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The electron-photon interaction in two-dimensional materials obeys the rule of “electron valley–photon
polarization” correspondence. At the quantum level, such correspondence can be utilized to entangle valleys and
polarizations and attain the transfer of quantum states (or information) between valley and photon qubits. Our
paper presents a theoretical study of the interaction between the two types of qubits and the resultant quantum state
transfer. A generic setup is introduced, which involves optical cavities enhancing the electron-photon interaction
as well as facilitating both the entanglement and unentanglement between valleys and polarizations required by
the transfer. The quantum system considered consists of electrons, optically excited trions, and cavity photons,
with photons moving in and out of the system. A wave equation based analysis is performed, and analytical
expressions are derived for the two important figures of merits that characterize the transfer, namely, yield and
fidelity, allowing for the investigation of their dependences on various qubit and cavity parameters. A numerical
study of the yield and fidelity has also been carried out. Overall, this paper shows promising characteristics in
the valley-photon state transfer, with the conclusion that the valley-polarization correspondence can be exploited
to achieve the transfer with good yield and high fidelity.
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I. INTRODUCTION

The valley degree of freedom in electrons has recently
attracted a lot of attention, in particular in two-dimensional
(2D) hexagonal materials such as graphene [1–3] and transition
metal dichalcogenides (TMDCs) [4–7]. In addition to its
unique electromagnetic properties [1–3], this degree of free-
dom also manifests novel optical behaviors [4–8]. Altogether,
a wide spectrum of exciting opportunities is created for the
valley-based electronics known as valleytronics.

In the class of 2D hexagonal materials [9–12], the threefold
rotational symmetry comprises the physical root of the
intriguing valley-dependent physics. Basically, in the presence
of an energy gap, the constraint of symmetry on electron states
results in intrinsic, unit-cell-scale orbital angular momenta
with opposite signs for electrons in the Dirac valley doublet
at K and K′ of the Brillouin zone [2,8]. In close analogy to
the ordinary electron spin, where opposite angular momenta
characterize up and down states, a valley pseudospin thus
emerges with index given by, for example, τv = +1 for K
and −1 for K′, which fully qualifies for the role of a quantum
bit carrier as the electron spin does. In particular, concrete
proposals have been given of a valley-based approach to
the fundamental unit, namely, a qubit, for the application of
quantum information processing [13–17] based on quantum
dots (QDs) [18–20]. In the case of graphene, for example,
the valley degree of freedom can be incorporated to expand an
electron spin qubit to a spin-valley qubit [14], or one can freeze
out the spin and construct a valley-pair qubit out of a pair of
QDs, with each QD localizing an electron and subject to the
modulation of both an external magnetic field and electrical
gates for qubit manipulation [13]. Demonstration has been
given in the latter case, showing the satisfaction of DiVincenzo
criteria for universal quantum computing.

In a way similar to semiconductor electron spin qubits [21],
valley qubits can interact with photon qubits with a good

coupling strength. Such an interqubit interaction is charac-
terized by several promising features. First, the 2D materials
of interest have direct band gaps at Dirac points allowing for
strong, vertical optical transitions. In the case of graphene,
a large optical matrix element ∼evF A exists for the transi-
tion, due to the sizable vF (vF = Fermivelocity ∼ 106 m/sec,
e = electroncharge, A = vectorpotential). In addition, valley
qubits can be integrated with cavities or waveguides of planar
photonic structures [22,23] for an enhancement of the electron-
photon (e-ph) interaction. In fact, control of the interaction in
2D materials using cavities has been demonstrated under both
strong [24] and weak [25] coupling regimes, which paves the
path for implementing photon-valley interfaces required for
valley-involved optoelectronics.

The valley-photon interaction physics is significantly en-
riched by the existence of a valley-dependent selection rule
for optical transitions. Due to the presence of finite valley
and photon angular momenta, the law of angular momentum
conservation leads to interband transitions that are governed
by the valley-dependent selection rule, as shown in Fig. 1 with
the involved photons being circularly polarized. Because of
this selection rule, an approximate one-to-one correspondence
exists between circular polarizations of pumping (emitted)
photons and valley states of excited (recombining) electron-
hole pairs [4–8]. Experimentally, the past few years have
seen great strides in the field of optovalleytronics in spin-
valley pumping by optical excitations that utilize the selection
rule [4–7]. From the perspective of quantum information
processing, the valley-polarization correspondence is also of
great interest. Since this correspondence implies the existence
of a natural quantum state transfer (QST) between photon
and valley qubits [26], a theoretical and experimental raise
of its utilization via such QST to the quantum information
processing level of applications would fulfill the full potential
of the correspondence.
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FIG. 1. Approximate selection rule for the interband optical
transition in gapped graphene. σ+(−) = σx + (−)iσy denotes circular
polarization states in the graphene plane.

The QST is a coherent quantum process where, via the e-ph
interaction, the photon state information can be extracted and
stored in a valley qubit, and the reverse process that moves
the state information of a valley qubit back to a photon can as
well occur. Such valley-photon QST provides an analogy to
the well-studied spin-photon QST [27]. In the latter case, for
example, a coherent single photon detection is realized via the
process of photon absorption, electron-hole pair generation,
and hole extraction, leaving the polarization state of the
photon totally encoded in the spin of the excited electron.
On the other hand, the valley-photon QST also constitutes an
interesting contrast to the spin-photon QST, with the following
fundamental difference existing between the two.

In the electron spin case, a single spin forms the simplest
qubit in the class of spin qubits and hence has been the
focus of spin-photon QST studies; whereas, in the valley case,
a pseudospin qubit must consist of two valley pseudospins
with the states being given by the so-called decoherence-free
singlet/triplet states [28]. Therefore, this valley-pair qubit
makes a natural choice for valley-photon QST, and the
corresponding study would, from the scientific perspective,
constitute an attempt at understanding the nature of QST
between photons and the class of decoherence-free qubits.

From the application point of view, the study of valley-
photon QST would also advance the field of quantum tech-
nology in 2D materials. For example, this specific QST would
facilitate the development of valley-involved quantum tomog-
raphy, where one can reconstruct the valley (photon) state via a
measurement done on the photon (valley) state, when the latter
is easier to characterize than the former. In addition, it is well
suited to the application of quantum communications (QCs)
[26], with a potential to realize the quantum repeater (QR)
protocol as follows. A QR extends the distance of QCs beyond
that of photon attenuation by an iterative process involving
the QST from photons to quantum memories (static forms of
qubits) and eventually sets up a global entanglement required
for quantum teleportation [29,30]. For such an application,
the QST involved is required to be as faithful as possible
since any state distortion during the transfer would lead to
a corresponding reduction in the degree of entanglement and
hence loss of fidelity in the information teleported. From such a
perspective, quantum memories can be implemented with only
a few physical systems. For instance, coherent state transfer
and control in atomic and ionic systems has made a great
progress [31–34]; superconducting qubits with transmission

line cavities in circuit quantum electrodynamic setup offer the
possibility of large-scale, fault-tolerant quantum information
processing with integrated qubits [35]; the electronic spin
triplet ground state in a nitrogen-vacancy defect exhibits a
promising long decoherence time [36,37]; for QD-confined
electron spin qubits, the state transfer from photon polarization
to electron spin using optically active semiconductor QDs
has been extensively studied and demonstrated [38,39]. Like
these systems, valley qubits also carry properties that qualify
them for quantum memories. For valley qubits, one represents
logical 0 and 1 with the low energy sector of states where
the dynamical variables consist only of valley pseudospins
of electrons. Such qubits have the advantage that the large
wave vector difference between K and K′ valleys stabilizes
the qubit state and provides a good coherence protection,
with valley relaxation time for such qubits to be in the
range of 10−6 ∼ 10−3 sec under reasonable conditions [13,26].
However, it should be noted that the simplest realization of a
valley qubit with a single valley pseudospin may be quite
challenging. With the qubit state space {0, 1} represented
by the two-state space {K,K′} of the pseudospin, such a
qubit faces the issue of being difficult to transform between,
for example, K and K′ via controllable means due to the
wave vector difference between them. This difficulty would
have to be overcome in applications involving qubit state
manipulations, as in the case of QRs when setting up the
global entanglement [29,30]. On the other hand, a valley-pair
qubit with two valley pseudospins resolves such an issue [13].
In this case, spin and orbital degrees of freedom are removed
by a magnetic field-induced spin quantization and the QD
confinement-induced localization, respectively. The remaining
degrees of freedom, i.e., the two localized pseudospins, interact
with each other via a spin exchange type coupling and form
the two maximally entangled states, namely, the valley singlet
state |ZS〉 = 1√

2
(|KLK ′

R〉 − |K ′
LKR〉) (with subscripts L and

R denoting the left and right QDs, respectively) and the
valley triplet state |ZT0〉 = 1√

2
(|KLK ′

R〉 + |K ′
LKR〉). The two

states can represent 0 and 1, respectively, and a single-qubit
transformation in the {0,1} space can be performed without
any valley flipping [13], as described in the following in
terms of the Bloch sphere representation of qubit states. First,
the exchange coupling between the QDs can be electrically
controlled to rotate the qubit around one axis of the sphere.
Second, a mechanism called valley-orbit interaction (VOI)
exists between the valley pseudospin and an in-plane electric
field. This field can be induced by electrical gates near the
QDs to allow, via the VOI mechanism, for rotation of the
qubit around another axis of the sphere. The two foregoing
independent rotations can be combined to achieve an arbitrary
single qubit manipulation on the time scale of 10−9 sec under
reasonable conditions [13,26]. Such an electrical gated valley
qubit features scalability similar to typical solid state qubits
and can be advantageous to the implementation of quantum
error correction (QEC) coding [40,41]. Due to the fact that
the QEC represents a single logical qubit with a cluster of
physical qubits, construction of the corresponding circuit can
be facilitated by the scalability of valley qubits.

The photon-valley QST is a complicated quantum-
mechanical problem. It involves a system of valley
qubit electrons, optically excited electrons and holes, and
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photons, with the e-ph coupling existing between the particles.
Moreover, the system is open and communicates with the
external world via the photonic signal moving in and out of the
system. The present paper provides an initial, yet semiquan-
titative, understanding of this complicated problem through
an analytical approach based on a set of approximations. It
introduces a generic setup for the photon-valley QST that can
be optimized for the yield and fidelity and investigates the
QST in a sophisticated quantum-mechanical model beyond
what is merely based on the approximate valley-polarization
correspondence. Specifically, the setup consists of the valley
qubit being placed inside both a distributed Bragg reflector
(DBR) based cavity and a photonic crystal (PC) cavity. The
DBR cavity serves to enhance the e-ph interaction for the
absorption of incoming signal photon by the valley qubit and so
facilitates the valley-polarization entanglement. The PC cavity
serves to enhance the photon emission from the photo-excited
valley qubit as well as project the linear polarization state of
the emitted photon and so facilitates the valley-polarization
unentanglement. Through the entanglement and unentangle-
ment processes, the quantum state information of the incoming
photon is shared with and transferred to the valley qubit. A
quantum-mechanical analysis is performed for such processes
in terms of realistic optical matrix elements and a reasonable
phenomenological modeling of damping for both the elec-
tron states and cavity modes, yielding quantum-mechanical
equations that govern the time evolution of various probability
amplitudes in the system. These amplitudes are analytically
solved to determine the expressions of yield and fidelity: The
fidelity measures the fraction of faithful QST per transfer, and
the yield describes the fraction of photon-to-quantum memory
conversion per incoming signal photon. These two figures are
the upmost important parameters that determine the efficiency
and resources involved in the QST. Their explicit dependences
on various cavity and qubit parameters are derived to facilitate
our investigation of the optimal conditions for yield and
fidelity. A numerical study of the yield and fidelity is also
carried out. Overall, the study shows promising characteristics
in the photon-valley QST, with the conclusion that the valley-
polarization correspondence can indeed be exploited to achieve
such a QST with good yield and high fidelity.

The paper is organized as follows. In Sec. II, we first
describe the setup designed to both enhance the e-ph inter-
action and differentiate the incoming and outgoing photons.
We then discuss the optical matrix element and provide a
description of the photon-valley QST in the setup. In Sec. III,
we present a quantum-mechanical description of the QST
process, solve the quantum-mechanical equations, and derive
the analytical expressions of yield and fidelity. In Sec. IV,
based on the expressions of yield and fidelity, numerical
results are obtained, and their implications are discussed for
the photon-valley QST in the proposed setup. In Sec. V,
we summarize our findings. In the Appendix, we provide
the mathematical details involved in solving the various
probability amplitudes.

II. PHOTON-VALLEY QST IN CAVITIES

Section II A overviews the QST in a simple setup with a
single optical cavity. Section II B discusses the proposed setup

FIG. 2. The QST from a photon qubit to a valley-pair qubit in
an optical cavity. Dashed circles: quantum dots; black/hollow dots:
electrons/holes.

with two optical cavities. Section II C discusses the optical
matrix element due to the e-ph interaction between a qubit
electron and a cavity photon. In Sec. II D, we describe the
photon-valley QST in the two-cavity setup. The discussion
of QST here intends to provide a qualitative picture of the
process, by giving the initial, intermediate, and final states
involved, in preparation for the discussion of a more complete
quantum-mechanical treatment in Sec. III.

A. The QST with one cavity

The principle underlying the valley-photon QST is the
unique, approximate valley-polarization correspondence men-
tioned earlier, which enables a natural QST between valley and
photon qubits. Figure 2 shows a simple, conceptual setup for
the QST, where the photon enters an optical cavity, interacts
with the valley qubit placed inside, and leaves the cavity.
Illustration of the concept of valley-photon QST is given below
within this setup.

The photon to valley QST is featured by
(i) initialization of the valley qubit into the singlet state

1√
2
(|KLK ′

R〉 − |K ′
LKR〉);

(ii) the incoming signal photon of energy h̄ωph in a generic
state α|σ+〉 + β|σ−〉 of mixed circular polarizations (σ+ and
σ−) that carries the quantum information in {α,β};

(iii) enhancement of the e-ph interaction in the cavity;
(iv) gate tuning of energy levels in one of the two QDs (taken

to be QDL, the left QD, throughout the paper) to achieve the
trion-generating or -eliminating resonant transitions h̄ωph +
|KL〉 ↔ |K ′

eh,LKL〉 and h̄ωph + |K ′
L〉 ↔ |Keh,LK′

L〉 in QDL,
where |K ′

eh,LKL〉 is the trion consisting of one K electron,
one K ′ electron, and one K ′ hole, for example;

(v) gate control to switch off the tunneling coupling between
the QDs and to freeze the inter-QD orbital motion, thus
eliminating the electron in QDR (the right QD) from our
consideration of the QST process, except for its entanglement
with the electron in QDL; and

(vi) linear polarization (σx and σy) state projection mea-
surement of the valley qubit-emitted photon.

In the ideal case where the valley-polarization correspon-
dence is exact, the QST proceeds in the following
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sequence [26]:

|�0〉 = 1√
2

(|KLK ′
R〉 − |K ′

LKR〉) ⊗ (α|σ+〉 + β|σ−〉)
photon absorption→ |�1〉 = 1√

2
(β|K ′

ex,LKLK ′
R〉

−α|Kex,LK ′
LKR〉)

photon emission/absorption↔ |�2〉
= β|KLK ′

R〉 ⊗ |σ−〉 − α|K ′
LKR〉 ⊗ |σ+〉

projection onto σx/σy→ |�3x〉
= β|KLK ′

R〉 − α|K ′
LKR〉(if σxdetected)|�3y〉

= β|KLK ′
R〉 + α|K ′

LKR〉(if σydetected)

Note that in the intermediate state |�2〉, the photon and
the qubit electrons are entangled. The electrons now share
the quantum information carried in the amplitudes {α,β}. The
entangled photon eventually leaks out of the cavity, and a σx/σy

projection measurement is performed on its linear polarization
state. The projection unentangles the photonic component,
leaving the information solely stored in the valley-pair state
(�3x or �3y). If desired, the resultant valley state could be
further transformed by standard single qubit manipulations
into the combination of valley singlet and triplet states, for
example,

β|KLK ′
R〉 − α|K ′

LKR〉 → α
1√
2

(|KLK ′
R〉 − |K ′

LKR〉)

+β
1√
2

(|KLK ′
R〉 + |K ′

LKR〉),

thus storing {α, β} in the robust, decoherence-free valley state.
We note that the existence of bound states of excitons

and trions are not required for the valley-photon QST. The
terminology of trions is used in our paper just to indicate the
presence in the QST of intermediate states consisting of two
electrons and one hole with Coulomb interaction among them.

The reverse process of valley to photon QST can be
similarly achieved. We replace the initial state by

|�0〉 = (β|KLK ′
R〉 − α|K ′

LKR〉) ⊗ 1√
2

(|σ+〉 + |σ−〉),

with the quantum information {α, β} now encoded into the
valley-pair qubit. The interqubit interaction leads next to the
following state evolution:

photon absorption→ |�1〉 = 1√
2

(β|K ′
ex,LKLK ′

R〉 − α|Kex,LK ′
LKR〉)

photon emission/absorption↔ |�2〉
= β|KLK ′

R〉 ⊗ |σ−〉 − α|K ′
LKR〉 ⊗ |σ+〉.

Now, instead of measuring the photon, we measure the
valley qubit and project it onto singlet/triplet states:

projection onto ZS/ZT 0→ |�3S〉 ≡ α|σ+〉 + β|σ−〉 (if ZS detected)

|�3T0〉 ≡ −α|σ+〉 + β|σ−〉 (if ZT0 detected),

FIG. 3. The proposed hybrid-cavity setup. The valley-pair qubit
(red dot in the middle plane) is placed at the center of the PC cavity.
It is also vertically confined by the cavity formed with DBRs on
both top and bottom sides. The signal photon comes in through the
top DBR and excites a trion in QDL, which later radiates a photon
moving out of the PC cavity in a nearly horizontal direction into a
photon sensor.

which completes the transfer by storing {α,β} in the photon
states �3S or �3T0 .

From now on, our investigation will focus on the photon to
valley QST, the process actually used in a QR.

B. Setup with two cavities

An issue with the single cavity setup in Fig. 2 lies in the
existence of a finite probability for the incoming photon to
enter the cavity, to leak out of the cavity, and to enter the
polarization projection measurement, without ever interacting
and becoming entangled with the electron. Since the e-ph
entanglement is a necessary condition for a successful QST,
a detection of the idler photon would create a false event of
QST and, hence, reduce the fidelity. It is therefore desirable
to resolve the overlap between the idling and the entangled
photons. This could be done in either the spatial or the
frequency domains. In this paper, we consider a configuration
involving two optical cavities with orthogonal cavity axes:
One gives vertical (z) optical confinement and the other
transverse (x-y) optical confinement, as shown in Fig. 3, with
the qubit sitting at the center of both cavities. The configuration
effects an enhancement of the e-ph interaction as well as a
differentiation between the paths of incoming and outgoing
signal photons, as follows. The first cavity is formed of a pair
of DBRs that provide the vertical confinement. It couples a
vertically incoming signal photon into a DBR cavity mode and
excites a trion in QDL. On the other hand, for the transverse
confinement, we envision a defect in a 2D PC of square lattice
structure, as shown in Fig, 3, with the qubit placed at the center
of the defect. The defect forms a cavity with partially confined
transverse electric (TE) modes. These PC cavity modes have
electric fields and wave vectors lying in the plane [42–44]
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and hence are efficiently e-ph coupled to a QDL electron in
the graphene plane. The coupling induces the trion to emit a
photon into a PC cavity mode, which eventually leaks out of
the cavity in a nearly in-plane direction and can be picked up
by a sensor. Once detected, the photon becomes disentangled
from the valley qubit, and this completes the state transfer.

C. Optical matrix elements

Throughout the paper, we take the valley qubit to be
embedded in a gapped monolayer graphene (e.g., BN-doped
monolayer graphene [45]) such that we can use the simple 2D
Dirac theory of monolayer graphene [11,13] in the modeling
in order to simplify the analysis while retaining the essential
valley physics. For the QST, we consider the interaction
between a QDL electron and a radiation field of frequency
ωph. The electron in QDL is governed by the following 2D
Dirac equation [13]

(
H

(0)
D + HA

)
φD = ih̄∂tφD,

H
(0)
D =

(

(−→r ) + V (−→r ) vF p̂−

vF p̂+ −
(−→r ) + V (−→r )

)
,

HA =
(

0 evF A−
evF A+ 0

)
, φD =

(
ϕA

ϕB

)
,

A± = Ax ± iτvAy,

p̂± = px ± iτvpy = −i∂x ± τv∂y. (1)

Here, HA is the e-ph interaction between the electron and
the radiation field, with 
A = (Ax,Ay) being the in-plane vector
potential of the field. H

(0)
D is the QDL Hamiltonian in the

absence of radiation, with δ(−→r ) and V (−→r ) being, respectively,
the band gap profile and the potential energy profile that give
rise to the QD confinement. Let φ(0,c)

D and φ
(0,v)
D denote the con-

fined states with corresponding energies E
(c)
0 and E

(v)
0 , respec-

tively. Specifically, they are respectively the lowest conduction
band and highest valence band eigenstates of H

(0)
D given by

φ
(0,c)
D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ϕ

(0,c)
A,>

ϕ
(0,c)
B,<

)
,τv = +1(

ϕ
(0,c)
A,>

−ϕ
(0,c)
B,<

)∗
,τv = −1

,

φ
(0,v)
D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ϕ

(0,v)
A,<

ϕ
(0,v)
B,>

)
,τv = +1(

ϕ
(0,v)
A,<

−ϕ
(0,v)
B,>

)∗
,τv = −1

, (2)

where the subscripts A and B denote the two atomic sites
in a graphene unit cell. We take the above QD ground states
to be near band edges; therefore, ϕ

(0,c)
B,< ≈ vF p̂+ϕ

(0,c)
A,> /2
 

||ϕ(0,c)
A,> || and ϕ

(0,v)
A,< ≈ −vF p̂−ϕ

(0,v)
B,> /2
  ||ϕ(0,v)

B,> ||. The
states with τv = 1 and τv = −1 are related by time reversal
symmetry and are basically complex conjugates of each
other as given above. Near resonance (ωph ≈ E

(c)
0 − E

(v)
0 ), the

optical response is governed by the optical matrix element

M ≡ 〈φ(0,c)
D |HA|φ(0,v)

D 〉. Below, we analyze M , with the
radiation field representing either a DBR or PC cavity photon.

We start with the DBR cavity (DC) mode. In typical
applications, the mode has a wave length much greater than
the size of the qubit QDs. Therefore, we take its electric field
inside QDL to be approximately constant, with the in-plane
component 
E0 = 
EDC(
r = 0,z = 0) and the corresponding

in-plane vector potential 
A = 
E0
iωph

e−iωpht . Here, we take the
graphene plane to be located at z = 0, and QDL at 
r ≡
(x,y) = 0 of the plane. Below we list the matrix elements for
various combinations of 
E0 polarization and valley pseudospin
(E0 = | 
E0|):

M> = evF

〈
ϕ

(0,c)
A,>

∣∣ − iE0

ωph

∣∣ϕ(0,v)
B,>

〉
for (σ+,K)

M< = evF

〈
ϕ

(0,c)
B,<

∣∣ − iE0

ωph

∣∣ϕ(0,v)
A,<

〉
for (σ−,K)

−M<
∗ = evF

〈
ϕ

(0,c)∗
B,<

∣∣ − iE0

ωph

∣∣ϕ(0,v)∗
A,<

〉
for (σ+,K ′)

−M>
∗ = evF

〈
ϕ

(0,c)∗
A,>

∣∣ − iE0

ωph

∣∣ϕ(0,v)∗
B,>

〉
for (σ−,K ′)

. (3)

In the above, (σ+,K) denotes the absorption of a σ+
polarized photon by a K valence electron in QDL, for example.
Basically, for near band edge states, because |φ>| � |φ<|, it
gives |M>| � |M<|. If we totally ignore the minor matrix
element M<, then Eq. (3) yields, for optical excitation,
the major matrix element M> consistent with the valley-
polarization correspondence in Fig. 1. However, since M<

is finite, the correspondence is only approximate. After substi-
tuting ϕ

(0,c)
B,< ≈ vF p̂+ϕ

(0,c)
A,> /2
 and ϕ

(0,v)
A,< ≈ −vF p̂−ϕ

(0,v)
B,> /2


into M<, we obtain

M< ≈ evF

〈
1

2

vF p̂+ϕ

(0,c)
A,>

∣∣∣∣ − iE0

ωph

∣∣∣∣ 1

−2

vF p̂−ϕ

(0,v)
B,>

〉
for (σ−,K)

M<
∗ ≈ evF

〈
1

2

vF p̂−ϕ

(0,c)∗
A,>

∣∣∣∣ − iE0

ωph

∣∣∣∣ 1

−2

vF p̂+ϕ

(0,v)∗
B,>

〉

for (σ+,K ′)

(4)

The above expressions are useful for the estimation of
the parameters M> and M< in our numerical investigation
of the QST. In general, the ratio M</M> depends on the
QD geometry as well as the confinement. For example, in a
QD with electron-hole symmetry, Eqs. (3) and (4) imply that
M</M> ∝ 〈p̂+ϕ

(0,c)
A,> | p̂−ϕ

(0,c)
A,> 〉 ≈ 〈k2

x − k2
y − 2ikxky〉. In the

case of a circular disk QD, 〈k2
x − k2

y〉 = 〈kxky〉 = 0, so M< =
0, while in an elliptic QD, 〈kxky〉 vanishes and so does the
imaginary part of M<. For a generic, asymmetric QD, 〈kxky〉
is likely to be finite, so M< generally carries a phase relative
to M>. Last, we note that the above discussion of matrix
elements has been performed within the one-electron picture.
As such, for trion-involved optical transitions considered in
the study, the expressions of matrix elements will be modified
by many-electron effects. However, since the primary key
to the photon-valley QST—the relations among the various
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matrix elements in Eqs. (3) and (4)—is established only on the
basis of the time reversal symmetry relating the two states of
opposite pseudospins, its validity holds even in the presence
of many-electron effects, as briefly explained below. Consider
the trion in QDL with one K electron, one K hole, and one
K ′ electron. In the presence of Coulomb interaction, the trion
wave function is given by [46]


(K)
trion =

∑
ke,kh,k′

e

c(ke,kh,ke
′)|ke + K,kh + K,k′

e + K ′〉.

A similar expression holds for 
(K ′)
trion. Here,

|ke + K,kh + K,k′
e + K ′〉 is a basis state consisting of

two free electrons and one hole, with corresponding wave
vectors as specified in the ket, and c(ke,kh,k

′
e) is the

corresponding expansion coefficient. Distinct basis states are
coupled together by the electron-electron and electron-hole
Coulomb interaction as well as the QD confinement potential,
giving the trion state as a linear combination of these
basis states. This generalizes the final state in optical
absorption considered in Eq. (3) from a free conduction band
electron in one-electron picture to the corresponding trion
in many-electron picture. Moreover, let Htrion denote the
corresponding trion Hamiltonian. Due to the time reversal
symmetry between K and K ′, it follows that [46]

Htrion
(K)
trion = E

(K)
trionHtrion

(K ′)
trion = E

(K ′)
trion,


(K ′)
trion = (


(K)
trion

)∗
,

which generalizes the final state identity from ϕ
(0,c)
A,> =

(ϕ(0,c)∗
A,> )∗,ϕ(0,c)

B,< = (ϕ(0,c)∗
B,< )∗ in Eq. (3) to 

(K ′)
trion = 

(K)∗
trion . Since

the relations among the various matrix elements in Eq. (3) de-
pend only on such final state identities, we conclude that in the
presence of many-electron effects the same relations continue
to hold and many-electron effects only modify the matrix ele-
ments in magnitude. This modification in magnitude is covered
in our paper by giving the matrix elements a range of magni-
tudes and studying the QST as a function of these magnitudes.
Therefore, while one-electron expressions in Eqs. (3) and (4)
will be used below for numerical estimation of the matrix ele-
ments, by adopting the foregoing approach our paper does not
depend so much on the validity of one-electron approximation
and actually allows the paper to go beyond the approximation.

Next, we discuss the optical matrix element involving
the PC cavity mode. We take the mode to be a TE donor
type state at X point, for example, one that transforms
according to the symmetry of 2D E representation of C4v ,
i.e., the symmetry group of a square [47]. There are two
degenerate modes in the representation as follows. Let
HPC(
r)ẑ and 
EPC(
r) denote the H-field and E-field of the
modes in the graphene plane, respectively (ẑ = unit vector
normal to the plane). Then, HPC(
r) transforms as sin(
kX1 · 
r) or
sin(
kX2 · 
r), and 
EPC(
r) = 1

−iωphμ0ε(
r)∇ × HPC(
r)ẑ transforms

as ẑ × 
kX1 cos(
kX1 · 
r) or ẑ × 
kX2 cos(
kX2 · 
r). Here {
kX1 ,

kX2} are the two orthogonal wave vectors at X points of the
Brillouin zone, μ0 = vacuum magnetic permeability, and ε =
dielectric constant. Note that at 
r = 0 (center of the cavity)
where the qubit is located, 
EPC(
r)s of the two modes are
{σx,σy} polarized, in a way correlated to their propagation

directions {
kX1 , 
kX2}. For the optical matrix elements, we can
linearly combine the two modes, making it either σ+ or σ−
polarized at 
r = 0, and continue using the same expressions
in Eq. (3) with 
E0 replaced by 
EPC(
r = 0). Effectively, this
means that the matrix elements for the PC cavity are scaled
from those for the DBR cavity by the factor | 
EPC(
r = 0)/ 
E0|.
In particular, it follows that the major matrix elements for the
two cavities carry the same phase and so do the minor ones.

Equations (3) and (4) are used to estimate the matrix
elements for the numerical study in Sec. IV. As an example, we
take ωph = 1.6 · 105 GHz corresponding to a graphene band
gap of 0.1 eV, and the modal volumes to be Vmode = 104 μm3

for the DBR cavity and Vmode = 600 for the PC cavity. As a
reference, we also list (λ/n)3 = 1600 μm3 for the DBR cavity
with the index of refraction n taken to be 1 (for air), and
(λ/n)3 = 94 μm3 for the PC cavity with n taken to be 2.6 (in
the case of SiC), respectively, where λ is the photon wave
length in vacuum. We take the QD to be a square well with
edge length of 70 nm and subject to hard wall confinement.
This gives the electron velocity v = 0.4vF in the QD, where vF

(the Fermi velocity) is taken to be 106 m/sec. Using the above
numbers along with the approximations 〈ϕ(0,c)

A,> |E0|ϕ(0,v)
B,> 〉 ≈

E0 and E0 ∼ √
h̄/4πεωphVmode in Eq. (3), we obtain |M>| ∼

30 GHz for the DBR cavity and 45 GHz for the PC cavity.
Moreover, using the approximation |M<| ∼ v2

4v2
F

|M>| for
Eq. (4), we obtain |M</M>| = 0.04. The ratio holds for both
cavities since the matrix elements in the two cases are given
by the same forms of expressions in Eqs. (3) and (4).

In the following discussion, we introduce the notations {A,
B} and {C, D} to represent {M>,M<} for the PC and DBR
cavity modes, respectively, with B/A = D/C. In addition, as
it will become obvious below in Sec. II D, only the relative
phase between M> and M< matters in the QST, so we take
M> (A and C) to be real numbers and place the relative phase
in M< (B and D), which allows us to write, for example, B =
A|B/A|eiφB/A . Generally, in a favorable configuration design
for the QST, a correlation between A and C would be required
so that the design can move the QST process forward to the
finish line with a good yield. More details will be given in the
following sections.

D. The QST with two cavities

We examine the QST in the setup with two cavities. In the
presence of finite B and D, the various states involved in the
QST are modified from those in Sec. II A, giving

|�0〉 = 1√
2

(|KLK ′
R〉 − |K ′

LKR〉) ⊗ (α|σ+〉 + β|σ−〉),

|�1〉 ∝ (−βC∗ + αD)|K ′
ex,LKLK ′

R〉
−(αC − βD∗)|Kex,LK ′

LKR〉,
|�2〉 = valley-polarization entangled stateafter photon

emission from the trion

∝ (−βC∗ + αD)(−A|σ−〉 ⊗ |KLK ′
R〉 + B∗|σ+〉

⊗|KLK ′
R〉) − (αC − βD∗)

(A∗|σ+〉 ⊗ |K ′
LKR〉 − B|σ−〉 ⊗ |K ′

LKR〉),
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|�3x〉 ∝ (−βC∗ + αD)(−A + B∗)|KLK ′
R〉

− (αC − βD∗)(A∗ − B)|K ′
LKR〉,

|�3y〉 ∝ (βC∗ − αD)(A + B∗)|KLK ′
R〉

+ (αC − βD∗)(A∗ + B)|K ′
LKR〉. (5)

We note several points. First, the emergence of matrix
elements A, B, C, and D in Eq. (5) indicates the presence
of two cavities. Second, with two cavities, the photon in
the entangled state |�2〉 leaks out of the PC cavity via TE
modes. For these modes, as their polarizations {σx,σy} are
correlated to the propagation directions {
kX1 ,


kX2}, a detection
of the photon’s outgoing direction effects the projection of |�2〉
onto |�3x〉 or |�3y〉. Last, if we set the minor optical matrix
elements B = D = 0, then the final states are given by |�3x〉 ∝
β|KLK ′

R〉 − α|K ′
LKR〉 or |�3y〉 ∝ β|KLK ′

R〉 + α|K ′
LKR〉

with the same amplitudes α and β that are encoded into the
incoming photon, meaning that no distortion occurs in the QST
process. We thus define the entangled state with B = D = 0
as

|ideal〉 ≡ 1√
2

[(β|KLK ′
R〉 − α|K ′

LKR〉) ⊗ |σx〉

− i(β|KLK ′
R〉 + α|K ′

LKR〉) ⊗ |σy〉], (6)

which serves as a reference state for the definition of
fidelity. For example, if we ignore any cavity leakage and
qubit decoherence, the fidelity would then be given by F =
N2|〈ideal|�2〉|, with a value less than unity since small
yet finite B and D would create in |�2〉 a deviation from
|ideal〉 (N2 = the normalization constant of |�2〉). Section III
treats the general case where both the cavity leakage and
intermediate state damping are present.

III. THEORETICAL MODEL

In a realistic system, the QST depends on various param-
eters of the configuration in which the QST takes place, such
as optical transition matrix elements, various decoherence
times, and Q factors of cavities. In Sec. III A, we provide a
quantum-mechanical description of the realistic QST problem.
In Sec. III B, we discuss the wave equation and solution and
then derive the yield and fidelity.

A. Description of the problem

For a quantum-mechanical description of QST in the setup
of Fig. 3, we refer to the following process flow diagram:

In Fig. 4, the incoming signal photon injects into the DBR
cavity with the tunneling coupling given by κk . Next, the cavity
photon is absorbed exciting a trion in QDL, with the major
(minor) coupling given by C (D) between the trion and the
DBR cavity mode. The trion then radiates a photon into the
PC cavity mode, with the major (minor) coupling given by
A (B) between the trion and the PC cavity mode. Last, the
photon leaks out of the PC cavity with the coupling constant
given by Tk and enters a photon sensor. The parameter 2κDC is
the leakage rate of DBR cavity mode, and 2γSE is the decay
rate of trion accounting for its nonradiative decay as well
as emission into modes excluding the DBR and PC cavity
ones. Note that we assume that the coupling between the DRB

FIG. 4. The process flow diagram. The DC denotes the DBR
cavity mode, and PC denotes the PC cavity mode. The various
parameters shown in the diagram are the couplings and decay or
leakage rates involved in the flow from one stage to the next, as
explained in the text.

and PC cavities is negligible because of the significant mode
mismatch between them.

The quantum-mechanical system involved consists of elec-
trons, trions, cavity photons, incoming and outgoing photons,
and the interaction among them. Below we discuss the state
vector, Hamiltonian, wave equation, and, finally, the solution
to the equation.

The total state vector describes an e-ph composite system
and is given by

|(t)〉 =
∑

σ=σ+,σ−;τ=K,K ′

∫
dxφinput

στ (x,t)|τ ′
L,τR〉 ⊗ |x,σ 〉

+
∑

σ=σ+,σ−;τ=K,K ′
φDC

στ (t)|τ ′
L,τR〉 ⊗ |DC,σ 〉

+
∑

τ=K,K ′
φtrion

τ (t)|τex,L,τ ′
L,τR〉

+
∑

σ=σ+,σ−;τ=K,K ′
φPC

στ (t)|τ ′
L,τR〉 ⊗ |PC,σ 〉

+
∑

σ=σ+,σ−;τ=K,K ′;k2D

φoutput
στ (k2D,t)|τ ′

L,τR〉

⊗|k2D,σ 〉. (7)

In the above expression, we define τ ′ = K(K ′) for τ =
K ′(K). |τ ′

L,τR〉 denotes the two-electron state with the QDL
electron in the τ ′

L valley and the QDR electron in the opposite
τR valley; |x,σ 〉 denotes the incoming signal photon state with
position x and circular polarization σ ; |DC,σ 〉 denotes a DBR
cavity mode with polarization σ at the qubit; |τex,L,τ ′

L,τR〉
denotes a trion-electron state, with the trion (specified by
τex,L,τ ′

L,τR) in QDL and the electron (specified by τR) in QDR;
|PC,σ 〉 denotes a PC cavity mode with polarization σ at the
qubit; and |k2D,σ 〉 denotes an outgoing signal photon state
moving to the photon sensor with a planar wave vector k2D

and polarization σ . φ
input
στ , φDC

στ , φtrion
τ , φPC

στ , and φ
output
στ are

the amplitudes of various basis states and governed by the
corresponding wave equation (see Sec. III B). φ

input
στ is used

as an input to the equation. The 14 amplitudes {φDC
στ , φtrion

τ ,
φPC

στ , φ
output
στ for σ = σ+,σ− and τ = K,K ′} are determined

by solving the equation. φ
output
στ describes the output from the

system, and, once solved, it is used to determine both the yield
and fidelity.

In the input to the system, the e-ph system is treated as an
open system with both input from and output to the external
world. In particular, in the corresponding wave equation, the

075407-7



MING-JAY YANG, HAN-YING PENG, NEIL NA, AND YU-SHU WU PHYSICAL REVIEW B 95, 075407 (2017)

input is prescribed in advance as a time-dependent boundary
condition. In details, the incoming photonic signal is taken to
be a Gaussian wave packet, and, together with the initial singlet
state of the valley qubit, it leads to the following product state
as the input to the e-ph system:

|�input〉 = G(t)(α|σ+〉 + β|σ−〉) ⊗ 1√
2

(|KLK ′
R〉 − |K ′

LKR〉),

(8)

where G(t) ∝ φ
input
στ (x = 0,t) denotes the Gaussian wave

packet evaluated at the DBR cavity-environment interface the
incoming photon hits upon, with the interface taken to be
located at x = 0. Specifically, it is given by

G(t) =
∫ ∞

−∞

dω

2π
φ

ph
0

√
Le−i(ω−ωph)x0/ce−(ω−ωph)2/2
ω2

phe−iωt ,

φ
ph
0 ≡ π

1
4

√
2

c
ωph
, (9)

with x0 being the initial center of the wave packet at t = 0,

ωph being the band width, L being the size of the external
world, and c being the speed of light. The wave packet above
has been taken to be primarily composed of waves normally
incident upon the DBR. Expanding the product, we obtain the
four components of |�input〉 as

|φinput〉 = (
φinput

σ+,K
(t),φinput

σ−,K
(t),φinput

σ+,K′ (t),φ
input
σ−,K′ (t)

)T

= 1/
√

2(−αG(t), − βG(t),αG(t),βG(t))T (10)

which are inputs to the wave equation discussed later.
The Hamiltonian of the e-ph system is given by

H = Hinput + HDC + Htrion + HPC + Houtput + Hreservoir

+Hinput-DC + HDC-trion + Htrion-PC + HPC-output

+HSE. (11)

The various terms are given as follows (h̄ = 1):

Hinput =
∑

σ=σ+,σ−;
τ=K,K ′;
k1D

c|k1D||τ ′
LτR〉 ⊗ |k1D,σ 〉〈k1D,σ | ⊗ 〈τ ′

LτR|,

HDC =
∑

σ=σ+,σ−;τ=K,K ′
ωDC|τ ′

LτR〉 ⊗ |DC,σ 〉〈DC,σ | ⊗ 〈τ ′
LτR|,

Htrion =
∑

σ=σ+,σ−;τ=K,K ′
ωtrion|τex,Lτ ′

LτR〉〈τex,Lτ ′
LτR|,

HPC =
∑

σ=σ+,σ−;τ=K,K ′
ωPC|τ ′

LτR〉 ⊗ |PC,σ 〉〈τ ′
LτR| ⊗ 〈PC,σ |,

Houtput =
∑

σ=σ+,σ−;
τ=K,K ′;

k2D

c|
k2D||τ ′
LτR〉 ⊗ |−→k 2D,σ 〉〈τ ′

LτR| ⊗ 〈−→k 2D,σ |,

Hreservoir =
∑

σ=σ+,σ−;τ=K,K ′;μ

ωμ|τ ′
LτR〉 ⊗ |μ,σ 〉〈μ,σ | ⊗ 〈τ ′

LτR|,

Hinput-DC =
∑

σ=σ+,σ−;
τ=K,K ′;
k1D

(κk|τ ′
LτR〉 ⊗ |DC,σ 〉〈τ ′

LτR| ⊗ 〈k1D,σ | + h.c.),

Htrion-PC = A|Kex,LK ′
LKR〉〈K ′

LKR| ⊗ 〈PC,σ+| + B|Kex,LK ′
LKR〉〈K ′

LKR| ⊗ 〈PC,σ−|
−B∗|K ′

ex,LKLK ′
R〉〈KLK ′

R| ⊗ 〈PC,σ+| − A∗|K ′
ex,LKLK ′

R〉〈KLK ′
R| ⊗ 〈PC,σ−| + h.c.,

HPC-output =
∑

σ=σ+,σ−;
τ=K,K ′;−→
k 2D

(Tk|τ ′
LτR〉 ⊗ |−→k 2D,σ 〉〈τ ′

LτR| ⊗ 〈PC,σ | + h.c.),

HSE =
∑

σ=σ+,σ−;τ=K,K ′;μ

(γμ|τ ′
LτR〉|μ,σ 〉〈τex,Lτ ′

LτR| + h.c.). (12)

The above Hamiltonian includes contributions from several
subsystems. Hinput comes from the photon states that are
outside the DBR cavity and propagate along the cavity axis,

with k1D the wave vector of the photon; HDC comes from the
DBR cavity modes with ωDC as the mode frequency; Htrion

comes from the trion states with ωtrion as the trion frequency
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(relative to that of the qubit electron in QDL); HPC comes
from the PC cavity modes with ωPC as the mode frequency;
Houtput comes from the photon states that are outside the PC
cavity and propagate in the plane, with k2D being the wave
vector of the photon; and Hreservoir comes from the photon
reservoir, excluding the contributions Hinput, HDC, HPC, and
Houtput (μ = photonstatelabel and ωμ = photonfrequency).
Throughout the paper, we assume the resonance condition
ωph = ωDC = ωPC = ωtrion. The Hamiltonian also includes
couplings among the subsystems Hinput-DC describes the
tunneling of photons into and out of the DBR cavity with
h.c. stands for the hermitian conjugate; HDC-trion describes
the coupling between the DBR cavity mode and the trion;
Htrion-PC describes the coupling between the trion and the PC
cavity mode; HPC-output describes the tunneling of photons into
and out of the PC cavity; and HSE describes the coupling
between the trion and the photon reservoir with the coupling
constant γμ. Several approximations have been made above or
will be made below. For example, we take κk ≈ √

cκDC/L

(Tk ≈
√

2c2�PC/L2ωPC) independent of the wave number
under the flat-band assumption, with 2κDC(2�PC) = leakage
rate of the DBR cavity (PC cavity) mode. Equivalently,
this means that we ignore the leakage into the reservoir
and take the leakage rate to be primarily due to the cou-
pling Hinput-DC (HPC-output), with κDC ≈ π

∑
k1D

|κk|2δ(ωDC −
c|k1D|) (�PC ≈ π

∑
−→
k 2D

|Tk|2δ(ωPC − c|−→k 2D|)). Moreover,
in Eq. (12) we have neglected the exchange process
|Kex,L,K ′

L〉 ↔ |K ′
ex,L,KL〉 where the simultaneous valley

flips of three carriers are involved. As such a process is of
high order, it is neglected in the equation. This approximation
decouples the amplitudes of the trion states |Kex,L,K ′

L〉
and |K ′

ex,L,KL〉 and, thus, facilitates the solution to the
wave equation, as will become clear below. Last, the rate
of trion emission into the reservoir is given by 2γSE(ω) =
2π

∑
μ |γμ|2δ(ω − ωμ). We take γSE(ω) as a phenomenolog-

ical constant that also accounts for nonradiative decay of the
trion.

B. Wave equation and solution

Using the Hamiltonian specified above, we set up the
wave equation for the system. For typical applications, as
the cavity leakage rates �PC and κDC scale inversely with
the corresponding cavity Q factors, we take them to be the
maximum frequency parameters so as not to impose stringent
requirements on the Q factors. Moreover, we take |B/A|  1,
according to the numerical estimate obtained in Sec. II C for a
typical QD.

The wave equation consists of coupled differential equa-
tions for the 14 amplitudes {φDC

στ , φtrion
τ , φPC

στ , φ
output
στ }, which

are divided into three sets and approximately solved. The three
sets of equations describe the key subprocesses in the QST,
respectively, as follows.

The first set of equations govern φDC
στ and the process

incident signal photon → DBR cavity photon. They are given
by

i∂tφ
DC
στ (t) ≈ (ωDC − iκDC)φDC

στ (t) +
√

2cκDC/Lφinput
στ (t)

(13)

Equation (13) takes φDC
στ to be primarily determined by the

incoming signal φ
input
στ and the damping (κDC) of DBR cavity

modes. For simplification, it neglects the contributions from
the process of photon emission by the trion or that of photon
absorption by the qubit, both of which occur only after the entry
of signal photon into the cavity, as indicated in Fig. 4, and hence
are higher order processes from the perturbation-theoretical
point of view. After solving Eq. (13), φDC

στ is given in terms of
the input by

φDC
στ (t) = iᾱ(σ,τ )

√
cκDC/L

∫ t

0
dt ′e−i(ωDC−iκDC)(t−t ′)G(t ′),

(14)

ᾱ(σ+,K) = α,ᾱ(σ+,K ′) = −α,

ᾱ(σ+,K ′) = β,ᾱ(σ−,K ′) = −β

The second set of equations governs φtrion
τ , φPC

στ , and the
resonant process of photon + electron ↔ trion. For the specific
process |photon,KL〉 ↔ |K ′

ex,KL〉, for example, we obtain

i∂t

⎛
⎜⎝

φtri
K (t)

φPC
σ+K (t)

φPC
σ−K (t)

⎞
⎟⎠

=
⎛
⎝(ωtrion − iγtotal) A B

A∗ (ωPC − i�PC) 0
B∗ 0 (ωPC − i�PC)

⎞
⎠

×

⎛
⎜⎝

φtri
K (t)

φPC
σ+K (t)

φPC
σ−K (t)

⎞
⎟⎠ +

⎛
⎝CφDC

σ+K (t) + DφDC
σ−K (t)

0
0

⎞
⎠

γtotal = γSE + γtD. (15)

γSE , γtD , and �PC account for trion and PC cavity photon de-
cays due to the couplings HSE, HDC-trion, and HPC-output, respec-
tively. γtD ≈ π |C|2Dos = |C|2/κDC, where Dos = 1/πκDC is
the density of states for the DBR cavity mode with level
broadening due to the cavity leakage. Note that the DBR
cavity photon, with the amplitude φDC

στ determined by Eq. (14),
now provides a source term to Eq. (15), feeding photons into
the resonant process. For the other process |photon,K ′

L〉 ↔
|Kex,K

′
L〉, a similar set of equations are obtained by an

appropriate change of valley and polarization subscripts in
Eq. (15).

Last, the third set of equations governs φ
output
στ and describes

the process PC cavity photon → outgoing photon:

i∂tφ
output
στ (k2D,t) = Tkφ

PC
στ (t) + ωoutputφ

output
στ (t), (16)

where ωoutput = c|
k2D|. The argument k2D in φ
output
στ will be

omitted below when it does not cause confusion.
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In order to solve Eqs. (15) and (16), we perform a linear transformation and obtain

i∂t

⎛
⎜⎝

φtrion
K (t)

φPC
K1(t)

φPC
K2(t)

⎞
⎟⎠ =

⎛
⎜⎝

(ωtrion − iγtotal)
√

|A|2 + |B|2 0√
|A|2 + |B|2 (ωPC − i�PC) 0

0 0 (ωPC − i�PC)

⎞
⎟⎠

⎛
⎜⎝

φtrion
K (t)

φPC
K1(t)

φPC
K2(t)

⎞
⎟⎠ +

⎛
⎜⎝

CφDC
σ+K(t) + DφDC

σ−K (t)

0

0

⎞
⎟⎠ (17)

and

i∂t

(
φ

output
K1 (t)

φ
output
K2 (t)

)
= Tk

(
φPC

K1(t)

φPC
K2(t)

)
+ ωoutput

(
φ

output
K1 (t)

φ
output
K2 (t)

)
(18)

with the transformation given by

φPC
K1(t) = A√

|A|2 + |B|2
φPC

σ+K (t) + B√
|A|2 + |B|2

φPC
σ−K (t)

φPC
K2(t) = − B∗√

|A|2 + |B|2
φPC

σ+K (t) + A∗√
|A|2 + |B|2

φPC
σ−K (t) (19)

and

φ
output
K1 (t) = A√

|A|2 + |B|2
φ

output
σ+K (t) + B√

|A|2 + |B|2
φ

output
σ−K (t)

φ
output
K2 (t) = − B∗√

|A|2 + |B|2
φ

output
σ+K (t) + A∗√

|A|2 + |B|2
φ

output
σ−K (t). (20)

The transformed equations can be solved as follows. First, the block of top two rows in Eq. (17) forms a two-component
time-dependent Schrodinger equation with a source term,

i∂t

(
φtrion

K (t)

φPC
K1(t)

)
= H0

(
φtrion

K (t)

φPC
K1(t)

)
+ |f (t)〉, (21)

where

H0 =
(

a
√

|A|2 + |B|2√
|A|2 + |B|2 b

)
, a ≡ ωtrion − iγtotal,b ≡ ωPC − i�PC, |f (t)〉 ≡

(
CφDC

σ+K (t) + DφDC
σ−K (t)

0

)
. (22)

The solution to Eq. (21) with the initial condition φtrion
K (0) = φPC

K1(0) = 0 is given by(
φtrion

K (t)

φPC
K1(t)

)
= −i

∑
n=1,2

|ϕn〉
∫ t

0
e−iλn(t−t ′)(ϕn|f (t ′))dt ′, (23)

where |ϕn〉 and λn for n = 1,2 are, respectively, the eigenvectors and eigenvalues of H0 given in the Appendix. Using the
expressions there, one can show that λ1 ≈ ωph + O(�PC) and λ2 ≈ ωph + O(max(γtotal,γtp)) under the resonance condition, with
γtp ≡ |A|2/�PC the rate of photon emission by the trion into the PC cavity mode. (ϕn|f (t ′)) in Eq. (23) denotes the projection of
|f (t ′)〉 onto |ϕn〉 in the case where H0 is non-Hermitian (see the Appendix). Last, the third row of Eq. (17) can easily be solved.
With initial condition φPC

K2(0) = 0, it leads to φPC
K2(t) = 0.

In the output from the system, Eq. (18) gives the outgoing photon amplitude

φ
output
K1 (t) = −iTk

∫ t

0
φPC

K1(t ′)e−iωoutput(t−t ′)dt ′ (24)

and a similar expression for φ
output
K2 (t). By substituting φPC

K1(t) and φPC
K2(t) obtained above, we find that the amplitudes at the

completion of QST, with the corresponding probabilities given by (see the Appendix),

lim
x0→−∞

∣∣φoutput
K1 (k2D,t → ∞)

∣∣2 = 2
√

π
κDC


ωph
e−(ωoutput(k2D)−ωph)2/
ω2

ph
|Tk|2|αC + βD|2(|A|2 + |B|2)

|(ωoutput(k2D) − λ1)(ωoutput(k2D) − λ2)(ωoutput(k2D) − λ3)|2 ,

∣∣φoutput
K2 (k2D,t → ∞)

∣∣2 = 0,λ3 ≡ ωDC − iκDC. (25)
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A similar procedure obtains |φoutput
K ′1 (k2D,∞)|2 and

|φoutput
K ′2 (k2D,∞)|2, with |αC + βD|2 in |φoutput

K1 (k2D,∞)|2 re-
placed by |αD∗ + βC∗|2, and |φoutput

K ′2 (k2D,∞)|2 = 0.
For the yield, using the foregoing solutions, we derive the

figure of merits for the photon-valley QST. First, the yield is
given by integrating the various output amplitudes as follows:

P =
∑

σ,τ,k2D

∣∣φoutput
στ (k2D,∞)

∣∣2 =
∑
k2D

Pk2D ,

Pk2D ≡ ∣∣φoutput
K1 (k2D,∞)

∣∣2 + ∣∣φoutput
K ′1 (k2D,∞)

∣∣2
, (26)

with Pk2D as the yield for a given k2D. This gives

P = 2√
π

κDC�PC


ωph
[|αC + βD|2 + |αD∗ + βC|2]

× (|A|2 + |B|2)Iw,

Iw ≡
∫

dωoutput
e−(ωoutput−ωph)2/
ω2

ph

|(ωoutput − λ1)(ωoutput − λ2)(ωoutput − λ3)|2 .

(27)

In order to gain insights into the dependence of P on
various parameters, we analyze the frequency integral Iw

in the following. In essence, it is primarily determined by
various frequency parameters, such as the photon bandwidth

ωph of the Gaussian function e−(ωoutput(k2D)−ωph)2/
ω2

ph and
the poles λ1, λ2, and λ3 in the integrand. In accordance
with the condition given earlier that �PC and κDC are taken
to be the maximum frequency parameters, we consider the
two following cases, namely, Case 1 where min(�PC,κDC) �
max(γtotal,γtP ) � 
ωph and Case 2 where min(�PC,κDC) �

ωph � max(γtotal,γtP ). Below we express P in terms of the
dimensionless frequencies γ ′

tD ≡ γtD/γtP , γ ′
SE ≡ γSE/γtP ,

and 
ω′
ph ≡ 
ωph/γtP , in the two cases.

Case 1. For min(�PC,κDC) � max(γtotal,γtP ) � 
ωph,

P ≈ 2√
π

η1
γ ′

tD

max((γ ′
tD + γ ′

SE)2,1)
. (28)

η1 is a dimensionless, order of unity coefficient with weak
dependence on all frequencies, given by

η1 ≡ �PC
2 max(γtotal

2,γtP
2)κDC

2


ωph
Iw

× (
ωph,κDC,γtotal,γtP ,�PC), (29)

which also indicates how Iw scales with the various frequen-
cies.

Case 2. For min(�PC,κDC) � 
ωph � max(γtotal,γtP ),

P ≈ 2√
π

η2
γ ′

tD

max(γ ′
tD + γ ′

SE,1)

1


ω′
ph

. (30)

The dimensionless coefficient η2 is also of the order of unity
and given by

η2 ≡ �PC
2 max(γtotal,γtP )κDC

2Iw(
ωph,κDC,γtotal,γtP ,�PC).

(31)

For the optimal condition for yield, the above result
suggests to optimize P with the following choice of pa-
rameters: γ ′

tD∼ 1 >γ ′
SE(i.e., γtD∼γtP >γSE), along with

FIG. 5. Contour plots of the yield P as a function of trion decay
rates γ ′

SE (nonradiative damping and radiative damping into noncavity
modes) and γ ′

tD (radiative damping into DBR cavity modes), with
different photon band widths: 
ω′

ph = 0.5 in (a) and 
ω′
ph = 5 in

(b).

min(�PC,κDC) � γtP � 
ωph (i.e., the condition given in
Case 1). The condition γtD ≈ γtP (or |A|2/�PC ≈ |C|2/κDC)
means the trion emits a photon into the DBR and PC
cavity modes with nearly matching rates, at least in order of
magnitudes, which imposes a constraint of correlation between
the two cavities’ parameters. In Sec. IV, a numerical evaluation
of the integral Iw will be performed for a more detailed study
of P as a function of the various parameters.

Next, the fidelity of QST is defined by F (α,β) =
〈ideal|ρ̂output|ideal〉/P , where ideal is given by Eq. (6)
and ρ̂output = ∑

στ,σ ′τ ′;k2D
φ

output
στ (k2D,∞)φoutput

σ ′τ ′ (k2D,∞)∗ is the
density matrix of the final state. Alternatively, we write

F (α,β) =
∑
k2D

Fk2DPk2D/P ,

Fk2D ≡ 〈ideal|
∑

στ,σ ′τ ′
φoutput

στ (k2D,∞)φoutput
σ ′τ ′ (k2D,∞)∗

× |ideal〉/Pk2D , (32)

with Fk2D as the fidelity for a given k2D. Using the output
amplitudes obtained earlier, one can show that Fk2D is a
constant independent of k2D and thus obtain

F (α,β) = Fk2D (33)

= |α∗A∗(αC + βD) + β∗A(αD∗ + βC∗)|2
[|(αC + βD)|2 + |(αD∗ + βC∗)|2][|A|2 + |B|2]
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FIG. 6. Contour plots of the yield P as a function of 
ω′
ph (photon

band width) and γ ′
tD (radiative trion damping into DBR cavity modes).

The effect of trion decay rate γ ′
SE (nonradiative damping and radiative

damping into noncavity modes) on yield is studied with (a) γ ′
SE = 0.1

and (b) γ ′
SE= 1.

We note that F given above is a function of the incoming
photon state (α,β). One could further take the average of F

with respect to (α,β). Instead, in what follows, we will present
the numerical results for both P and F , with F being given for
representative (α,β)s, e.g., (1, 0), (1/

√
2, 1/

√
2), etc. The issue

of optimization as well as that of minimizing the sensitivity
to (α,β) will be discussed in Sec. IV when we present the
numerical result.

IV. NUMERICAL STUDY

We present numerical results of the yield and fidelity.
Effects of damping parameters γSE , κDC, and �PC, photon
bandwidth 
wph, and magnitudes of major optical matrix
elements A and C will be discussed. For the fidelity F , we
will examine effects of the ratio B/A(= D/C) between major
and minor optical matrix elements, since F depends critically
on it.

We start with an estimation of P and F in a typical case.
We use ωph and the corresponding numerical values of optical
matrix elements given in Sec. II, namely, ωph = 1.6 · 105 GHz,
B/A = D/C ∼ 0.04, A ∼ 45 GHz, and C ∼ 30 GHz, with all
the matrix elements here taken to be real numbers. Moreover,
we take γSE = 1 GHz, 
ωph = 5 GHz, κDC = ωph/πQ =
90 GHz corresponding to a cavity Q ∼ 550, �PC = 200 GHz
corresponding to Q ∼ 250, and (α,β) = (1,0). The numerical

FIG. 7. Contour plots of the yield P as a function of the trion
decay rate γ ′

SE (nonradiative damping as well as damping into
noncavity modes) and 
ω′

ph (photon band width), for different γ ′
tD

(trion damping into DBR cavity modes), with (a) γ ′
tD = 0.1, (b)

γ ′
tD = 1, and (c) γ ′

tD = 10.

estimation of P and F using the above parameters in Eqs. (27)
and (33) gives P ∼ 0.998 and F ∼ 0.998.

Next, we discuss the yield P as a function of γ ′
tD (radiative

trion damping into DBR cavity modes), γ ′
SE (nonradiative

trion damping and radiative trion damping into noncavity
modes), and 
ω′

ph (photon band width), under the condition
given in Sec. III for Cases 1 and 2, namely, that �PC and κDC

are the largest frequency parameters.
Figure 5 presents the yield P as a function of the two

trion damping rates, γ ′
SE and γ ′

tD , for different 
ω′
ph, with


ω′
ph = 0.5 in Fig. 5(a) and 
ω′

ph = 5 in Fig. 5(b). Generally,
we see that P decreases with increasing γ ′

SE . On the other
hand, P varies nonmonotonously with γ ′

tD , in such a way
that in Fig. 5(a), P attains the maximum ∼1 around γ ′

tD ∼ 1
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for small γ ′
SE . In contrast, in Fig. 5(b), with 
ω′

ph = 5, it
violates the condition specified for Case 1 and hence also the
optimal condition for P . Therefore, P is typically small in this
case.

Figure 6 presents the yield P as a function of γ ′
tD and


ω′
ph. The effect of γ ′

SE on yield is studied with γ ′
SE= 0.1

in Fig. 6(a) and γ ′
SE= 1 in Fig. 6(b). We see that generally P

decreases with increasing 
ω′
ph but varies nonmonotonously

with γ ′
tD , with the maximum value ∼1 reached at small


ω′
ph in Fig. 6(a). In Fig. 6(b), because of the relatively large

magnitude of γ ′
SE , P is overall reduced in comparison to that

in Fig. 6(a).
Figure 7 presents the yield P as a function of γ ′

SE and

ω′

ph, for different γ ′
tDs, with (a) γ ′

tD = 0.1, (b) γ ′
tD = 1, and

(c)γ ′
tD = 10. We see that P generally decreases with both in-

creasing γ ′
SE and 
ω′

ph. Moreover, it varies nonmonotonously
with γ ′

tD , with its value in Figs 7(a) and 7(c) being overall
reduced in comparison to that in Fig. 7(b), where γ ′

tD = 1.
The results shown in Figs. 5–7 indicate that minimizing the

trion damping rate γ ′
SE is generally beneficial to the QST yield.

In addition, a narrow 
ω′
ph that favors the QST to proceed near

the resonance condition enhances the yield. Overall, we see
that the yield reaches the maximum ∼1 when γ ′

tD ∼ 1, 
ω′
ph <

1, and γ ′
SE < 1, confirming the optimal condition given in Sec.

III B.
Next, we discuss the fidelity F as a function of A, B, C, D,

α, and β. In particular, we will examine effects of the ratios
|B/A| and |β/α|, the phase of D/C (denoted as φD/C), and
the phase of β/α (denoted as φβ/α). We take A and C to be
real throughout the discussion.

Figure 8 presents the fidelity F as a function of |B/A| and
φD/C , with (a) α = 1, β = 0, (b) α = 1/

√
2, β = 1/

√
2, and

(c) α = 1/
√

2, β = i/
√

2. Overall, we see that F decreases
with increasing |B/A|. On the other hand, while F is
independent of φD/C in the case of Fig. 8(a), where the
incoming photon signal consists of single circular polarization,
in Figs. 8(b) and 8(c) F varies periodically in φD/C , with a
relative phase shift by π/2 between the two figures. These
features can be understood in terms of the fidelity formula
given in Eq. (33). By substituting B = A|B/A|eiφD/C and

β = α|β/α|eiφβ/α into the formula, we obtain, in the case of
|α| = |β| = 1/

√
2,

F = |C + |D| cos δ|2
|C|2 + |D|2 + 2C|D| cos δ

|A|2
|A|2 + |B|2 , (34)

where δ=φD/C + φβ/α , which shows that F is indeed periodic
in φD/C , and is shifted in φD/C in the presence of a finite
φβ/α . Moreover, the local maximum and minimum occur at
δ = nπ and δ = (n + 1/2)π , respectively, where n = integer.
However, although the fidelity varies with φβ/α , its overall
sensitivity to the incoming signal state can be suppressed by
reducing |B/A|, as reflected in both Eq. (34) and Fig. 8.

Last, Fig. 9 presents the dependence of fidelity F on both
|β/α| and φβ/α , for different combinations of |B/A| and
φD/C , with (a) |B/A| = 0.04, φD/C = 0; (b) |B/A| = 0.04,
φD/C = π/4; (c) |B/A| = 0.04, φD/C = π/2; (d) |B/A| =
0.4, φD/C = 0; (e) |B/A| = 0.4, φD/C = π/4; and (f) |B/A| =
0.4, φD/C = π/2. We see that F in Figs. 9(a)–9(c) with
|B/A| = 0.04 is generally larger than that in Figs. 9(d)–9(f),
with |B/A| = 0.4. Moreover, with |B/A| being small in
Figs. 9(a)–9(c), F ∼ 1 and is quite robust to the variations
in both |β/α| and φβ/α . In detail, F increases with |β/α| and
reaches the maximum at |β/α| = 1. Beyond that, although not
shown in the graphs, F would be expected to decrease from
the maximum when further increasing |β/α|, since, as Eq. (33)
indicates, F is basically a symmetric function of α and β. On
the other hand, F varies periodically with φβ/α and is shifted
by φD/C = π/4 when going from Figs. 9(a) to 9(b) or from
Figs. 9(d) to 9(e) and is shifted by φD/C = π/2 when going
from Figs. 9(a) to 9(c) or from Figs. 9(d) to 9(f), with the local
maximum and minimum occurring at φD/C + φβ/α = nπ and
φD/C + φβ/α = (n + 1/2)π , respectively, where n = integer.
The periodic behavior displayed here can again be understood
in terms of an analysis similar to the earlier one performed for
Fig. 8.

In the optimal condition for fidelity, overall, Figs. 8 and
9 show that the fidelity F depends on |β/α| and φβ/α of
the incoming signal and |B/A| and φD/C of the valley-pair
qubit. From the application point of view, they also make
the following important suggestion, namely, reduction of the

FIG. 8. Contour plots of the fidelity F as a function of |B/A| and the relative phase φD/C for different combinations of α and β = 0: (a)
α = 1, β = 0; (b) α = 1/

√
2, β = 1/

√
2; and (c) α = 1/

√
2, β = i/

√
2.
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FIG. 9. Contour plot of fidelity as a function of the photon amplitude ratio |β/α| and relative phase φβ/α . The effect of |B/A| and φβ/α on
fidelity is investigated separately, each under different combinations, namely, (a) |B/A| = 0.04, φD/C = 0; (b) |B/A| = 0.04, φD/C = π/4, (c)
|B/A| = 0.04, φD/C = π/2; (d) |B/A| = 0.4, φD/C = 0; (e) |B/A| = 0.4, φD/C = π/4; and (f) |B/A| = 0.4, φD/C = π/2.

single parameter |B/A| in order to allow for a high fidelity as
well as minimization of its sensitivity to |β/α|, φβ/α , and φD/C .
Since, as discussed in Sec. II C, |B/A| is zero for electrons
at the band edge and increases with the electron energy, the
strategy for favorable fidelity characteristics would therefore
be to move electron states to the band edge as close as possible.

V. CONCLUSION

In summary, we have investigated the valley-photon QST
under a hybrid DBR and PC cavity setup that provides both
an enhancement of the e-ph interaction and a spatial differen-
tiation between incoming and outgoing photons at the same
time. A quantum-mechanical analysis has been performed for
the system consisting of electrons, trions, and photons, with
the system being open to the environment and allowing for the
photons to move in and out. Effects of damping are included.
With the analysis, we have derived analytical expressions for
the yield and fidelity, which suggest the following condition for
an optimized yield: small trion damping rate, narrow photon
band width, and nearly matching rates of photon emission by
the trion into both cavities. It suggests the following condition
for an optimized fidelity: placement of qubit electrons in near-
band-edge states. Using realistic qubit and cavity parameters
as well as optical matrix elements, a numerical study has
also been carried out. A specific example is given with the
following parameters: QD size ∼70 nm, photon frequency

ωph = 1.6 · 105 GHz corresponding to graphene band gap
∼0.1 eV, trion damping rate γSE = 1 GHz, photon band width

ωph = 5 GHz, Q ∼ 550 for the DBR cavity, and Q ∼ 250
for the PC cavity. The calculation using the above parameters
gives yield and fidelity both near unity.

In conclusion, results of this initial paper suggest that the
unique valley-polarization correspondence in 2D hexagonal
materials such as graphene can be exploited to enable valley-
photon QST, with promising characteristics achievable under
accessible conditions. Further experimental and theoretical
explorations will be important to fully demonstrate such a
quantum process as well as realize its full potential for 2D
materials-based quantum technologies.

Last, we note that a similar idea of valley-photon QST may
be applicable to TMDCs. However, owing to the existence
of a strong spin-orbit interaction in TMDCs, spin and valley
degrees of freedom are coupled, giving rise to a significant dis-
tinction between gapped graphene and TMDCs. An extensive
work will therefore be required to generalize the valley-photon
QST discussed here to TMDCs.
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APPENDIX

Equation (17) can be solved by first considering the corresponding homogeneous equation, an eigenvalue problem for the
matrix

H0 =
(

a
√

|A|2 + |B|2√
|A|2 + |B|2 b

)
, a ≡ ωtrion − iγtotal,b ≡ ωPC − i�PC. (A1)

The solutions are given by the following eigenvalues

λ1 = (a + b) +
√

(a − b)2 + 4(|A|2 + |B|2)

2
, λ2 = (a + b) −

√
(a − b)2 + 4(|A|2 + |B|2)

2
, (A2)

and eigenvectors

|ϕ1〉 =
(

φ11

φ12

)
=

⎛
⎝−−a+b+

√
(a−b)2+4(|A|2+|B|2)

2
√

|A|2+|B|2
1

⎞
⎠, |ϕ2〉 =

(
φ21

φ22

)
=

⎛
⎝−−a+b−

√
(a−b)2+4(|A|2+|B|2)

2
√

|A|2+|B|2
1

⎞
⎠. (A3)

Next, we include the inhomogeneous part f (t). We express f (t) in terms of the eigenvectors of H0:

f (t) = c1(t)

(
φ11

φ12

)
+ c2(t)

(
φ21

φ22

)
, (A4)

with the expansion coefficients given by

c1(t) = φ22

φ11φ22 − φ12φ21

[
CφDC

σ+K (t) + DφDC
σ−K (t)

]
c2(t) = −φ12

φ11φ22 − φ12φ21

[
CφDC

σ+K (t) + DφDC
σ−K (t)

]
(A5)

It can be verified that the solution to Eq. (17) is given by(
φtri

K (t)

φPC
K1(t)

)
= −i

[
φ22

φ11φ22 − φ12φ21

(
φ11

φ12

) ∫ t

0
dt ′e−iλ1(t−t ′)CφDC

σ+K

(
t ′
) − φ12

φ11φ22 − φ12φ21

(
φ21

φ22

) ∫ t

0
dt ′e−iλ2(t−t ′)CφDC

σ+K (t ′)

+ φ22

φ11φ22 − φ12φ21

(
φ11

φ12

)∫ t

0
dt ′e−iλ1(t−t ′)DφDC

σ−K

(
t ′
) − φ12

φ11φ22 − φ12φ21

(
φ21

φ22

) ∫ t

0
dt ′e−iλ2(t−t ′)DφDC

σ−K

(
t ′
)]
(A6)

Using Eq. (14) for the DBR cavity photon amplitude, it gives

φPC
K1(t) = −i

√
cκDCφ

ph
0

φ12φ22

φ11φ22 − φ12φ21
[αC + βD]

[∫ t

0
dt ′e−iλ1(t−t ′) −

∫ t

0
dt ′e−iλ2(t−t ′)

]

×
∫ ∞

−∞

dω

2π
e

−i(ω−ωph)x0
c e

−(ω−ωph)2

2
ω2
ph

eiωt ′ − e−i(ωDC−iκDC−iC)t ′

(ω + ωDC − iκtotal)
(A7)

Now, substituting the above result into Eq. (24) and evaluating the resultant integral, we arrive at the final state amplitude
when the QST is completed:

lim
x0→−∞ φ

output
K1 (k2D,t → ∞) = −e−iωoutput(k2D)t Tk

√
cκDCφ

ph
0

φ12φ22

φ11φ22 − φ12φ21
[αC + βD]

× (λ1 − λ2)

(ωoutput(k2D) − λ1)(ωoutput(k2D) − λ2)(ωDC − iκtotal − ωoutput(k2D))
. (A8)

This leads to the result in Eq. (25).
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