not near
the conduction- or valence-band edges. The twist-angle de-
pendence of the density of states for bilayer MoS2 is shown
in Fig. 4(a). There are significant changes in the EDoS deep
into the valence band (more than 2 eV below the maximum),
but it is difficult to probe this region experimentally. They
could be observed as interesting properties for high-frequency
conductivity or optical activity.

Instead, we focus on the valence- and conduction-band
edges. The band gap is a twist-angle dependent feature: it
increases by 76 meV (a ∼4% change) going from 0 to 28.6◦
twist angle. The regions near the valence- and conduction-band
extrema are shown in great detail in Figs. 4(b) and 4(c),
with the logarithmic scale showing the changes more clearly.
These plots also show the good numerical convergence of
the EDoS in our model, with noticeable numeric error only
occurring when the EDoS is smaller than 10−5 states per
eV. This error, reminiscent of Gibbs oscillations [22], is
likely an artifact of the kernel polynomial method (KPM)
attempting to fit a smooth function to a band edge in the
eigenvalue spectrum. We thus take a region about 10−4

states per eV to compare changes in the band gap (plotted
in orange). Our model does not take into account changes
in the distance between the two layers as a function of
twist angle, which could give additional dependence of the
band gap and can be incorporated as a dependence of the
tight-binding hopping matrix elements on twist angle and
distance.

FIG. 4. (a) EDoS for twisted bilayer MoS2 from 0◦ (blue) to
28.65◦ (red) twist angle. (b) and (c) EDoS near the valence- and
conduction-band extrema, with the logarithmic scales showing the
changes in greater detail. These calculations use a disk cutoff radius
R = 300 Å (193 700 atoms) and are averaged over 100 configurations
across the unit cell (10 × 10 grid).

V. CONCLUSION

We have introduced a method for parameter-free computa-
tion of electronic properties in incommensurate layered 2D
materials with controllable errors. Although here we have
only studied bilayer materials, the method is general and
extends to any number of layers and of arbitrary heterostructure
composition. Viewing the problem on the space of configu-
rations, �, allows us to fully characterize the properties of
incommensurate (aperiodic) systems. The method allows for
the inclusion of external fields and other sources of disorder,
such as strain or defects. We present results of applying the
method to twisted bilayer graphene and a representative of
the TMDC family of semiconductors. The method is accurate
enough to correctly calculate quantization of Hall conductivity
in tBLG in the presence of magnetic fields, and reproduces the
correct Chern number for the N = 0 Landau level. It also
predicts that bilayer TMDC’s have a twist-dependent band
gap. The method is a promising candidate for the targeted
design of electronic properties in layered heterostructures.
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