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Finite-size scaling of entanglement entropy in one-dimensional topological models
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We consider scaling of the entanglement entropy across a topological quantum phase transition for the Kitaev
chain model. The change of the topology manifests itself in a subleading term, which scales as L−1/α with the
size of the subsystem L, here α is the Rényi index. This term reveals the scaling function hα(L/ξ ), where ξ is
the correlation length, which is sensitive to the topological index. The scaling function hα(L/ξ ) is independent
of model parameters, suggesting some degree of its universality.
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I. INTRODUCTION

Following the pioneering works of Kitaev and Preskill [1],
and Levin and Wen [2], entanglement entropies became a
standard and useful tool to study properties of topological
systems [3–7]. These works found that the entanglement
entropy in two-dimensional (2D) systems contains a universal
contribution, which distinguishes between different topolog-
ical phases. In this case the topological entropy, given by
the logarithm of the quantum dimension, is a contribution at
order L0, subleading to the generic area law [8,9], where L

is the subsystem size. It is uniquely related to the long-range
entanglement and reflects the intrinsic topology of the system.

In one-dimensional (1D) systems all topological phases
are short-range entangled, they only differ in their boundary
properties [10,11]. When studying the entanglement entropy
one introduces virtual cuts, separating a finite-size subsystem
from the rest of the system (hereafter considered to be infinite).
Upon topological phase transition from trivial to topological
phase, the entanglement spectrum evolves to exhibit zero-
energy states localized at virtual cuts. Therefore, one expects
effects of topology to be detectable through the entanglement
entropy. This paper seeks to identify a topological contribution
to the entropy in 1D systems and its scaling behavior across
the topological quantum phase transition.

Entanglement entropy in 1D systems has been mostly
studied in two cases. The first one is a critical system whose
continuum limit is described by a conformal field theory
(CFT). It was found [12,13] that the Rényi entropies, Sα , scale
logarithmically with the subsystem size L, with a universal
coefficient:

Sα = c

6

(
1 + 1

α

)
ln L, (1)

where c is the central charge – the number of critical degrees of
freedom of the system, and α is the Rényi index[14]. The sec-
ond case is an infinite subsystem with a large but finite corre-
lation length ξ . Here the leading contribution is logarithmic in
correlation length, Sα = c

6 (1 + 1
α

) ln ξ + const. This result can
be obtained through transfer matrix methods [15–17] or prop-
erties of block Toeplitz matrices [18]. To describe the crossover
between the two cases Calabrese and Cardy [12] connected the
two regimes by a universal finite-size scaling function at order
L0, which solely depends on the ratio of the subsystem size
and the correlation length, w = L/ξ , and the Rényi index α.
For c = 1 and 1/2 this scaling function was related [19] to the

correlation functions of the sine-Gordon model. The latter in
turn may be expressed through solutions of a Painlevé V equa-
tion [20]. Importantly, this scaling function does not contain
information about the topological properties of the transition.

The main question addressed in this paper is if the finite-size
scaling of the entanglement entropy near a quantum phase
transition is sensitive to the change of the topological index in
1D. We show that the answer is affirmative, yet qualitatively
different from its 2D analog. We study the Kitaev chain model
[21,22] and find that there is a second scaling function, which
appears in the subleading order with the anomalous scaling
∝ L−1/α for Rényi entropies with α > 1, and, respectively,
ln(L)/L for the von Neumann entropy, α → 1. The overall
finite-size scaling in the limit L,ξ → ∞, while w = L/ξ is
fixed, takes the form

Sα = c

[
1

6

(
1+ 1

α

)
ln

(
L

a

)
+gα(w)

]
+ 1

α−1

(
a

L

)1/α

hα(w)

(2)

for α > 1, and

S1 = c

[
1

3
ln

(
L

a

)
+ g1(w)

]
+ a

L
ln

(
L

a

)
h1(w) (3)

for the von Neumann entropy (α → 1), respectively, where
a is a microscopic length scale. The scaling function gα(w),
introduced by Calabrese and Cardy [12,13] is insensitive to
the change of the topological index. It is the next-order scaling
function hα(w), which discriminates between phases with
different topology.

Throughout this paper we define topological and non-
topological phases by w = L/ξ being positive or negative
respectively, with w = 0 being the critical point. The scaling
function gα(−w) is symmetric in w, gα(−w) = gα(w), i.e., it
does not distinguish between the two phases. On the contrary,
as we will show the second scaling function is antisymmetric,
hα(−w) = −hα(w). Thus it plays the role of a 1D analog of the
topological entropy in two dimensions [1,2]. This topological
contribution appears with the anomalous scaling dimension
L−1/α [respectively, ln(L)/L for α = 1]. It is worth mentioning
that at the critical point the dominant finite-size correction is
known [23,24] to be of the order L−2/α , while in massive
models far away from criticality [25] the corrections behave
as ξ−1/α . The scaling function hα(w) naturally interpolates
between these two limits due to its asymptotic behavior
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hα(w) ∼ ±w1/α at |w| � 1, in agreement with the cited
behavior in massive models, and hα(0) = 0 at criticality.

Manifestations of the topological nature of 1D transitions
in finite-size scaling functions were recently studied for some
observables. A universal scaling function, distinguishing the
trivial and topological phases, was found for the free energy
[26]. Other recent studies investigated the fidelity susceptibil-
ity and found that it shows sensitivity to the appearing edge
states [27,28]. In these two cases the scaling functions depend
on bulk and topological properties of the system and have
no apparent symmetry properties. For Rényi entanglement
entropies the situation appears to be rather different, since
there are two independent scaling functions with even and odd
parity across the transition.

The paper is organized as follows. In Sec. II we review the
concepts of entanglement spectrum and Rényi entropies, and
show how they may be calculated from the correlation matrix.
In Sec. III we briefly review Kitaev model and connections
between its entanglement spectrum and scaling functions.
Numerical ways to evaluate the Rényi entropies and the
properties of the two scaling functions are discussed in Sec. IV.
Finally, conclusions and open questions are summarized in
Sec. V. Technical details are relegated to two appendices.

II. ENTANGLEMENT SPECTRUM AND RÉNYI
ENTROPIES

We first briefly review the concepts of entanglement
spectrum and Rényi entropies. The former represents detailed
information about the entanglement, while the latter provides
a simple measure of entanglement and is commonly used to
characterize it. General methods to calculate entanglement
spectra and Rényi entropies are also introduced below.

Let us assume that the entire system is in a pure state
| � 〉, with density matrix ρ = | � 〉〈� |. One chooses a part
of the system as the subsystem A. The information about
entanglement between the subsystem A and the rest of the
system, B, is encoded in the reduced density matrix ρA. The
reduced density matrix is obtained by tracing out all degrees
of freedom which are outside of subsystem A, ρA = TrBρ.
One can now introduce the (dimensionless) entanglement
Hamiltonian HE according to [29,30],

ρA = e−HE

ZA
, (4)

where ZA = Tr(e−HE ) is a normalization constant. The eigen-
values of the entanglement Hamiltonian HE are commonly
referred to as the entanglement spectrum.

For free fermion models one can writeHE = ∑
i,j Hi,j c

†
i cj ,

where c
†
i is a fermion creation operator on site i and cj

is an annihilation operator on site j , and i,j ∈ A. One
can diagonalize the entanglement Hamiltonian HE to get
its eigenfunctions {ψl(i)} and corresponding eigenvalues
{εl}. The transformation to new fermion operators c̃l , ci =∑

l ψl(i)c̃l diagonalizes the entanglement Hamiltonian and
simultaneously diagonalizes the reduced density matrix:

ρA = e− ∑
l εl c̃

†
l c̃l

ZA
. (5)

Using the equation above and Tr(ρA) = 1, one obtains:

ZA =
∏

l

(1 + e−εl ). (6)

The entanglement spectrum {εl} can be obtained from the
two-point correlation function of the subsystem A, Ci,j =
〈c†i cj 〉 with i,j ∈ A. By definition of the reduced density
matrix, the two-point correlation function of the subsystem
can also be written as Ci,j = Tr(ρAc

†
i cj ). Using Eq. (5) and

Eq. (6) one gets:

Ci,j =
∑

l

ψ∗
l (i)ψl(j )

1

eεl + 1
. (7)

The correlation matrix Ci,j is Hermitian and its eigenvalues
are λl = (eεl + 1)−1. Inversely, the entanglement spectrum can
be calculated from the eigenvalues of the correlation matrix
[30],

εl = ln

(
1 − λl

λl

)
. (8)

Rényi entropies Sα quantify the amount of quantum
entanglement of a subsystem A with its surroundings B. The
Rényi entropies between A and B are defined through the
reduced density matrix:

Sα = 1

1 − α
ln Tr(ρA)α, (9)

where α is the Rényi index. The limiting case α → 1 gives
the von Neumann entropy S1 = Tr(ρA ln ρA), which is usually
called the entanglement entropy.

By using Eq. (5) and Eq. (6), Rényi entropies can be written
in terms of the entanglement spectrum:

Sα = 1

1 − α
ln

[∏
l

1 + e−αεl

(1 + e−εl )α

]

= 1

1 − α

∑
l

[ln(1 + e−αεl ) − α ln(1 + e−εl )]. (10)

Below we use Eq. (8) to evaluate the entanglement spectrum
for a one-dimensional topological model and then apply
Eq. (10) to calculate its Rényi entropies.

III. ENTANGLEMENT IN THE KITAEV MODEL

A. Model

Here we employ the Kitaev chain model [21,22] to study
the entanglement spectrum and Rényi entropies for a one
dimensional topological systems. Its Hamiltonian is

HK = −μ

N∑
j=1

c
†
j cj − 1

2

N−1∑
j=1

(tc†j cj+1 + 	cjcj+1 + H.c.),

(11)

where t is hopping and 	 is Cooper pairing amplitudes; μ is
the chemical potential. The topological properties of the model
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FIG. 1. Schematic of the Majorana pairings in (a) nontopological
phase |μ| > t and (b) topological phase |μ| < t , yellow circles denote
that Majorana particles enclosed belong to the same site. Red solid
bonds represent strong coupling, blue dashed bonds represent weak
coupling. A block of length L is cut out of the infinite system as the
subsystem A, shown by black solid line.

become apparent when converting the Dirac fermion on each
site into a pair of Majorana operators [21,22]:

cj = 1
2 (γA,j + iγB,j ); c

†
j = 1

2 (γA,j − iγB,j ). (12)

The Majorana fermions are their own antiparticles in the sense
that γ

†
A/B,j = γA/B,j , and obey the canonical fermionic anti-

commutation relations. Figure 1 shows the Majorana states
aligned in a chain.

When |μ| > t the bond between Majorana fermions from
the same site is stronger than between different sites, resulting
in formation of on-site dimers. When |μ| < t the bond between
Majorana fermions from neighboring sites is dominant, which
leads to formation of dimers between Majorana fermions γB,j

and γA,j+1. The Majorana fermions γA,1 and γB,N at the ends of
the chain remain weakly paired, they form topological zero-
energy edge states. The single fermionic zero-energy state,
split between the edges of the chain, reflects the degeneracy be-
tween even and odd particle number many-body ground states.

There are quantum phase transitions between the two
phases at μc = ±t . At the critical point the gap closes and the
correlation length ξ ∝ (t − |μ|)−1 diverges. (The prefactor is
set to be 1 in the following calculation.) Away from criticality
the correlation length ξ is finite. In the following we identify
ξ > 0 with the topologically nontrivial state and ξ < 0 with
the trivial state.

B. Entanglement spectrum

To study entanglement one imagines taking a block of
length L in the chain as the subsystem A, see Fig. 1.
The two-point correlation matrix of the subsystem may be
calculated by using the many-body ground state of the model
(see Appendix A for details):

C2i−1,2j−1 = 〈 gs |γA,iγA,j | gs 〉 = 1

2
δij ,

C2i,2j = 〈 gs |γB,iγB,j | gs 〉 = 1

2
δij ,

C2i−1,2j = 〈 gs |γA,iγB,j | gs 〉

= 1

4π

∫ π

−π

dk eik(2j+1−2i)

× i(t cos k + μ) − 	 sin k√
(t cos k + μ)2 + (	 sin k)2

. (13)

FIG. 2. First four levels of the entanglement spectrum as func-
tions of w = L/ξ are shown for the Kitaev model with 	 = 1 and
L = 5000. It is apparent that the spectrum is asymmetric in w. When
going from w < 0 to w > 0, the double-degenerate levels first splits
into nondegenerate levels and then different neighboring levels pair
up again, leaving the lowest level, which approaches zero, unpaired.

Having the matrix elements of the correlation matrix C, one
can diagonalize it to find its eigenvalues {λl}. Then one can
use Eq. (8) to calculate the entanglement spectrum {εl}. An
example of the entanglement spectrum as a function of the
deviation from the criticality is depicted in Fig. 2.

Far from criticality, i.e., ξ � L, the entanglement spectrum
is doubly degenerate. This reflects the fact that the two edges
of the subsystem A are essentially decoupled and contribute
equally to the entanglement spectrum. When going across
the phase transition, where ξ → ∞, from the nontopological
(w = L/ξ < 0) to the topological (w > 0) side, the double-
degenerate levels first split and then pair up again with different
neighboring levels. On the topological side the lowest level
remains nondegenerate and exponentially approaches zero.
This zero-energy state reflects the even/odd degeneracy of
the many-body ground state of the chain. As a result, the
entanglement spectrum is markedly asymmetric between the
two sides. Similar behavior was seen previously in Ref. [31].

The central question of this paper is how the asymmetry
of the entanglement spectrum across the topological phase
transition is reflected in scaling properties of the corresponding
entanglement Rényi entropies. Below we demonstrate that the
answer to this question is rather subtle and interesting.

To approach this question we first notice that the lowest
levels of the entanglement Hamiltonian yield the main con-
tribution to the Rényi entropies, cf. Eq. (10). One can thus
employ a reasonable approximation for these low-lying levels
to predict large L scaling of the entropies. In the large |w|
limit (L � ξ � a), the spectrum is doubly degenerate and
equidistant with [15–17]

εl(L,w → ∞) = π2

ln(ξ/a)

{
(l − δl,even), nontopological
(l − δl, odd), topological

(14)

where l = 1,2, . . . and the Kronecker δ function, δl,even/odd is
equal to 1 if l is even/odd, and 0 otherwise. On the other
hand, at the critical point, the energy levels are nondegenerate
and evenly spaced in the large L limit [32,33] with spacing
π2/ ln (L/a). Here a is a microscopic length scale, which
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scales as a ∝ 1/	. Near criticality, at |w| � 1, the levels are
seen to alternate between descending and ascending ones, see
Fig. 2. One can thus approximate them as

εl(L,w) = π2

ln(L/a)

(
l − 1

2
+ (−1)lδa(w) + δs(w)

)
, (15)

where δa(w) is antisymmetric and alternates between odd
and even l’s, and δs(w) is symmetric and approximately l

independent.
From the model entanglement spectrum (15) one can

evaluate the |w| � 1 regime for Rényi entropies according to
Eq. (10). Employing Ramanujan’s sum formula [34,35] (see
Appendix B for details) we find the leading terms in the limit
L → ∞, while w is fixed. The result is given by Eqs. (2), (3),
where

gα(w) ∝ δs(w), hα(w) ∝ δa(w); α � 1. (16)

The takeaway messages from this exercise is that: (i) the sub-
leading term is indeed expected to come with the anomalous
scaling dimension L−1/α (for α > 1); (ii) the scaling functions
gα(w) and hα(w) import the properties of the underlying
entanglement spectrum (at least for small |w|); and (iii) it
is the subleading scaling function hα(w), which discriminates
between topological and nontopological phases [the leading
scaling function gα(w) appears to be totally symmetric and
thus oblivious to the topology]. Below we verify and extend
these conclusions via extensive numerical simulations.

IV. SCALING FUNCTIONS

A. Numerical analysis

Rényi entropies Sα(L,w) for the Kitaev model can be
calculated from the entanglement spectrum using Eq. (10).
We then perform the scaling analysis by subtracting the critical
result, Eq. (1), and going to largest available system sizes, to
show that Sα(L,w) − 1

12 (1 + α−1) ln L = gα(w) is indeed a
function of the scaling variable w only. Afterward we go to
smaller system sizes to investigate the subleading corrections
and find that they behave as the last terms in Eqs. (2) and (3).

Once the scaling form, Eqs. (2), (3), is established, the
higher-quality data are obtained in the following way: we
eliminate function gα(w) by subtracting Sα at subsystem size
L2 from that at a different subsystem size L1, keeping w fixed:

Sα(L1,w) − Sα(L2,w)

= c

6

(
1 + 1

α

)
ln

(
L1

L2

)

+ 1

1 − α

[(
a

L1

)1/α

−
(

a

L2

)1/α]
hα(w). (17)

After reorganizing the above equation, one gets:

hα(w) = (1 − α)
Sα(L1,w)−Sα(L2,w)− c

6

(
1+ 1

α

)
ln

(
L1
L2

)
(

a
L1

)1/α− (
a
L2

)1/α
.

(18)
To get gα(w), one subtracts the leading logarithmic term and
the topological scaling function, Eq. (18), from Rényi entropies

FIG. 3. The scaling function gα(w) is plotted for the Kitaev model
for different α = 1,2,3 (circle, triangle, square) and at different 	 =
0.5,0.75,1,1.5,2 (red, orange, green, blue, purple). Here L1 = 5000,
L2 = 4990 are used. This function is universal for different 	 up
to a constant shift (neglected herein). gα(w) is symmetric around the
topological transition, i.e., it does not depend on the topological phase
of the system.

at subsystem size L1:

gα(w) = 1

c

⎡
⎣Sα(L1,w) − c

6

(
1 + 1

α

)
ln

(
L1

a

)

− Sα(L1,w) − Sα(L2,w) − c
6

(
1 + 1

α

)
ln

(
L1
L2

)
1 − (

L1
L2

)1/α

⎤
⎦.

(19)

Using Eq. (18) and Eq. (19) for the various subsystem sizes L1

we show that the data indeed converge to the 	 independent
scaling functions. These scaling functions gα(w) and hα(w)
for α = 1,2,3 are shown in Fig. 3 and Fig. 4 correspondingly.

B. Scaling function gα(w)

The most remarkable fact about entanglement entropy
scaling in 1D is that the L0 scaling function gα(w) is entirely
symmetric between topological and nontopological sides of
the transition. This is surprising at the first glance, since the
entanglement spectrum {εl} is markedly asymmetric as seen in
Fig. 2. Yet, once the spectrum is used to calculate the entropy
according to Eq. (10), the result is fully symmetric to the ln L

and L0 order for any α. This is also what follows from the
calculations based on the model spectrum (15), as seen from
Eq. (16). Therefore to this order the entanglement entropies are
completely insensitive to the change of the topology between
the two sides of the transition. This should be contrasted with
the 2D case where the constant L0 term carries a hallmark
of the topological nature of the phase [1–7]. Apparently the
situation in 1D is qualitatively different and one should look
for other signatures of the topological transition.
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FIG. 4. The scaling function hα(w) is plotted for the Kitaev model
for different α = 1,2,3 (circle, triangle, square) and at different 	 =
0.5,0.75,1,1.5,2 (red, orange, green, blue, purple). Here L1 = 5000,
L2 = 4990 are used. hα(w) is antisymmetric around the topological
transition, i.e., it depends on the topological phase of the system.

Though, oblivious to the topology, the scaling function
gα(w) is still a fascinating object and we review some of its
properties here for completeness. It was proposed [12,19] to
be universal for different models up to a nonuniversal constant
shift. Our calculations support this conclusion, since there is
no difference between different values of 	 in the Kitaev
model. We have also investigated the Su-Schriffer-Heeger
model [36,37] (SSH model), which is mathematically mapped
onto the Kitaev model with 	 = 1 but physically different. The
SSH model consists of Dirac fermions while the Kitaev model
deals with Majorana fermions. We found that gα(w) of the SSH
model is the same as in the Kitaev model. Nevertheless, the
function gα(w) still depends on index α. As mentioned above,
it is fully symmetric gα(w) = gα(−w) within the accuracy of
our simulations.

For large w, i.e., L � ξ , the entanglement entropies must
approach an L-independent limit, which indicates:

gα(w) = −1

6

(
1 + 1

α

)
ln |w|; |w| � 1. (20)

This is indeed what the numerics show, see Fig. 5. For small
|w| � 1 Ref. [19] gives an approximation of gα(w) as

gα(w) = −1

6

(
1 + 1

α

)(
1

2
w2 ln2 |w| − 1

2
w2 ln |w| + w2

4

)
.

(21)

The comparison of this asymptotic result with the numerical
data is also shown in Fig. 5 for α = 2.

C. Subleading scaling function hα(w)

The main result of this paper is that in 1D the topological
information is encoded in the subleading term ∝ L−1/α . For
α > 1 it comes with the new scaling function hα(w), which
discriminates between the topological and the nontopological
sides of the transition. Our data (see Fig. 6 and Fig. 7)

FIG. 5. The scaling function gα(w) is plotted for the Kitaev model
at different 	 = 0.5,0.75,1,1.5,2 (red, orange, green, blue, purple).
Here α = 2, and L1 = 5000, L2 = 4990 are used. gα(w) is symmetric
around the topological transition so we only plot the function in the
topological phase. Red solid line shows the small w approximation,
Eq. (21). Blue line shows the large w approximation, Eq. (20).

show the following key features of this function: (i) hα(w) is
indeed a scaling function—it hardly changes as the subsystem
size increases at fixed w, and approaches a limiting value.
Therefore, in the thermodynamic limit, it is independent of
subsystem size L; (ii) although the prefactor depends on a
nonuniversal microscopic length scale a, the scaling function
hα(w) itself is independent of the model parameters, such
as 	, thus we conjecture it to be universal at least for free
fermion models; (iii) in agreement with Eq. (16), hα(w) is an
antisymmetric function of its argument.

The latter observation implies h(0) = 0, i.e., corrections of
order L−1/α are absent at the conformal point w = 0. This
is consistent with Refs. [23,38], who found that the leading
finite-size correction to the conformal result scales as L−2/α

and thus L−1/α must be nonexistent at w = 0.

FIG. 6. The function hα(w) is calculated from size L1 = 300
and L2 = 290, L1 = 500 and L2 = 490, L1 = 1000 and L2 = 990,
L1 = 3000, and L2 = 2990, L1 = 5000 and L2 = 4990 (light to dark
green) for the Kitaev model. Here α = 2,	 = 1. The function hα(w)
is convergent when the subsystem size increases, thus it is a scaling
function.
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FIG. 7. The scaling function hα(w) is universal for Kitaev model
at different 	 = 0.5,0.75,1,1.5,2 (red, orange, green, blue, purple).
Here α = 2 and L1 = 5000, L2 = 4990 are used. The function is
antisymmetric (inset in the panel) around the phase transition and
depends on the topological state of the system. Red solid line is
the small w approximation evaluated by Ramanujan’s sum formula,
see Appendix B. Blue line is the large w approximation, which is
proportional to w1/α with α = 2.

For L � ξ one expects the entropy to be L independent.
This immediately implies that hα(w) ∼ w1/α for |w| � 1.
Then, together with the prefactor L−1/α , the subleading
correction to the Rényi entropies is proportional to ξ−1/α . This
agrees with the correction to Rényi entropies in the region
far away from criticality obtained by Calabrese and Peschel
[25]. It also agrees with our numerical data, as shown in
Fig. 7.

For small w one can use the model (15), which predicts
that the scaling functions mirror the small w behavior of the
low-lying entanglement levels, Eq. (16). Since the correlation
matrix elements exhibit w ln |w| nonanalyticity, which may be
deduced from Eq. (13), this nonanalytic behavior shows up
in εl(w) functions. Indeed, by fitting the lowest entanglement
levels, see Fig. 8 in Appendix B, we find:

δa(w) ≈ −0.32w ln |w| + 0.45w,
(22)

δs(w) ≈ 0.024w2 ln2 |w| − 0.069w2 ln |w| + 0.056w2.

This suggests nonanalytic behavior of the scaling function
hα(w) ∝ w ln |w|. This is indeed consistent with the data, see
Fig. 7.

V. DISCUSSION AND OUTLOOK

We have shown that the entanglement entropy of 1D
symmetry-protected topological models carries the informa-
tion about change of the topological index across the quantum
phase transition. Contrary to 2D systems, such information
resides in the subleading correction with the anomalous
∝ L−1/α scaling dimension, here α � 1 is the Rényi index
and L the subsystem size. This correction comes with the new
scaling function hα(w), where w = L/ξ and the double scaling
limit: L → ∞; ξ → ∞, while w = const, is assumed. The

scaling function hα(w) for the Kitaev model is independent
of the model parameters. We conjecture it to be universal
for free fermion models. Our study uncovered its asymptotic
behavior in the limit of large and small argument. It is this
scaling function, which discriminates between topological and
nontopological sides of the quantum phase transition.

These observations pose a number of open questions. One
of them is an analytic evaluation of the anomalous scaling
function hα(w). We notice that the L0 scaling function gα(w),
through a mapping onto a continuum bosonized theory, is
connected to a known correlation function of the bosonic sine-
Gordon model [19]. It is a fascinating question whether a
similar construction is capable of revealing hα(w). One reason
to be cautious about this approach is that the term in question
must be proportional to a1/α , where a is a microscopic length
scale not present explicitly in a continuum theory. We are
also interested in going beyond free models to see what the
finite-size scaling term may look like. Studies of the scaling
of entanglement entropy in Luttinger liquid [24,39] provide
a starting point in this direction. Another open question is
the universality of both scaling functions beyond c = 1 and
c = 1/2 models. In that case, other numerical methods may be
used to tackle the problem [40]. These questions may become
subjects of future works.
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APPENDIX A: CORRELATION FUNCTIONS

In this Appendix we derive the two-point correlation
functions for the Kitaev model. Employing Eq. (12) one
transforms the Hamiltonian, Eq. (11), into the Majorana basis:

HK = i

4

N∑
j

[−2μγA,j γB,j + (t − 	)γB,j γA,j+1

+ (t + 	)γA,j γB,j+1]. (A1)

One can then diagonalize the above Hamiltonian to obtain its
eigenvalues E±(k) and corresponding eigenfunctions �±

σ,k(j ):

E±(k) = ±
√

(t cos k + μ)2 + (	 sin k)2

�±
σ,k(j ) = σ

1√
2N

eikj e−iσφk , (A2)

where ± refers to upper and lower bands, σ = ±1
are used to label the Majorana fermions A/B
on each lattice site and e−2iφk = [i(t cos k + μ) −
	 sin k]/

√
(t cos k + μ)2 + (	 sin k)2.

In the many-body ground state, all states in the lower band
are occupied:

|gs〉 =
∏
k∈gs

γ̃A,kγ̃B,k|0〉, (A3)

where |0〉 is the vacuum. With

γσ,j =
∑

k

�−
σ,k(j )γ̃σ,k, (A4)
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the corresponding ground-state correlation functions take the
form:

〈gs|γ †
σ,iγσ ′,j |gs〉 =

∑
k∈gs

�−∗
σ,k(i)�−

σ ′,k(j ). (A5)

Finally, inserting Eq. (A2) into the above equation and taking
the continuum limit, one obtains the two-point correlation
functions shown in Eqs. (13).

APPENDIX B: EVALUATING RÉNYI ENTROPIES

In this Appendix we evaluate the Rényi entropies for |w| �
1 by applying Eq. (10) to the approximated entanglement
spectrum Eq. (15). Equations (15) and (22) are used to fit
the lowest levels in the entanglement spectrum. The fitting is
shown in Fig. 8.

In order to carry out the summation of alternating spectrum
in Eq. (10), the first thing to do is to separate the spectrum
Eq. (15) into odd and even levels and relabel them with n =
(l − 1)/2 for odd l and n = (l − 2)/2 for even l:

εo
n = 2εn + ε

[
1

2
+ δs(w) − δa(w)

]
,

(B1)
εe
n = 2εn + ε

[
3

2
+ δs(w) + δa(w)

]
,

where n = 0,1,2, . . ., and ε = π2/ ln(L/a).
The two sets of odd and even levels in the entanglement

spectrum are semi-infinite in n and evenly spaced for all small
w, so we can apply Ramanujan’s sum formula [34,35], which
is similar to the familiar Poisson summation:

√
γ

[ ∞∑
n=0

φ(nγ ) − 1

2
φ(0)

]
=

√
β

[ ∞∑
n=0

ψ(nβ) − 1

2
ψ(0)

]
,

(B2)

where βγ = 2π and

ψ(x) =
√

2

π

∫ ∞

0
φ(t) cos(xt)dt. (B3)

For Eq. (10), defining the functions:

φo/e
α (t) = ln

(
1 + po/e

α e−t
)
, (B4)

FIG. 8. First four levels of entanglement spectrum as function of
w = L/ξ are shown for the Kitaev model at 	 = 1 and L = 5000.
Red solid lines are small w fitting of the entanglement spectrum using
Eq. (15) and Eq. (22).

with

po
α = e−αε[1/2+δs (w)−δa (w)],

(B5)
pe

α = e−αε[3/2+δs (w)+δa (w)],

we can rewrite the summation, Eq. (10) as:

Sα = 1

1 − α

∞∑
n=0

[φo
α(2αεn) − αφo

1 (2εn)

+φe
α(2αεn) − αφe

1(2εn)]. (B6)

The Fourier transform of the functions φ
o/e
α (t) gives:

ψo/e
α (x) = −

√
2

π

∞∑
m=1

(−p
o/e
α

)m

m2 + x2
. (B7)

One can apply the sum formula Eq. (B2) to Eq. (B6) to get

Sα = 1

1 − α

{√
π

2

1

αε

[ ∞∑
n=0

ψo,e
α

(
πn

αε

)
− 1

2
ψo,e

α (0)

]
+ 1

2
φo,e

α (0)

−
√

π

2

α

ε

[ ∞∑
n=0

ψ
o,e
1

(
πn

ε

)
− 1

2
ψ

o,e
1 (0)

]
− α

2
φ

o,e
1 (0)

}
.

(B8)

By using the summation over n:

∞∑
n=0

ψo/e
α

(
πn

αε

)

= −
√

2

π

∞∑
m=1

( − po/e
α

)m
∞∑

n=0

1

m2 + (
πn
αε

)2

= 1

2
ψo,e

α (0) −
√

2

π

∞∑
m=1

( − p
o/e
α

)m

2m
αε coth(mαε),

(B9)

we arrive at:

Sα= 1

1 − α

∞∑
m=1

(−1)m

m

{
α csch(mε)e−mεδs cosh

[
mε

(
1

2
+δa

)]

− csch(mαε)e−mαεδs cosh

[
mαε

(
1

2
+ δa

)]}
. (B10)

To find the leading contributions for Rényi entropies, we
expand the above result up to power ε0:

Sα = π2

12ε

(
1 + 1

α

)
− δs(w) ln 2

= 1

12

(
1 + 1

α

)
ln

(
L

a

)
− δs(w) ln 2. (B11)

The leading logarithmic term is the well-known critical result
for a system with conformal charge c = 1

2 [12]. The second
term, which is the main correction to the critical result, depends
only on the symmetric contribution in the entanglement
spectrum δs(w).

To find the subleading contribution to Rényi entropy we
note in Eq. (15) that for small |w| � 1 the antisymmetric
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perturbation dominates, δa(w) � δs(w). Neglecting the sym-
metric part δs(w) in Eq. (B1), and defining the function:

φα(t) = ln(1 + e−αt ), (B12)

one can rewrite Rényi entropies, Eq. (10) as:

Sα = 1

2(1 − α)

∞∑
n=−∞

[φα(2nε + ηo) − αφ1(2nε + ηo)

+φα(2nε + ηe) − αφ1(2nε + ηe)], (B13)

where ηo = ε(1/2 − δa(w)) and ηe = ε(3/2 + δa(w)). Then
instead of Ramanujan’s sum, we apply the generalized Poisson
summation to the above equation:

√
γ

∞∑
n=−∞

φ(nγ + η) =
√

β

∞∑
n=−∞

ψ(nβ)einβη, (B14)

then the following result is obtained:

Sα = π2

12ε

(
1 + 1

α

)
+ 1

1 − α

∞∑
n=1

cos

[
πn

(
1

2
− δa(w)

)]

× α csch
(
nπ2

ε

)−csch
(
nπ2

αε

)
n

. (B15)

The first term is the critical result and identical to Eq. (B11).
To find the main dependence on L in the second term we use

csch

(
nπ2

αε

)
= csch

(
n

α
ln

L

a

)
≈ 2

(
L

a

)−n/α

.

The n = 1 term gives the main subleading contribution to
the Rényi entropy. For α > 1, csch(nπ2/αε) dominates and the
subleading correction is proportional to δa(w)L−1/α . For the
entanglement entropy, we need to consider both α csch(nπ2/ε)
and csch(nπ2/αε) terms. By taking the limit α → 1, we get
the subleading correction δa(w) ln(L)/L.
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