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Long-range exchange interaction between magnetic impurities in graphene
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The effective spin exchange RKKY coupling between impurities (adatoms) on graphene mediated by
conduction electrons is studied as a function of the strength of the potential part of the on-site energy U of the
electron-adatom interaction. With increasing U , the exchange coupling becomes long range, determined largely
by the impurity levels with energies close to the Dirac points. When adatoms reside on opposite sublattices, their
exchange coupling, normally antiferromagnetic, becomes ferromagnetic and resonantly enhanced at a specific
distance where an impurity level crosses the Dirac point.
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I. INTRODUCTION

Among possible technological promises of graphene [1] are
both electronic and magnetic applications. The former include
transistors and require control of graphene’s conduction, while
the latter aim to build memory devices and hinge on the ability
to create and manipulate local magnetic moments. Nonethe-
less, both these avenues actively explore the possibilities of
controlling graphene properties with chemical dopants, such
as hydrogen.

In electronic applications the role of dopants is to suppress
otherwise strong metallic conductivity of the material [2–5].
Magnetic impurities [6–14] typically interact with the con-
duction band and produce electronic states that carry magnetic
moments and could be spread [15] over many lattice spacings
a. Of particular interest is the mutual interaction between such
impurities. The potential part of this interaction is important
in determining the equilibrium spatial arrangement of the
dopants [16–18]. At the same time, the type of collective
magnetic properties is sensitive to the effective exchange
coupling between dopants. Both the potential part of the
effective interaction energy and its spin-dependent part are
mediated by the conduction π electrons of graphene.

One particularly promising dopant is hydrogen. Because it
has an energy level close to the Dirac point of the conduction
π band of graphene [19] coupling of conduction electrons has
a resonant character, whose scattering amplitude resembles
that of a strong substitution impurity [20]. Motivated by this
similarity, we are going to concentrate on the substitution
model, where the interaction of the impurity with conduction
electrons,

Ĥimp = U + JS · σ̂ , (1)

has both the on-site potential energy U and the spin part
described by the exchange coupling constant J ; the spin
operator of the impurity S couples to the local value of the
conduction electron spin density σ̂ .

When two dopants reside above carbon lattice sites sepa-
rated by the radius vector R, their effective electron-mediated
interaction, likewise, has two parts,

Ĥ12 = W (R) + Jeff(R)S1 · S2. (2)

The potential part W (R) has been studied both for weak [21]
and strong [21,22] impurity strength U . To the contrary, the
indirect spin exchange Jeff(R) in graphene, while extensively

studied perturbatively within the usual RKKY approach [23–
29], has not been addressed for impurities with large U . Two
notable previous research directions should be mentioned in
this regard. In Ref. [30] the indirect exchange between resonant
Anderson impurities in graphene was studied numerically
with the emphasis on the short-distance behavior. No analytic
dependence has been reported, however, in the strong coupling
limit. In Refs. [31,32] the indirect spin exchange in the strong
U limit has been addressed in a somewhat reminiscent situation
of a topological insulator, but two related features distinguish
graphene from that case.

First, in the low-energy Hamiltonian of a topological
insulator, H0 = vσ̂ · p, the spin operator σ̂ is essentially the
same as (or at least directly related to) the corresponding
operator in Eq. (1). In graphene, in contrast, the Pauli matrices
in the Hamiltonian relate to the pseudospin operator, acting in
the sublattice space. Second, in graphene the interference of
the electron states from the two Dirac points results in different
signs of the interdopant interaction when the two dopants
resite on the opposite sublattices (AB case) as compared with
the same sublattice (AA) arrangement. This complication did
not arise in Refs. [31,32]. In the present paper we are going
to investigate the indirect spin exchange coupling Jeff(R)
between two dopants residing directly above carbon atoms
of intrinsic graphene. We study how Jeff(R) depends on (1)
the sublattice arrangement of the dopants, and (2) the strength
of the potential coupling U , not assumed to be small. At the
same time, it will be sufficient to limit our analysis to the
lowest (second) order in the coupling constant J , which is
presumably never too large.

The unusual interaction in graphene in the limit of large
U is the result of its peculiar band structure, having a linear
spectrum and, essentially, zero mass. Unlike the case of a
parabolic spectrum, where a strong enough potential would
trap an electron, true bound states do not occur in graphene.
Because both positive and negative band energy states are
present, for a potential U of any sign there is always a
nonzero overlap with the band states, which leads to a finite
lifetime. Nonetheless, at large U , low energy states near the
Dirac points become crucial where the overlap is small. It is
those quasilocalized states that facilitate resonant long-range
interaction in graphene.

Let us first recapitulate the existing results for intrinsic
graphene with the Fermi level at the Dirac points. To the lowest
second order in U and J , the results are rather identical (barring
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the replacement U 2 ↔ J 2) for both W (R) and Jeff(R). When
the two dopants reside on the same sublattice, both quantities
are ∝|R|−3 and are negative, meaning that the dopants attract
and favor ferromagnetic arrangement of their spins. On the
other hand, the sign of both interactions is reversed in the
AB case: W (R) > 0 and Jeff(R) > 0, indicating repulsion and
antiferromagnetic coupling. The dependence on the distance
remains the same but the overall magnitude is three times
stronger than in the AA case.

When the strength U of the impurity becomes large, U �
h̄v|R|/a2, the potential part W (R) changes sign, compared
with the weak coupling limit. This happens for both AA and
AB arrangements. This sign reversal is the feature of the
linear Dirac spectrum. Additionally, the dependence of the
interdopant interaction becomes long range [21,22] W (R) ∝
|R|−1 (up to additional logarithmic factors). It turns out that
the interaction energy in the AB case is no longer stronger by
a mere numerical factor, compared with the AA configuration
(as is the case for weak U ), but exceeds it logarithmically, by
a large factor ln (|R|/a).

Our goal is to perform a corresponding analysis of Jeff(R).
Below we carry it out for both sublattice configurations
and for any strength of the potential U assuming only that
|R| � a. In Sec. II the energy spectrum in the presence of
two impurities is discussed. In Sec. III the general expressions
for the effective exchange constant are derived in terms of the
integrals over the energy of conduction electrons. In Sec. IV
those general expressions are evaluated in the strong coupling
limit.

II. ENERGY LEVELS OF A TWO-IMPURITY SYSTEM

To understand how and why the effective interaction of
the dopants is sensitive to their relative positions on the two
sublattices, it is necessary to discuss the differences in the
electronic spectra induced by the presence of two dopants with
a strong on-site potential coupling U , elucidated in Ref. [21].
When only one potential impurity is present, it may induce a
low-energy state, provided that U is strong enough. The energy
of the state is determined by the equation,

1 + UA0E

πv2

[
ln (t/|E|) + i

π

2
sgn E

]
= 0, (3)

where A0 = 3
√

3a2/2 is the area of a graphene unit cell; and
the bandwidth of the conduction band t ∼ v/a. The energy
E � t if the on-site energy is large: U � t . The energy level is
quasilocalized—the overlap with the conduction band causes
it to have a finite lifetime,

E = − πv2

UA0

1

ln (|U |/t) − i π
2 sgn U

. (4)

Note that the impurity level is located in the lower Dirac
cone, E < 0, for repulsive potentials U > 0, and vice
versa.

When two impurities are present, their energy levels split.
For the impurities located on the same sublattice (AA), the two

A sublattice
B sublattice

  φ

R

S1

S2

FIG. 1. Graphene structure consisting of two sublattices A and B.
Two magnetic impurities (shown in dark gray), with spins S1 and S2

are separated by the vector R. The angle φ is counted from a zigzag
direction.

energies are given by the equation,

1 + UA0E

πv2

[
ln (t/|E|) + i

π

2
sgn E

]

= ±UA0E

πv2
| cos θAA| ln

(
v

R|E|
)

, (5)

where the parameter θAA(R) = 2πR

3
√

3a
cos φ is equal to the

phase difference that the states belonging to different Dirac
cones acquire when they travel between the two impurities.
It depends on both the length of the radius vector R and the
angle φ it makes with the zigzag direction; see Fig. 1. The
oscillations in the right-hand side described by this phase,
therefore, are caused by the interference of the wave functions
of different Dirac species.

Importantly, both solutions of Eq. (5) remain on the same
side of the Dirac point E = 0 as the single-impurity level (4):
No level can “escape” from its Dirac cone. This is most simply
seen from the fact that no solution of Eq. (5) can ever have
zero energy, E = 0.

To the contrary, when two impurities reside on different sub-
lattices (AB configuration), the energy levels are determined
from the equation,

1 + UA0E

πv2

[
ln (t/|E|) + i

π

2
sgn E

]
= ±UA0

πvR
| sin θAB |,

(6)

with the new phase being θAB(R) = φ + 2πR

3
√

3a
cos φ. The main

new feature of the AB case is the existence of the E = 0
solution at a specific distances R. Such solution, from Eq. (6),
has the energy (for positive U > 0),

E = v(R0 − R)| sin θAB |
RR0

[
ln RR0

a|R0−R| + iπ
2 sgn(R0 − R)

] , (7)

where R0 = UA0
πv

| sin θAB |. It passes from the lower Dirac cone
to the upper cone as the distance between the adatoms becomes
shorter than a resonant distance R0. Right at R = R0 one of the
impurity levels lies exactly at the energy E = 0. Additionally,
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the width of this level becomes vanishingly small. As we are
going to see below, the effective exchange coupling between
adatoms spins is resonantly enhanced when they are separated
by the distance R0.

III. GENERAL EXPRESSION FOR THE INDIRECT
EXCHANGE COUPLING

The Hamiltonian of two impurities (adatoms) on graphene,
one positioned above a carbon atom at the origin (the sublattice
it belongs to is called A) and the second above the atom
some distance R away (which could belong to either of the
two sublattices), consists of three parts, H = H0 + H ′ + H ′

sp,
namely,

H0 = t
∑

r

∑
i=1,2,3

ψ̂†(r)ψ̂(r + ai),

H ′ = Uψ̂†(0)ψ̂(0) + Uψ̂†(R)ψ̂(R),

H ′
sp = JS1 · ψ̂†(0)σ̂ ψ̂(0) + JS2 · ψ̂†(R)σ̂ ψ̂(R). (8)

Here H0 is the kinetic energy of electrons, the hopping integral
t being assumed real and positive; U is the additional on-site
potential energy induced by an impurity; J is the exchange
coupling of an impurity spin with the spin of the conduction
electrons. The hat above the electron operator ψ̂ indicates a
spinor, the summation over the spin indices is implied; σ̂ are
the Pauli matrices acting in the spin (not pseudospin) space.

Because the spin exchange is never very strong, it is
sufficient to determine the effective impurity-impurity spin
coupling Jeff to the lowest (second) order in J . Most simply
this can be done by using the standard quantum-mechanical
theorem that poses that the derivative of the impurity-impurity
interaction energy (2) with respect to the coupling constant J is
equal to the expectation value of the corresponding derivative
of the Hamiltonian (8):

∂Jeff

∂J
S1 · S2 =

〈
∂H

∂J

〉

= S1 · 〈ψ̂†(0)σ̂ ψ̂(0)〉 + S2 · 〈ψ̂†(R)σ̂ ψ̂(R)〉
= −iS1(0) · Tr σ̂ Ĝ(0,0,t = −0)

− iS2(R) · Tr σ̂ Ĝ(R,R,t = −0), (9)

where we introduced Green’s function of the system, which in
the interaction representation with respect to the spin part of
the Hamiltonian is (spin indices shown explicitly),

Gαβ(r,r′,t) = −i〈T ψα(r,t)ψ†
β(r′,0)S(∞, − ∞)〉, (10)

with the interaction matrix given by the standard expression,

S(∞, − ∞) = T exp

(−i

h̄

∫ ∞

−∞
H ′

spdt

)
. (11)

Expanding the S matrix to the first order in the spin Hamilto-
nian, we obtain

∂Jeff

∂J
= −4iJ

∫ ∞

−∞

dE

2πh̄
GE(R,0)GE(0,R). (12)

Here, GE(r,r′) is Green’s function of the system in the absence
of the exchange coupling. Note that this function is exact with
respect to the potential coupling U which is not presumed

to be weak. The problem of finding GE in the presence of
two impurities was solved in Ref. [21]. The following identity
expresses it in terms of free electron (U = 0) Green’s function
GE(r,r′):

G0
E(R,0) = GE(R,0)

1 + 2TEGE(0) + T 2
EG2

E(0)

1 − T 2
EG2

E(0,R)GE(R,0)
. (13)

The T matrix describes the renormalization of the impurity
strength from multiple scattering events,

TE = U

1 − UGE(0)
, (14)

whereas GE(0) denotes Green’s function at coinciding points,

GE(0) ≡ GE(0,0) = −EA0

πv2

[
ln

(
t

|E|
)

+ i
π

2
sgn E

]
. (15)

The area of a graphene unit cell is denoted with A0 = 3
√

3a2/2
while the Dirac velocity is v = ta. The transposed function
GE(0,R) is given by the same expression as Eq. (13), where
one simply replaces GE(R,0) → GE(0,R).

Integrating Eq. (12) with respect to J, and substituting
the expressions for Green’s functions, we obtain the effective
exchange coupling constant in the integral form,

Jeff = 2J 2
∫ ∞

−∞

dω

2πh̄


iω(R)

[(1 − UGiω(0))2 − U 2
iω(R)]2
, (16)

where we introduced the following shorthand for the product
of two Green’s functions,


iω(R) = Giω(0,R)Giω(R,0). (17)

In writing Eq. (16) we utilized that time-ordered Green’s
functions do not have singularities in the first and third
quadrants of the complex E plane and rotated the integration
path from the real axis counterclockwise to the angle π/2 so
that it coincides with the imaginary axis, E = iω.

Conveniently, this removes the imaginary part of the
logarithm in Eq. (15), which now becomes

Giω(0) = − iωA0

πv2
ln

(
t

|ω|
)

. (18)

To determine the coupling constant Jeff given by Eq. (16) it
only remains to ascertain the product of two Green’s functions,

iω(R), whose meaning is rather transparent: It determines
the likelihood of a conduction electron to propagate from one
impurity to another and then back to the first one.

The approximation (18) is valid provided that the energies
are much smaller than the bandwidth, |E| � t . If, in addition,
the distance between the impurities is much larger than the
lattice spacing, R � a, a small-momentum expansion around
the two Dirac points in the Brillouin zone is applicable
to the calculation of Green’s function. The corresponding
calculations have been performed previously in Refs. [21,22].
The result is very sensitive to the positions of the two points.
If both belong to the same sublattice, one obtains


AA
iω (R) = −ω2A2

0

π2v4
K2

0

( |ω|R
v

)
cos2 θAA, (19)

where K0 is the Macdonald function of the zeroth order.
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When two locations belong to the opposite sublattices, a
different expression is found,


AB
iω (R) = ω2A2

0

π2v4
K2

1

( |ω|R
v

)
sin2 θAB, (20)

where K1 is the Macdonald function of the first order. A
different sign, compared with Eq. (19), is the result of quantum
interference, which is responsible for the opposite signs of
interaction in AA and AB configurations.

Our general result (16) can be illustrated first by calculating
the exchange coupling for the weak U limit, U � h̄v|R|/a2,
where the denominator in Eq. (16) can be ignored. As a result,
one finds ferromagnetic coupling for the AA configuration of
the two impurities,

JAA
eff (R) = − J 2

16πh̄

A2
0

vR3
cos2 θAA. (21)

For the AB configuration the coupling is antiferromagnetic
(and stronger by a numerical factor),

JAB
eff (R) = 3J 2

16πh̄

A2
0

vR3
sin2 θAB. (22)

The 1/R3 dependence of the two exchange coupling constants,
as well as the signs, are consistent with the results in the
existing literature [27,30]. We note that simply replacing J

with U also yields the correct expressions [21] for the potential
part of the impurity interaction, W (R). This is not surprising,
since the perturbation calculations for the two parts of the
interaction are identical.

IV. STRONG U LIMIT

The perturbative couplings (21) and (22) are rather short-
range falling off as the third power of the distance. However, it
turns out that as the potential part U of the electron-impurity
interaction increases, so does the range of the exchange
coupling. As evident from the form of the T matrix, the
perturbation theory fails if U ∼ h̄vR/a2, where the integral
in Eq. (16) has to be calculated differently.

A. AA configuration

Let us first consider the situation of both adatoms residing
on the same sublattice. Since low energies are important at
large distances, R � a, we can approximate the Macdonald
function as K0(x) ≈ − ln x and write with the help of
Eqs. (19) and (16),

JAA
eff (R) = −πJ 2v3R

h̄U 4A2
0

cos2 θAA

×
∫ ∞

−∞

dx x2 ln2 x[(
ρ + ix ln

[
R

a|x|
])2 + cos2 θAA x2 ln2 x

]2 ,

(23)

where we introduced the dimensionless distance
ρ = Rπv/UA0. In the weak coupling limit this distance is
large, ρ � 1. In contrast, in the strong coupling limit this
parameter is small. The integral in Eq. (23) converges on
x ∼ ρ � 1, thus justifying the small-argument approximation
used for the Macdonald function K0(x).

To calculate the integrals in Eq. (23) in the logarithmic
approximation, we notice that the logarithms in the integrand
are both large and slow functions of their arguments. It
is therefore tempting to use the standard approach to such
integrals and approximate the logarithms with their fixed
values taken at the characteristic arguments of the integrand,
x ∼ ρ. It is easy to see, however, that this would lead to
the vanishing of the integral, as all the singularities would
be located in the same (lower) half-plane of the complex
x. It is thus necessary to calculate carefully the subleading
contribution that stems from the variation of the logarithms
with x. This calculation is presented in the appendix. Its
result is

JAA
eff (R) = J 2πv2

4h̄A0U 3c ln2 β

[
4c3 ln(α/β) ln3 β

(ln2 α − c2 ln2 β)2

− 2c ln α ln β

ln2 α − c2 ln2 β
+ ln

(
ln α + c ln β

ln α − c ln β

)]
, (24)

where we used the shorthands, α = UA0/πva, β =
UA0/πvR, and c = | cos θAA|. The obtained result (24)
simplifies in the limit of ln α � ln β, corresponding to strong
U and large distances R, in which case the coupling constant
JAA

eff becomes

JAA
eff (R) = 2J 2πv2

3h̄A0U 3

cos2 θAA ln
(

UA0
vR

)
ln3

(
UA0
va

) . (25)

The limit ln α � ln β might be difficult to realize [in which
case the more general formula (24) ought to be used], but
it illustrates two features of JAA

eff (R). First, the coupling
is antiferromagnetic: Exchange interaction between adatoms
reverses sign compared with the weak-U limit, Eq. (21),
quite reminiscent of the potential part W of the adatom
interaction [21,22]. Second, the coupling constant JAA

eff (R)
decays very weakly, logarithmically only. Needless to say, this
behavior extends only to the distances R ∼ Ua2/h̄v, where
the strong coupling limit crosses over to the weak coupling,
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FIG. 2. Effective interaction JAA (both impurities belong to the
same sublattice) is plotted as a function of distance between the
impurities R/a for several value of U: 50.0, 5.0, and 2.0 eV
(corresponding to the dimensionless ratio UA0/πva equal to 20.5,
2.06, 0.83, respectively). JAA is scaled by a factor of coupling
constant J and dimensionless ratio UAo/πva. The plot is a result of a
numerical integration of the exact effective magnetic interaction (16).
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Eq. (21), and where both expressions become of the same order
of magnitude (albeit of different sign).

Figure 2 illustrates the dependence of JAA
eff on the distance

for different values of the potential coupling strength U .
For weak U the coupling is ferromagnetic. With increasing
U antiferromagnetic coupling emerges for small distances
whereas at large distances ferromagnetic coupling reemerges.
With the further increase of U the antiferromagnetic range
extends to progressively larger distances.

B. AB configuration

When the impurities reside on different sublattices, we ob-
tain from Eqs. (20) and (16), upon utilizing the approximation
for the Macdonald function, K1(x) ∼ 1/x,

JAB
eff (R) = πJ 2v3R

h̄U 4A2
0

sin2 θAB

×
∫ ∞

−∞

dx[(
ρ + ix ln

[
R

a|x|
])2 − sin2 θAB

]2 . (26)

For small ρ � 1, the poles of the integrand now reside on
the opposite sides of the real axis. The use of the low-x
approximation of the Macdonald function is justified by the
fact that the integral converges at x ∼ | sin θAB |/ ln(R/a).
In the leading logarithmic approximation it is sufficient to
take the logarithm at its typical value within the interval of
convergence. One thus obtains

JAB
eff (R) = J 2

2h̄

π2v3

A2
0U

4| sin θAB |
R

ln
(

UA0
va

) . (27)

Interestingly, the coupling JAB
eff (R) increases with the distance

between adatoms. The sign of the coupling is antiferromag-
netic, similar to Eq. (22) valid at large distances where the
interaction of adatoms is perturbative.

The crossover from strong coupling limit, Eq. (27), to
the weak coupling limit, Eq. (22) occurs at ρ ∼ 1. In
fact, a resonance takes place at ρ = ρ0 = | sin θAB |, which
corresponds to a localized impurity level crossing over from
one Dirac cone to another; see Eq. (7). Indeed, the energies
of the impurity levels are determined by the zeros of the
denominator of the integrand in Eq. (16).

For small values ρ − ρ0 the most important contribution
into the integral in (26) comes from small arguments x � 1.
Keeping only the lowest order terms in x in the denominator
of the integrand, we write for the integral in Eq. (26), while de-
noting ξ = ρ2 − ρ2

0 , in the leading logarithmic approximation,∫ ∞

−∞

dx
(
ξ + 2iρ0x ln

(
R

a|x|
))

2

= − ∂

∂ξ

∫ ∞

0

2ξ dx

ξ 2 + 4ρ2
0x2 ln2

(
R

a|x|
)

= − π

2ρ0|ξ | ln2
(

R
a|ξ | .

) . (28)

In usual notations Eq. (26) now reads

JAB
eff (R) = − vJ 2

4h̄U 2|R − R0|
| sin θAB |

ln2
( R2

0
a(R−R0)

) . (29)
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FIG. 3. Effective interaction JAB (impurities belong to different
sublattices) is plotted as a function of distance between the impurities
R/a for several values of U: 200, 10, and 2 eV (corresponding to the
dimensionless ratio UA0/πva equal to 82.6, 4.13, 0.83, respectively).
JAB is scaled by a factor of coupling constant J and dimensionless
ratio UAo/πva. The plot is a result of a numerical integration of the
exact effective magnetic interaction (16).

The resonant coupling (29) is ferromagnetic, in contrast
to the above considered limits of long distances and short
distances, both of which favor antiferromagnetic ordering of
impurity spins. The origin of the resonant coupling is the
existence of the zero-energy states of the two impurities
at distance R0 and the ensuing increase in the scattering
of conduction electrons between the impurities. Figure 3
illustrates the exchange coupling in the AB configuration: the
weak antiferromagnetic coupling and the stronger resonant
ferromagnetic interaction.

V. SUMMARY

The impurities (adatoms) in graphene interact via the
exchange of virtual electron-hole excitations. Such interaction
has the potential part as well as the effective spin exchange
term. The resulting coupling strength Jeff is extremely sensitive
to the strength of the on-site potential energy U that the
conduction electrons experience when they hop on the carbon
atom located above the adatom. For weak U the interaction is
mediated by the band states and can be treated perturbatively.
It is antiferromagnetic, Jeff > 0, and generally stronger by
a numerical factor when two adatoms reside on opposite
sublattices, compared with the ferromagnetic coupling, Jeff <

0 for adatoms on the same sublattice. In both instances, when
U is weak, the impurity states have large energies and thus
play no role when the distance between adatoms significantly
exceeds the lattice spacing.

To the contrary, with increasing U the impurity levels move
closer to the Dirac points; as a result, the adatom-adatom
interaction is mediated mostly via those levels rather than
through the band states of graphene. Even though in the
limit of very large U the spin-spin coupling Jeff vanishes,
its dependence on the distance for finite U becomes highly
nontrivial. In the AA configuration of adatoms, the coupling
becomes very long range decreasing only logarithmically with
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the distance while being antiferromagnetic in sign—opposite
to the weak coupling limit. In the AB configuration the
presence of the impurity levels results in two surprising
features: the appearance of the interval of distances where Jeff

increases with the distance for R � R0 before undergoing a
sign reversal and a resonant enhancement with the maximum at
R = R0, the distance where one of the impurity levels crosses
the Dirac point.

The effective interaction strength is obtained from the
energy integration of the two-particle Green’s function; see
Eq. (16). In general, electrons of different energies contribute
into Jeff . In a resonant coupling scenario, however, low
energies contribute most strongly into the resonant coupling. A
quasilocalized state of a single impurity has the wave function
that in the limit E → 0 drops off as 1/r with the distance
from the impurity [7,33]. This form is already anticipated
from the dimensional considerations, as in the absence of
E it is not possible to construct any other wave function

with the dimension of the inverse length. Ultimately, it is this
long-range behavior of the wave function that is responsible for
the long range nature of the RKKY and potential interactions
between the impurities in the resonant regime.
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APPENDIX: CALCULATION OF LOGARITHMIC
INTEGRALS

To calculate the integral in Eq. (23), let us rescale the
integration variable, x = ρz, and introduce the shorthands
α = R/(aρ), β = 1/ρ, c = | cos θAA|:

JAA
eff (R) = − v2J 2

h̄A0U 3

∫ ∞

−∞
dzc2z2 ln2(β/|z|) 1[{

1 + iz ln
(

α
|z|

)}2 + c2z2 ln2
(

β

|z|
)]2

= J 2v2c

2h̄A0U 3

∂

∂c

∫ ∞

−∞

dz[{
1+iz ln

(
α
|z|

)}2+c2z2 ln2
(

β

|z|
)] . (A1)

To the logarithmic approximation, we utilize the fact that the integral converges at z ∼ 1, where ln z � ln α, ln β. Expanding the
integrand up to the first order in ln z, we arrive at

JAA
eff (R) = J 2v2c

h̄A0U 3
c

∂

∂c

∫ ∞

−∞
dz ln |z| iz(1 + iz ln α) + c2z2 ln β

[(1 + iz ln α)2 + c2z2 ln2 β]2
. (A2)

The last integral has the form
∫ ∞
−∞ dz ln |z|K(z), where K(z) is a rational function with all its singularities located in the upper

half-plane of complex z: This follows from α > β, and the fact that c � 1. Defining now a new function Q(z) according to
Q(z) = ∫ z

−∞ dzK(z), one can use the integration by parts to obtain
∫ ∞

−∞
dz ln |z|Q(z)

dz
= −P

∫ ∞

−∞
dz

Q(z)

z
= iπQ(0) = iπ

∫ 0

−∞
dzK(z). (A3)

In performing this transformation we have used that Q(∞) = ∫ ∞
−∞ dzK(z) = 0 since the function K(z) does not have any

singularities in the lower half-plane of z. Additionally, to express the principal value integral in Eq. (A3) via Q(0), we observe
that ∫ ∞

−∞
dz

Q(z)

z − i0
= P

∫ ∞

−∞
dz

Q(z)

z
+ iπQ(0) = 0, (A4)

as the integral in the left-hand side of Eq. (A4) is zero for the already familiar reason: All its poles reside in the upper half-plane.
From Eq. (A3) we obtain that the exchange coupling constant (A2) is expressed in terms of the following integral of a rational
function,

JAA
eff (R) = iJ 2πv2c

h̄A0U 3

∂

∂c

∫ 0

−∞
dz

iz(1 + iz ln α) + c2z2 ln β

[(1 + iz ln α)2 + c2z2 ln2 β]2
. (A5)

The integral is straightforward and ultimately reproduces Eq. (24) of the main text.
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