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We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the
vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the
anisotropic Purcell effect. We calculate numerically the electromagnetic Green’s tensor and employ the effective
modes differential equation method for calculating the quantum dynamics of the emitter population, with respect
to the resonance frequency and the initial state of the emitter, as well as its distance from the nanosphere. We
find that the emitter population evolution varies between a gradual total decay and a partial decay combined with
oscillatory population dynamics, depending strongly on the specific values of the above three parameters. Under
strong-coupling conditions, coherent population trapping can be observed in this system. We compare our exact
results with results when the flat continuum approximation for the vacuum modified by the metallic nanosphere is
applied. We conclude that the flat continuum approximation is an excellent approximation only when the spectral
density of the system under study is characterized by nonoverlapping plasmonic resonances.
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I. INTRODUCTION

Metallic nanoparticles (MNPs) can confine light inside
deep-subwavelength volumes in electromagnetic (EM)
modes, which are called localized surface plasmons (LSPs).
This strong field localization leads to an enhancement of the
light-matter interaction in the vicinity of the MNP, featuring
some very interesting physics in a broad range of contexts
such as optical antennas [1,2], surface-enhanced Raman
scattering [3], photovoltaics [4], energy transfer in light
harvesting [5], and biosensing [6].

The presence of LSPs in metal-dielectric interfaces strongly
modifies the density of the EM modes in the surroundings,
leading to strong modification of the lifetime of quantum
emitters (QEs) placed close to the MNP. Moreover, when the
distance between the QE and the MNP surface is very small,
theory predicts that coherent energy exchange between the QE
and the modified EM modes accompanied by non-Markovian
dynamics may take place [7–12]. The above phenomena have
been demonstrated mostly experimentally in the perturba-
tive (weak-coupling) regime wherein quantum dynamics is
irreversible [13–19]. Nevertheless, strong coupling at room
temperature between an organic molecule and a plasmonic
nanocavity was demonstrated experimentally [20], followed
by a detailed theoretical analysis [21].

In this work we study theoretically the population dy-
namics of a V-type QE coupled electromagnetically to a
MNP. The spontaneous emission of such a QE may exhibit
interference effects since the MNP affects differently the EM
modes along mutually perpendicular directions, known as
the anisotropic Purcell effect [22,23]. This phenomenon has
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been studied in various photonic structures, including peri-
odic dielectrics [24], negative refractive index metamaterials
[25–27], metasurfaces [28], hyperbolic metamaterials [29], as
well as plasmonic nanostructures [30–32].

Here, in contrast to previous work [22–32], the interaction
of the QE with the MNP is not restricted to the weak-coupling
regime. We use a quantum-mechanical formalism for the
EM field excitations [9–11], which goes beyond the Markov
approximation and incorporates the exact population dynamics
by employing the effective mode differential equation (EMDE)
method [33]. The anisotropic enhancement of the spontaneous
decay rates of a QE in the proximity of a MNP is calculated
using an EM Green’s tensor technique [34]. The purpose of
the present work is to study in detail the crossover regime in
which the QE population dynamics changes from irreversible
to reversible for a system shown in Fig. 1, manifested by
the emergence of nondecaying oscillations in the evolution
of the QE population. Such oscillations signify the coherent
exchange of energy between the QE and modified reservoir of
EM modes due to the nearby MNP.

This paper is organized as follows: In Sec. II we present
our methodology for calculating the spontaneous emission
dynamics of a QE near a MNP. We then present and discuss
the results for a V-type system in Sec. III. We also present
relevant results for a two-level system in Sec. IV. Finally, we
conclude our findings in Sec. V.

II. CALCULATION OF THE SPONTANEOUS EMISSION
DYNAMICS OF A V-TYPE QE NEAR A MNP

We consider a degenerate V-type QE at distance D from the
surface of a spherical MNP, as shown in Fig. 1. The origin of
the coordinate system coincides with the center of the sphere
and the QE lies on the z axis of the coordinate system. The
Hamiltonian of the system [9,11] is given by (we use h̄ = 1
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FIG. 1. The configuration of the degenerate V-type QE with
resonance frequency ω0, placed at a distance D from the surface
of a spherical MNP.

throughout this work)

H =
∑
i=1,2

ω0σ̂ ii +
∫

d�r
∫ ∞

0
dωωf̂†(�r,ω) · f̂(�r,ω)

−
∑
i=1,2

[
σ̂i0

∫ ∞

0
dω �μi0 · Ê(�r,ω) + H.c.

]
. (1)

In Eq. (1), f̂(�r,ω), f̂†(�r,ω) stand for the bosonic vector field
operators for the elementary excitations of the system, σ̂ij

denotes the Pauli operator, and �μ10 = με̂− and �μ20 = με̂+ are
the dipole moments of the QE, where ε̂± ≡ (ε̂z ± iε̂x(y))/

√
2

describe the right-rotating (ε̂+) and left-rotating (ε̂−) unit
vectors (μ is taken to be real). Also, ω0 stands for the resonance
frequency between the two degenerate upper levels and the
lower level of the V-type QE, with the energy of the lower
level taken as zero.

The electric field vector operator Ê(�r,ω) is given by

Ê(�r,ω) = iω2

√
πε0c2

∫
d�s

√
Im[ε(�s,ω)]Ĝ(�r,�s,ω) · f̂(�s,ω),

(2)

with Ĝ(�r,�s,ω) being the dyadic EM Green’s tensor defined as

∇ × ∇ × Ĝ(�r,�s,ω) − ε(�r,ω)ω2

c2
Ĝ(�r,�s,ω) = Îδ(�r − �s) . (3)

In Eqs. (2) and (3), Î is the unit dyad (unit tensor), ε(�r,ω)
is the spatially and frequency-dependent complex dielectric
function of the MNP, and c is the speed of light in the vacuum.

The state of the system is given by

|�(t)〉 = c1(t)e−iω0t |1; 0ω〉 + c2(t)e−iω0t |2; 0ω〉
+

∫
d�r

∫
dωC(�r,ω,t)e−iωt |0; 1�r,ω〉, (4)

where |0; 1�r,ω〉 ≡ f̂
†
λ (�r,ω)|0; 0ω〉. Here, |n; a〉 = |n〉 ⊗ |a〉,

where |n〉 (n = 0,1,2) denotes the quantum states of the
V-type system (see Fig. 1) and |a〉 denotes the photonic
states (states of the modified EM vacuum), with |0ω〉 meaning
zero and |1�r,ω〉 meaning one-photon states. The application of

the time-dependent Schrödinger equation i|�̇(t)〉 = H |�(t)〉
yields a set of differential equations that can be formally
integrated, resulting in two integrodifferential equations for
c1(t) and c2(t), given by

ċ1(t) = i

∫ t

0
dt ′(K11(t − t ′)c1(t ′) + K12(t − t ′)c2(t ′)), (5)

ċ2(t) = i

∫ t

0
dt ′(K21(t − t ′)c1(t ′) + K22(t − t ′)c2(t ′)), (6)

where

Kij (τ ) = i
eiω0τ

π

∫ ∞

0
Gij (ω)e−iωτ dω, (7)

Gij (ω) ≡ ω2

ε0c2
[ �μ†

i0 · Im[Ĝ(�r0,�r0,ω)] · �μj0], (8)

with τ ≡ t − t ′ and i,j = 1,2.
In general, the MNP affects differently the EM modes along

the tangential (‖) and the radial (⊥) directions, corresponding
to a QE with a transition dipole oriented parallel and perpen-
dicular to the surface of the MNP, respectively. In our case, the
radial direction coincides with the z axis, and the tangential
direction is parallel to the x and y axes, according to Fig. 1. In
such a case, we have (i,j = 1,2)

Kii(τ ) = K+(τ ) = ieiω0τ

∫ ∞

0
J+(ω)e−iωτ dω, (9)

Kij (τ ) = K−(τ ) = ieiω0τ

∫ ∞

0
J−(ω)e−iωτ dω, i �= j,

(10)

with

J±(ω) = 1

2π

ω2μ2

ε0c2
Im[Ĝ⊥(�r0,�r0,ω) ± Ĝ‖(�r0,�r0,ω)]

≡ J⊥(ω) ± J ‖(ω), (11)

where Ĝ⊥ ≡ Ĝzz and Ĝ‖ ≡ Ĝxx(yy). The decay rate �(ω) in
the presence of a MNP is given by [35]

�k(ω) = 2μ2ω2

ε0c2
Im[Ĝk(�r0,�r0,ω)], k =⊥ , ‖ , (12)

and we thus obtain

J k(ω) = 1

2π

�k(ω)

2
= 1

2π

λk(ω,D)�0(ω)

2
, (13)

with �0(ω) being the decay rate of the QE in free space,
and λk(ω,D) the directional (k =⊥ , ‖) enhancement factor
of the free-space decay rate due to the presence of the
MNP at distance D from the QE. Due to the anisotropy, the
enhancement factors λ‖(ω,D) and λ⊥(ω,D) are not equal, in
general. We further write

�0(ω) = ω3
0μ

2

3πε0c3

(
ω

ω0

)3

≡ �0(ω0)

(
ω

ω0

)3

, (14)

since in free space Im[Ĝ0(�r0,�r0,ω)] = ω
6πc

Î is valid [12,35],
with Ĝ0(�r0,�r0,ω) being the free-space Green’s tensor. We now
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obtain

K±(τ ) = i

∫ ∞

0
J±(ω)e−i(ω−ω0)τ dω, (15)

J±(ω) ≡ �0(ω0)

2π

λ⊥(ω,D) ± λ‖(ω,D)

2

(
ω

ω0

)3

≡ J rad(ω) ± J tan(ω), (16)

with �0(ω0) = 1/τ0, and τ0 standing for the free-space decay
time of the QE. Taking into account that exp(−i(ω − ω0)τ )
contributes mainly around ω0, we can write ( ω

ω0
)3 ≈ 1, in-

troducing thus the flat continuum approximation (FCA) and
obtaining

K±(τ ) ≈ K±
FCA(τ ), (17)

K±
FCA = i

∫ ∞

0
J±

FCA(ω)e−i(ω−ω0)τ dω, (18)

J±
FCA(ω) ≡ �0(ω0)

2π

λ⊥(ω,D) ± λ‖(ω,D)

2

≡ J rad
FCA(ω) ± J tan

FCA(ω). (19)

We can now expand (to any given accuracy) K±(τ ) as a
sum of M exponential terms at effective mode frequencies ωi

(i = 1, . . . ,M) [33],

K±(τ ) = ieiω0τ

M∑
i=1

W±
i e−iωiτ . (20)

Then, the equations for the two upper states of the QE are
given by

ċν(t) = i

M∑
i=1

ei(ω0−ωi )tJ ν
i (t), ν = 1,2, (21)

where we have introduced new variables given by

J 1
i (t) = i

∫ t

0
(W+

i c1(t ′) + W−
i c2(t ′))e−i(ω0−ωi )t ′dt ′, (22)

J 2
i (t) = i

∫ t

0
(W−

i c1(t ′) + W+
i c2(t ′))e−i(ω0−ωi )t ′dt ′, (23)

for which hold

J̇ 1
i (t) = i(W+

i c1(t) + W−
i c2(t))e−i(ω0−ωi )t , (24)

J̇ 2
i (t) = i(W−

i c1(t) + W+
i c2(t))e−i(ω0−ωi )t . (25)

In this way, we have transformed the two integrodifferential
equations, Eqs. (5) and (6), into a set of 2(M + 1) effective
mode (ordinary) differential equations (EMDEs) with constant
coefficients, given by Eqs. (21), (24), and (25). Denoting
C̃ν(t) ≡ exp(−iω0t)cν(t) and J̃ ν

i (t) ≡ exp(−iωit)J ν
i (t), with

ν = 1,2 and i = 1, . . . ,M , we obtain Eqs. (21), (24), and (25)
in a matrix form,

˙̃C(t) = i H̃ · C̃(t), (26)

where C̃(t) = (C̃1(t),C̃2(t),J̃ 1
1 (t), . . . ,J̃ 1

M (t),J̃ 2
1 (t), . . . ,

J̃ 2
M (t))T ≡ (C̃1(t),C̃2(t),J̃ (1)(t), . . . ,J̃ (2M)(t))T, with all

J̃ (i)(0) = 0. Here the superscript T is the transpose operation
and H̃ is a time-independent complex matrix, given by

H̃ =
(
S Y
Z R

)
, Z =

⎛
⎝W(1)

· · ·
W(2M)

⎞
⎠, Y =

(
(1)

(2)

)
. (27)

In Eq. (27), we have Sk,k′ = δk,k′ω0 (k,k′ = 1,2) and Ri,i ′ =
Ri+M,i ′+M = δi,i ′ωi (i,i ′ = 1, . . . ,M) for the diagonal blocks.
Furthermore, the 2M rows of Z are defined as W(η) =
(W+

η ,W−
η ) and W(M+η) = (W−

η ,W+
η ), for η = 1, . . . ,M . Last,

the two rows of Y are defined as [(1)]1,m = [(2)]2,n =
1, for 3 � m � 2 + M and 3 + M � n � 2(M + 1), with
[(1)]1,m = [(2)]1,n = 0, for m and n otherwise. Given these
definitions we write the solution of Eq. (26) as

C̃(t) =
M ′∑
j=1

�je
iλj t C̃0

j , (28)

where M ′ = 2(M + 1) is the number of λj eigenvalues and
�j eigenvectors of H̃. The vector of complex coefficients
C̃0

j is given as C̃0 = L−1 · C̃(0). The columns of the L ≡
[�1, . . . ,�M ′ ] matrix are the eigenvectors of H̃. We note that
since H̃ is not Hermitian, L−1 �= L†.

The EM response of the 5-nm silver sphere used in this
study is described by a Drude dielectric function, εm(ω) =
εm,∞ − ω2

p/(ω2 + iωγ ), characterized by its plasma frequency
ωp = 9.176 eV, high-frequency component εm,∞ = 3.718 eV,
and Ohmic losses γ = 0.021 eV. The radial and tangential
enhancement factors of the free-space decay rate of the QE
due to the presence of the MNP as a function of frequency
ω at distance D, calculated using an EM Green’s tensor
technique [34], are presented in Fig. 2.

We note that our results below are converged with respect to
the number of effective modes M included in the dynamics; we
use M = 1001 in the energy range 3.5–4.5 eV. We also note
that our results on V-type and two-level systems presented
below are obtained using the K±(τ ) kernel as defined in
Eq. (15) unless otherwise stated.

III. DYNAMICS OF A V-TYPE QE NEAR A MNP

In this work, we investigate the |c1(t)|2 and |c2(t)|2 time
evolution for state-of-the-art QEs with transition frequencies
in the optical regime, such as quantum dots (QDs) and
J-aggregates (J-AGRs), with free-space decay time τ0 ≈ 4 ns
[36] and τ0 ≈ 70 ps [37], respectively; correspondingly, we
often use the terms QD and J-AGR for referring to QEs with
such free-space decay times below. In each case, we study
the dynamics for different initial states of the QE. Moreover,
for each QE, we consider two resonance frequencies, ω0 =
3.84 eV and ω0 = 4.16 eV, the frequencies corresponding
to (relatively) small and large enhancement factors λ‖(ω0,D)
and λ⊥(ω0,D), respectively, shown in Fig. 2. We also define
the effective decay time of a QE with resonance frequency
ω0 and free-space decay rate τ0 at distance D from the
MNP surface as τeff ≡ (τ rad

eff + τ tan
eff )/2, given by the average of

the corresponding radial τ rad
eff ≡ τ0/λ⊥(ω0,D) and tangential

τ tan
eff ≡ τ0/λ‖(ω0,D) effective decay times.
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FIG. 2. Radial λ⊥(ω,D) ≡ �rad/�0 (top) and tangential
λ‖(ω,D) ≡ �tan/�0 (bottom) enhancement factors as function of the
distance D of the QE from the MNP and EM mode frequency ω.

A. QD dynamics at ω0 = 3.84 eV

The population dynamics of a QD, i.e., a QE with τ0 = 4 ns,
with ω0 = 3.84 eV at D = 1 nm for different initial states,
is shown in Fig. 3. In the top panel of this figure, the time
evolution of |c1(t)|2 (black solid curve) and |c2(t)|2 (red dashed
curve) is shown for the initial state |�(0)〉 = |1〉. We find
that the initial population in state |1〉 decays rapidly into the
modified EM modes, while there is a partial population transfer
from state |1〉 into state |2〉 within about 50 fs. Partial revivals
of the populations in |1〉 and |2〉 at 125 and 175 fs, respectively,
are further observed, before all population finally ends up in
the modified EM continuum after about 250 fs. The effective
decay time for a QE with τ0 = 4 ns, as here, is τeff ≈ 89 fs
(τ rad

eff ≈ 35 fs and τ tan
eff ≈ 143 fs) considering that λ⊥(3.84,1) ≈

1.13 × 105 and λ‖(3.84,1) ≈ 2.8 × 104 as shown in Fig. 2.
The time evolution of state |1〉 shown in the top panel of
Fig. 3, at early times, is practically a decay, characterized
primarily by the decay time τ rad

eff , instead of τeff, indicating
that the clearly non-Markovian dynamics is dominated by the
radial part (along the z axis) of the modification by the MNP
spectral density of the EM modes. Moreover, small oscillations
on the population evolution dynamics of |1〉 and |2〉, which are
discernible also in the top panel of Fig. 3, further point to
a rather moderate non-Markovian character. There is also a
partial oscillatory exchange of population between state |1〉
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FIG. 3. Top: Population evolution of |1〉 (black solid curve) and
|2〉 (red dashed curve) of a QD with ω0 = 3.84 eV at D = 1 nm.
Bottom: Population evolution of |1〉 of the QD with ω0 = 3.84 eV at
D = 1 nm for the initial states, |�(0)〉 = √

0.5|1〉 + √
0.5|2〉 (black

solid curve) and |�(0)〉 = √
0.5|1〉 − √

0.5|2〉 (red dashed curve).

and state |2〉 via the modified EM modes as indicated by a
phase difference, which we define as π , since when one is at a
(local) maximum the other is at a (local) minimum, and vice
versa.

In the bottom panel of Fig. 3 we present the population
dynamics for |1〉 and |2〉 for the symmetric initial state
|�(0)〉 = √

0.5|1〉 + √
0.5|2〉 (black solid curve) and the

antisymmetric initial state |�(0)〉 = √
0.5|1〉 − √

0.5|2〉 (red
dashed curve), denoted by SIS and AIS, respectively. We
observe that the population evolution |c1(t)|2, which in case
of SIS and AIS equals |c2(t)|2, decays fast into the modified
EM modes for both initial conditions; however, the explicit
dynamics depends on the initial state. In the case of a SIS, the
population decay of |1〉 is slower than in the case of an AIS; in
addition, in the latter case, the non-Markovian character of the
underlying dynamics is apparently stronger. The differences
in the population evolution of state |1〉 and state |2〉 in case of
a SIS and an AIS clearly indicate that quantum interference
effects affect the underlying dynamics, as well as the strength
of the non-Markovian character on it. Furthermore, we observe
that the population dynamics with a SIS and an AIS, at
early times, can be understood as decays, with decay times
τ tan

eff ≈ 145 fs and τ rad
eff ≈ 35 fs, respectively; apparently, the

dynamics with a SIS is dominated by the tangential Purcell
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FIG. 4. Top: Population evolution of |1〉 (black solid curve) and
|2〉 (red dashed curve) of a J-AGR with ω0 = 3.84 eV at D = 2 nm.
Bottom: Population evolution of |1〉 of the J-AGR with ω0 = 3.84 eV
at D = 2 nm for the initial states, |�(0)〉 = √

0.5|1〉 + √
0.5|2〉 (black

solid curve) and |�(0)〉 = √
0.5|1〉 − √

0.5|2〉 (red dashed curve).

effect and the dynamics with an AIS is dominated by the
radial Purcell effect.

B. J-AGR dynamics at ω0 = 3.84 eV

We now focus on the dynamics of a J-AGR, i.e., a QE
with τ0 = 70 ps, with resonance frequency ω0 = 3.84 eV at
D = 2 nm, and corresponding τeff ≈ 4 fs (τ rad

eff ≈ 1.6 fs and
τ tan

eff ≈ 6.5 fs), after taking into account that λ⊥(3.84,2) ≈
4.40 × 104 and λ‖(3.84,2) ≈ 1.07 × 104 as shown in Fig. 2.
The population evolution of state |1〉 and state |2〉 of such a
system is presented in Fig. 4.

In the top panel of Fig. 4, the evolutions of |c1(t)|2 (black
solid curve) and |c2(t)|2 (red dashed curve) for initial state
|�(0)〉 = |1〉 are shown. We find that both |c1(t)|2 and |c2(t)|2
decay totally within 200–250 fs. Meanwhile, though, there is
partial oscillatory exchange of population between state |1〉
and state |2〉 via the modified EM modes as indicated by the
phase difference of π . Moreover, the evolution of |c1(t)|2 and
|c2(t)|2 point to a rather strong non-Markovian character of
the underlying dynamics, as there are very distinct oscillations
on the top of the overall gradual decay of the population of
these states. The population evolution of |c1(t)|2 and c2(t)|2
for a SIS (black solid curve) and an AIS (red dashed curve)
are shown in the bottom panel of Fig. 4. We observe that,
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FIG. 5. Top: Population evolution of |1〉 (black solid curve) and
|2〉 (red dashed curve) of a J-AGR with ω0 = 3.84 eV at D = 1.55 nm
up to 100 fs. Bottom: Population evolution of |1〉 (black solid curve)
and |2〉 (red dashed curve) of a J-AGR with ω0 = 3.84 eV at D =
1.55 nm, at later times (400–500 fs).

in both cases, the population of states |1〉 and |2〉 decay
totally in the modified EM mode continuum within about
200 fs. Furthermore, in both cases, the overall population
decay occurs with strong, gradually decreasing in magnitude,
oscillations of population transfer between states |1〉 and |2〉
and the modified EM continuum simultaneously. However, the
density of oscillations within a given time interval is lower in
the case of an AIS than in the case of a SIS, which points
to destructive quantum interference effects in the underlying
strong non-Markovian population dynamics in the case of an
AIS. We note that a closer look at the population evolution
up to 5 fs in both panels of Fig. 4 (not shown here) shows
that the decay time in each case is close to the corresponding
τ rad

eff , instead of τeff, which indicates that the radial part of the
spectral density is dominating the underlying non-Markovian
population dynamics here, as in the case of a QD with the same
ω0 shown in Fig. 3.

In Fig. 5, we study the population evolution of states |1〉 and
|2〉 for a J-AGR with ω0 = 3.84 eV at D = 1.55 nm, with τeff ≈
2.3 fs (τ rad

eff ≈ 0.9 fs and τ tan
eff ≈ 3.8 fs), taking into account that

λ⊥(3.84,1.55) ≈ 7.50 × 104 and λ‖(3.84,1.55) ≈ 1.85 × 104

as shown in Fig. 2. In the top panel of Fig. 5, the time evolutions
of |c1(t)|2 (black solid curve) and |c2(t)|2 (red dashed curve)
with initial state |�(0)〉 = |1〉 are shown during the first 100 fs.
At the very early stage of the population evolution of state |1〉

075412-5



I. THANOPULOS, V. YANNOPAPAS, AND E. PASPALAKIS PHYSICAL REVIEW B 95, 075412 (2017)

0 0.01 0.02 0.03 0.04 0.05
 t  (ps)

0

0.2

0.4

0.6

|c 1(t)
|2 =|

c 2(t)
|2

c1(0)=0.7071; c2(0)=0.7071
c1(0)=0.7071; c2(0)=-0.7071

0.15 0.16 0.17 0.18 0.19 0.2
 t  (ps)

0

0.2

0.4

0.6

|c 1(t)
|2 =|

c 2(t)
|2

c1(0)=0.7071; c2(0)=0.7071
c1(0)=0.7071; c2(0)=-0.7071

FIG. 6. Top: Population evolution of |1〉 of a J-AGR with ω0 =
3.84 eV at D = 1.55 nm for the initial states, |�(0)〉 = √

0.5|1〉 +√
0.5|2〉 (black solid curve) and |�(0)〉 = √

0.5|1〉 − √
0.5|2〉 (red

dashed curve) up to 50 fs. Bottom: Population evolution of |1〉
of a J-AGR with ω0 = 3.84 eV at D = 1.55 nm for the initial
states, |�(0)〉 = √

0.5|1〉 + √
0.5|2〉 (black solid curve) and |�(0)〉 =√

0.5|1〉 − √
0.5|2〉 (red dashed curve) at later times (150–200 fs).

(not shown here), the dynamics is practically a fast decay
with τeff; however, very quickly the strongly non-Markovian
character of the underlying dynamics manifests itself as an
oscillatory transfer of population between states |1〉 and |2〉,
with the modified EM mode continuum as an intermediate, as
clearly indicated by the π -phase difference between |c1(t)|2
and |c2(t)|2. The initial population of the V-type system is
decreased to about half within the first 100 fs.

In the bottom panel of Fig. 5 we present the population
evolution |c1(t)|2 (black solid curve) and |c2(t)|2 (red dashed
curve) at later times, in the time interval 400–500 fs. We now
find that the time evolution of the population has reached
a steady state, indicating a population exchange between
the V-type system and the modified EM mode continuum,
which amounts in total to ≈50% of the initial population.
Interestingly, the π -phase shift between |c1(t)|2 and |c2(t)|2,
which existed at earlier times of the dynamics, shown in the top
panel of this figure, is now lost. The population exchange has
now become practically a transfer of population between the
states of the V-type system and the modified EM continuum,
which occurs simultaneously for both states.

In Fig. 6, we investigate the influence of the initial state on
the population evolution of states |1〉 and |2〉 for a J-AGR with
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FIG. 7. Population evolution of |1〉 and |2〉 of a QD with ω0 =
4.16 eV at D = 1 nm for the initial states, |�(0)〉 = √

0.5|1〉 +√
0.5|2〉 (black solid curve) and |�(0)〉 = √

0.5|1〉 − √
0.5|2〉 (red

dashed curve).

ω0 = 3.84 eV at D = 1.55 nm. In the top panel of this figure,
we present the time evolution of |c1(t)|2 and |c2(t)|2 for a SIS
(black solid curve) and an AIS (red dashed curve) for the first
50 fs. We find that the population evolution of states |1〉 and
|2〉 is strongly dependent on the initial state, which indicates
significant quantum interference effects in the underlying
non-Markovian dynamics. In the case of a SIS, the |c1(t)|2
(=|c2(t)|2) evolution shows a steady oscillatory exchange
of population between the V-type system and the modified
EM mode continuum. In the case of an AIS, the situation
is strikingly different; the |c1(t)|2 evolution indicates an
oscillatory transfer, gradually decreasing in magnitude, of the
initial population of the V-type system into the modified EM
mode continuum. At later times, as shown in the bottom panel
of Fig. 6, a marginal, only about 5% of the initial population
in total, oscillatory population transfer between states |1〉 and
|2〉 and the modified EM modes is still observable.

C. QD dynamics at ω0 = 4.16 eV

We now study the population evolution for a QD with
ω0 = 4.16 eV at D = 1 nm, with τeff ≈ 10 fs (τ rad

eff ≈ 6 fs
and τ tan

eff ≈ 14 fs), taking into account that λ⊥(4.16,1) ≈
6.54 × 105 and λ‖(3.84,1) ≈ 2.83 × 105, as shown in Fig. 2.
In Fig. 7, we present the time evolution of |c1(t)|2 (=|c2(t)|2
here) in the cases of a SIS (black solid curve) and an AIS
(red dashed curve). We observe that the population evolution
is different for the two initial states, which again points to
quantum interference effects in the underlying dynamics. As
in the case of a QD with ω0 = 3.84 eV, shown in Fig. 3,
the population dynamics shows a moderate non-Markovian
character and, at early times, is practically a decay with τeff,
while after ≈200 fs, the population of the upper states is
(almost) completely lost. We note that the population dynamics
of |1〉 and |2〉 in the case of the initial state |�(0)〉 = |1〉 (not
shown here) looks analogous to the corresponding dynamics
in the case of a QD with ω0 = 3.84 eV at D = 1 nm, presented
in the top panel of Fig. 3.
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FIG. 8. Top: Population evolution of |1〉 (black solid curve) and
|2〉 (red dashed curve) of a J-AGR with ω0 = 4.16 eV at D = 1.55 nm
up to 100 fs. Bottom: Population evolution of |1〉 (black solid curve)
and |2〉 (red dashed curve) of a J-AGR with ω0 = 4.16 eV at D =
1.55 nm, at later times (400–500 fs).

D. J-AGR dynamics at ω0 = 4.16 eV

We now study the population dynamics of a J-AGR, i.e., a
QE with τ0 = 70 ps, with ω0 = 4.16 eV at D = 1.55 nm, with
τeff ≈ 0.35 fs (τ rad

eff ≈ 0.2 fs and τ tan
eff ≈ 0.5 fs), taking into

account that λ⊥(4.16,1) ≈ 3.21 × 105 and λ‖(4.16,1.55) ≈
1.39 × 105, as shown in Fig. 2. Here, the averaged effective
decay rate, as well as the radial and tangential effective rates,
are in the attosecond time range, which is much smaller than
the duration of the dynamics observed; we thus conclude that
they are practically of minor importance for understanding the
underlying strongly non-Markovian dynamics in this case.

In the top panel of Fig. 8, the time evolutions of |c1(t)|2
(black solid curve) and |c2(t)|2 (red dashed curve) are shown
for the initial state |�(0)〉 = |1〉 during the first 150 fs. The
strong non-Markovian character of the underlying dynamics
manifests itself as an oscillatory exchange of population
between states |1〉 and |2〉 with the modified EM mode
continuum as an intermediate, as clearly indicated by the phase
difference of π between |c1(t)|2 and |c2(t)2. Furthermore, the
initial population of the V-type system is decreased to about
40% of its initial value within the first 150 fs.

In the bottom panel of Fig. 8 we show |c1(t)|2 (black
solid curve) and |c2(t)|2 (red dashed curve) at later times,
400–500 fs. We now observe that the population evolution
has reached a steady state; now, the nondecaying exchange
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FIG. 9. Top: Population evolution of |1〉 of the J-AGR with ω0 =
4.16 eV at D = 1.55 nm for the initial states, |�(0)〉 = √

0.5|1〉 +√
0.5|2〉 (black solid curve) and |�(0)〉 = √

0.5|1〉 − √
0.5|2〉 (red

dashed curve) up to 50 fs. Bottom: Population evolution of |1〉
of the J-AGR with ω0 = 4.16 eV at D = 1.55 nm for the initial
states, |�(0)〉 = √

0.5|1〉 + √
0.5|2〉 (black solid curve) and |�(0)〉 =√

0.5|1〉 − √
0.5|2〉 (red dashed curve) at later times (150–200 fs).

of population between the V-type system and the modified
EM mode continuum amounts in total to ≈25% of the
initial population. Interestingly, contrary to the findings when
studying the analogous configuration at ω0 = 3.84 eV shown
in Fig. 5, the π -phase difference between |c1(t)|2 and |c2(t)|2,
which existed at earlier times of the dynamics, is still present;
here, clearly the population exchange between the two states
of the V-type system, with the modified EM continuum as an
intermediate, suffers no dephasing, even for long time periods,
in this case.

In Fig. 9, we investigate the influence of the initial state
on the population evolution of states |1〉 and |2〉 for a J-AGR
with ω0 = 4.16 eV at D = 1.55 nm. In the top panel of this
figure, we present the time evolution of |c1(t)|2 and |c2(t)|2 for
a SIS (black solid curve) and an AIS (red dashed curve) for
the first 50 fs. We find that the population evolutions of states
|1〉 and |2〉 are strongly dependent on the initial state, which
indicates strong quantum interference effects in the underlying
non-Markovian dynamics. In the case of a SIS, the |c1(t)|2 (=
|c2(t)|2 here) evolution shows an oscillatory transfer, slowly
decreasing in magnitude, of population between the V-type
system and the modified EM mode continuum. In the case of
an AIS, the situation is similar, although the rate of magnitude
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FIG. 10. Population evolution of |1〉 of a QE with τ0 = 70 ps at
D = 1.55 nm obtained using the kernel K±(τ ) [defined by Eq. (15)]
(black solid curve) and using the kernel K±

FCA(τ ) [defined by Eq. (17)]
(red dashed curve), with ω0 = 3.84 eV (top) and ω0 = 4.16 eV
(bottom). See text for discussion.

decrease is faster. At later times, as shown in the bottom
panel of Fig. 9, a moderate oscillatory population exchange,
of about 20% and 10% of the initial population in the case of
a SIS and an AIS, respectively, between states |1〉 and |2〉 and
the modified EM modes occurs simultaneously. These minor
qualitative differences on the population evolution of |1〉 and
|2〉 are safely attributed to quantum interference effects in
the underlying non-Markovian dynamics. Most interestingly,
however, for both initial states, at later times, the population
evolution shows clearly that about 20% of the initial population
is “trapped” in the V-type system at all times, which indicates
that coherent population trapping [38] under conditions of
strong coupling between a QE and a MNP, as studied here, is
observable.

E. The influence of the FCA on the dynamics of the V-type QE:
K±(τ ) vs K±

FCA(τ )

We now investigate the influence of the FCA on the non-
Markovian spontaneous emission dynamics of a V-type QE. In
the top panel of Fig. 10, we present the population evolution
of state |1〉 with initial state |�(0)〉 = |1〉, for a J-AGR at
D = 1.55 nm with ω0 = 3.84 eV, obtained using the K±(τ )
kernel (black solid curve), defined by Eq. (15), and using
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FIG. 11. The radial spectral density J rad(ω) (black solid curve)
and J rad

FCA(ω) (red dashed curve) for a QE with τ0 = 70 ps at D =
1.55 nm with ω0 = 3.84 eV (top) and ω0 = 4.16 eV (bottom). See
text for discussion.

the K±
FCA(τ ) kernel (red dashed curve), defined by Eq. (17).

We observe that the FCA introduces a phase shift between
the two |c1(t)|2 curves. More specifically, the |c1(t)|2 obtained
with K±

FCA(τ ) precedes the corresponding population evolution
when the FCA is not invoked; we denote such a phase shift
between the two curves as positive. In the bottom panel of
Fig. 10, we present the population dynamics of state |1〉 for a
J-AGR, again at D = 1.55 nm, but now with ω0 = 4.16 eV,
obtained using the K±(τ ) kernel (black solid curve) and with
the K±

FCA(τ ) kernel (red dashed curve). We once more find
that the two |c1(t)|2 curves are phase-shifted to each other.
However, interestingly, in this case, the phase shift is negative.

In order to better understand the phase shift in the
population dynamics introduced by invoking the FCA, as
discussed above, we further focus on the radial spectral density
J rad(ω) and J rad

FCA(ω), with and without the FCA, respectively,
to be used in the corresponding kernels. We do not elaborate
on the case of the tangential spectral density here, since one
comes to analogous findings as for the radial spectral case, to
be presented now.

In Fig. 11, we show the J rad(ω) (black solid curve) and
J rad

FCA(ω) (red dashed curve) in the case of a QE with ω0 =
3.84 eV (top panel) and ω0 = 4.16 eV (bottom panel). We
observe that in both cases, around the resonance frequency
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ω0, J
rad(ω) and J rad

FCA(ω) are practically the same, which
implies that in the common case of a (radial) spectral
density dominated by only one plasmonic resonance, or, more
generally, by several nonoverlapping resonances, calculating
the non-Markovian dynamics of a QE in the proximity
of a MNP, with or without the FCA, leads to practically
indistinguishable results. However, when the (radial) spectral
density is dominated by overlapping plasmonic resonances, as
in this work (see Fig. 2), invoking the FCA leads to observable
differences between the two spectral densities as one moves
away from the resonance frequency of the QE. In particular, in
the presence of overlapping resonances in the spectral density,
J rad

FCA(ω) < J rad(ω) is valid when ω > ω0, with a reversed
relation between the two spectral densities, when ω < ω0.
Furthermore, with the help of Fig. 11, we can rationalize
qualitatively the phase difference in the evolution of |c1(t)|2,
when obtained with K±

FCA(τ ), instead of K±(τ ). We conclude
that the introduction of the FCA for computing the population
dynamics of a QE near a MNP, for which the spectral density is
dominated by overlapping plasmonic resonances, introduces
a positive (negative) phase shift in the population evolution
when the QE resonance frequency lies in the lower (higher)
end of its nonvanishing spectral density.

IV. DYNAMICS OF A TWO-LEVEL QE NEAR A MNP

In this section, we consider a V-type QE, for which,
however, the transition dipole moments �μ10 and �μ20 are along
the z and x axes; i.e., we use �μ10 = με̂z(x) and �μ20 = με̂x(z)

in Eq. (7). In such a case, since Kij (τ ) = 0 (i �= j ), the
population dynamics of one excited state of the V-type
system does not depend on the dynamics of the other excited
state; therefore, one has effectively two independent two-level
systems, instead of a three-level V-type system. We also note
that the two-level transition dipole polarization �μ along the
z (x) axis implies that the population dynamics of such a
two-level system is affected by the radial (tangential) spectral
density only.

We now study the dynamics for such a two-level system in
order to compare its population dynamics to the dynamics of a
V-type system presented above. For the sake of concreteness,
we focus on a two-level QE, composed of states |0〉 and |1〉 (see
Fig. 1), with resonance frequency ω0 = 4.16 eV; the results at
a lower ω0 (not shown here) are similar to the results at ω0 =
4.16 eV, with only minor quantitative differences due to the
much smaller enhancement factors λ⊥(ω0,D) and λ‖(ω0,D),
when ω0 < 4.16 eV.

In Fig. 12, we present the population dynamics of state
|1〉 of a two-state QE with τ0 = 4 ns at D = 1 nm, with
a transition dipole moment along the z axis (black solid
curve) and along the x axis (red dashed curve); the corre-
sponding effective decay times τ rad

eff and τ tan
eff are 6 and 14 fs,

respectively, taking into account that λ⊥(4.16,1) ≈ 6.54 × 105

and λ‖(3.84,1) ≈ 2.83 × 105 as shown in Fig. 2. The time
evolution of |c1(t)|2 at early times can be understood as a decay
with the corresponding effective decay time. However, quickly,
an oscillatory decay of the population of |1〉 into the modified
EM mode continuum with distinctly non-Markovian character
dominates the dynamics. Moreover, an interesting conjecture
regarding the population dynamics shown in this figure can be
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FIG. 12. Population evolution of |1〉 of a two-level system with
ω0 = 4.16 eV and τ0 = 4 ns at D = 1 nm with �μ10 = με̂z (black solid
curve) and �μ10 = με̂x (red dashed curve). See text for discussion.

made, when a comparison with the population dynamics for the
V-type system with ω0 = 4.16 eV and τ0 = 4 ns at D = 1 nm
presented in Fig. 7 above is made. More specifically, we
observe that the curves of |c1(t)|2 in Fig. 7 and in Fig. 12 look
very similar when taking into account the different amount
of initial population, although they correspond to distinctly
different initial conditions. The comparison of the results of
these two figures suggests strongly that the different population
evolution of |c1(t)|2 for the SIS and the AIS shown in Fig. 7 is
due to the fact that, for a SIS, due to quantum interference, the
dynamics is dominated by the spectral density along the z axis,
i.e., the radial spectral density. In the case of an AIS, the |c1(t)|2
evolution in Fig. 7 is dominated by the tangential spectral
density, i.e., along the x axis [31]. We can thus understand
better, with help of the two-level system studied here, the
direct result of the quantum interference on the dynamics of the
V-type system with ω0 = 4.16 eV and τ0 = 4 ns at D = 1 nm,
discussed above.

In Fig. 13, we consider a two-level QE with ω0 = 4.16 eV
and τ0 = 70 ps with a transition dipole moment along the z

axis, which implies that the dynamics is affected only by the
radial spectral density. In this figure we present the population
evolution |c1(t)|2 at D = 1.85 nm (black solid curve) and at
D = 2 nm (red dashed curve) up to 50 fs (top panel) and
at later times, 150–200 fs (bottom panel). Here, the radial
effective decay times τ rad

eff and τ tan
eff are about 0.5 and 1.5 fs,

respectively, taking into account that λ⊥(4.16,1.85) ≈ 1.39 ×
105 and λ⊥(4.16,2) ≈ 4.86 × 104 as shown in Fig. 2.

In the top panel of Fig. 13, the population evolution of
state |1〉 at D = 1.85 nm and at D = 2 nm shows strong
non-Markovian character; only at very early times, the decay
dynamics is dictated by the corresponding τ rad

eff . After 50 fs,
at D = 1.85 nm, the population of state |1〉 is decreased
to about half its initial value, which resembles the time
evolution of |c1(t)|2 with an AIS of a V-type system with
resonance frequency 4.16 eV and free-space decay time 70 ps
at D = 1.55 nm, shown in Fig. 9. We thus conclude that the
coupling conditions of the two-level QE here are comparable to
the coupling conditions of the V-type QE related to the results
shown in Fig. 9; a comparative discussion of the population
dynamics shown in these two figures is then justifiable. With
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FIG. 13. Population evolution of |1〉 of a two-level system with
τ0 = 70 ps and transition dipole moment along the z axis at D =
1.85 nm (black solid curve) and at D = 2 nm (red dashed curve) up
to 100 fs (top panel), and at later times, 200–300 fs (bottom panel).
See text for discussion.

help of the results of the two-level system shown in Fig. 13,
we can now conclude that the evolution of |c1(t)|2 of a V-type
system with an AIS, as shown in the top panel of Fig. 9,
is dominated primarily by the radial spectral density of the
modified EM modes.

In the bottom panel of Fig. 13, we find that at D = 1.85 nm,
at later times, there is a steady population exchange of
about 15% of the initial population between state |1〉 and
the modified radial EM modes, while at D = 2 nm, the
corresponding population exchange amounts only to about 5%.
Most importantly, at D = 1.85 nm, the population exchange
occurs while about 20% of the initial population remains in the
two-level QE at all times. At D = 2 nm, however, the initial
population of state |1〉 is almost completely transferred to the
EM continuum, with clear indication that it will ultimately

wane out totally. We thus conclude that population trapping
is also observable for a two-level QE near a MNP under the
given conditions.

We have also studied the influence of the FCA in the
dynamics of a two-level system (not shown here); our
conclusions are similar to the case of a V-type system discussed
above.

V. CONCLUSIONS

In conclusion, we have studied the non-Markovian quantum
dynamics for various initial states of a degenerate V-type QE
near a MNP, which exhibits an anisotropic Purcell effect.
We have considered QEs with free-space decay time in the
nano- and picosecond time regime, for various resonance
frequencies, corresponding to moderate (1 × 104) and strong
(1 × 105) enhancement of the free-space decay rate. We
observe a transition in the upper states population time
evolution, from a gradual decay of the total population to a
steady oscillatory population exchange between the QE and
the modified EM modes. This effect occurs when strong
enhancement of the free-space spontaneous decay rate of
the QE occurs and in some cases it can lead to coherent
population trapping in the V-type system. Furthermore, the
strong dependence of the population dynamics on a particular
initial state, at otherwise identical conditions, clearly indicates
that spontaneous emission interference of the QE excited states
into the modified EM modes continuum takes place. We have
also studied a two-level QE near a MNP at the same conditions
as the V-type system, coming to similar conclusions as for the
three-level system.

Lastly, we have investigated the influence of the FCA on
the calculated population dynamics for the above three- and
two-level systems. In both cases, we conclude that the FCA can
affect the quality of the calculated population dynamics only in
systems for which the modified-by-the-MNP spectral density
of the EM modes is dominated by overlapping plasmonic
resonances. In such cases, the FCA introduces a positive (neg-
ative) phase shift in the population time evolution with respect
to the exact dynamics without invoking the FCA; a positive
(negative) phase shift appears when the resonance frequency of
the QE lies in the low (high) end of the spectral density. In the
case of spectral densities with only nonoverlapping plasmonic
resonances, however, the FCA is an excellent approximation.
We believe that our findings can be particularly useful in the
development of quantum technological applications involving
plasmonic nanostructures [39].
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