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We show that all the singlet even-frequency, singlet odd-frequency, triplet even-frequency, and triplet odd-
frequency pairings, together with the corresponding order parameters (gaps), can be realized in InSb (110)
spin-orbit-coupled quantum well in proximity to s-wave superconductor in Fulde-Ferrell-Larkin-Ovchinnikov
phase or with a supercurrent. It is revealed that with the singlet even-frequency order parameter induced by the
proximity effect, triplet even-frequency pairing is induced due to the broken spin-rotational symmetry by the
spin-orbit coupling. Since the translational symmetry is broken by the center-of-mass momentum of Cooper pair in
Fulde-Ferrell-Larkin-Ovchinnikov phase or with a supercurrent, the singlet odd-frequency pairing can be induced.
With the translational and spin-rotational asymmetries, the triplet odd-frequency pairing is also realized. Then,
we show that the corresponding order parameters can be obtained from the self-energy of the electron-electron
Coulomb interaction with the dynamic screening. The singlet and the induced triplet even-frequency order
parameters are found to exhibit the conventional s- and p-wave characters in the momentum space, respectively.
Whereas for the induced odd-frequency order parameters in quantum well, the singlet and triplet ones show the p-
and d-wave characters, respectively. Moreover, the p-wave character of the singlet odd-frequency order parameter
exhibits anisotropy with respect to the direction of the center-of-mass momentum. While for the triplet one, we find
that dx2 - and dxy-wave characters can be obtained with respect to the direction of the center-of-mass momentum.
We show that at proper density, the singlet even-frequency order parameter is suppressed and the induced singlet
odd-frequency, triplet even-frequency, and triplet odd-frequency ones can be detected experimentally.
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I. INTRODUCTION

In the field of superconductivity, symmetry of the Cooper-
pair wave function in spin, time, and orbital spaces has
attracted much attention for the past few decades. Within the
framework of superconductivity theory developed by Bardeen,
Cooper, and Schrieffer (BCS) [1], it is established that a Cooper
pair is formed by two electrons with momenta q + k and
q − k near the Fermi surface. Due to the Fermi-Dirac statistics,
the Cooper-pair wave function must have sign change in the
exchange of the two electrons. In the spin space, Cooper pair
can be classified into either singlet or triplet type. As for
the orbital part of the pair wave function, when we focus on
the symmetry with respect to the exchange of two momenta
q + k and q − k, i.e., k → −k, one can define the parity of
the Cooper pair. For the conventional BCS superconductors
such as Al, Pb, and Nb, in the presence of the translational
symmetry (q = 0) and together with the space, time-inversion,
and spin-rotational symmetries, the Cooper pairs are in the
singlet even-frequency even-parity state, in accord with the
Fermi-Dirac statistics. Here, even/odd frequency refers to the
situation that the pair wave function is even/odd with respect
to the exchange of time coordinates.

In 1974, Berezinskii considered the possibility of the
triplet even-frequency pairing with even parity in the ob-
served phase of 3He [2]. After that, the possibilities of the
Cooper pair with other symmetries are extensively studied,
and from the symmetry analysis [3], Cooper pairs can be
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classified into (i) singlet even frequency (SE) with even
parity; (ii) singlet odd frequency (SO) with odd parity; (iii)
triplet odd frequency (TO) with even parity; (iv) triplet
even frequency (TE) with odd parity. Specifically, after the
proposal by Berezinskii, TO pairing has been discussed in a
wide variety of theoretical models with spin-rotational and
time-inversion asymmetries [4–11], e.g., Kondo model [4,6],
Hubbard model [5,7,9,10], and heavy-fermion system [8,11].
Meanwhile, several proposals about the SO pairing have also
been reported in the inhomogeneous systems with space- and
time-inversion asymmetries by introducing effective p-wave
electron-electron (e-e) interaction [12–16]. In the presence
of the odd-frequency pairings, by considering the retardation
effect of the electron interaction, odd-frequency gaps or
odd-frequency order parameters are theoretically suggested
[11,13,15,17]. However, up until now, odd-frequency bulk
superconductor has not yet been realized experimentally.
Moreover, it is now commonly believed that the pairing in
superfluid 3He is in the TE type [18–25]. Recently, much
effort has been focused on the superconductivity in material
Sr2RuO4 due to the generally recognized similarity to that
in 3He [26–36]. The pairing and order parameter in super-
conducting Sr2RuO4 are theoretically suggested [26–28,30]
and primarily confirmed from recent experiments [29,31–36]
to be the p-wave TE type. Furthermore, it is reported very
recently that the TE pairing and order parameter can also be
realized in the noncentrosymmetric superconductor [37–39]
with spin-orbit coupling (SOC) existing in nature [40–42],
whose experimental confirmations are still in progress.

Although it is not easy so far to realize odd-frequency
superconductivity and/or triplet one in the uniform bulk
system, it is more promising to induce these pairings in the
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inhomogeneous systems with lower symmetry. Specifically,
in the last decade, the proximity effect has been studied
intensively in multilayered structures consisting of supercon-
ductors and nonsuperconducting systems and it is well known
that the superconducting correlation can penetrate into the
normal region. In superconductor-ferromagnet structure, with
the time-inversion and spin-rotational asymmetries, it is well
established that the TO pairing is induced in ferromagnet [43–
51]. Moreover, it was predicted that with the inhomogeneous
ferromagnet, the induced TO pairing can diffuse into the
ferromagnet with the longer diffusion length than that of
the SE one [43]. Nevertheless, with the conventional s-wave
electron-electron (e-e) interaction, the TO gap (i.e., the TO
order parameter) is zero. Similar to the magnetization, the
SOC can also break the spin-rotational symmetry. Together
with the broken space-inversion symmetry by the SOC,
the TE pairing is expected to be induced [52–58], which
was first pointed out by Gor’kov and Rashba in s-wave
superconductor with the SOC induced by the absorption of
ion [52]. Then, a great deal of efforts have been devoted to
the multilayered structures consisting of superconductors and
spin-orbit-coupled nonsuperconducting systems as a natural
extension [53–58]. The induced TE pairing is further proved
to possess parallel spin projection to the effective magnetic
field due to the SOC [52,54–58]. However, even in the
presence of the TE pairing, with the momentum-independent
s-wave e-e interaction, no TE gap (TE order parameter) is
realized. Nevertheless, de Gennes pointed out that in the
nonsuperconducting material proximity to superconductor,
the pairing penetrating from superconductor experiences the
many-body interaction [59], and hence order parameter can
be induced even with a repulsive effective e-e interaction.
Following the work by de Gennes [59], it is reported by Yu and
Wu very recently that the TE order parameter is induced in the
spin-orbit coupled quantum well (QW) in proximity to s-wave
superconductor [58]. Specifically, with the induced TE pairing
in QW by the SOC, they showed that from the self-energy of
the e-e Coulomb interaction, the TE order parameter can be
induced.

Except for the multilayered structures, the study of the
mixed types of Cooper pairs in superconductors with vortex
structure, where the translational symmetry is broken, has a
long history [60–69]. It is known that due to the translational
asymmetry, the SO pairing is induced near the vortex core
[3,60–69]. Aside from the vortex structure, the translational
symmetry can also be broken by a supercurrent in supercon-
ductors, which leads to the center-of-mass (c.m.) momentum
of the Cooper pair, as revealed both experimentally [70] and
theoretically [71] in recent works. Moreover, except for the
extrinsic breakdown of the translational symmetry above,
there exists a high-magnetic-field phase in the superconductor,
referred as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
[72,73], where the translational symmetry is spontaneously
broken by inducing the c.m. momentum of the Cooper pair.
In the FFLO phase, the Zeeman energy leads to different
Fermi surfaces for spin-up and -down electrons, and then
by inducing a finite c.m. momentum of the Cooper pair,
the pairing region between the spin-up and -down electrons
near the Fermi surfaces can be maximized, leading to the free
energy minimized. Consequently, there exist pairing electrons

and unpairing ones in the FFLO phase. Furthermore, with
translational and spin-rotational asymmetries by the magnetic
field, all four types of pairings are expected to be induced
[74]. Nevertheless, with the conventional symmetric s-wave
e-e interaction, only the SE order parameter exists in the FFLO
phase. It is natural to consider the possibility to induce and
manipulate all four types of order parameters, which may lead
to rich physics especially for the quasiparticles. Multilayered
structures consisting of nonsuperconducting systems and s-
wave superconductors in FFLO phase or with a supercurrent
hence naturally come to our attention.

In this work, we show that the order parameters containing
all four types of symmetry, i.e., the SE, SO, TE, and
TO, can be realized in the two-dimensional electron gas
(2DEG) of the spin-orbit-coupled InSb (110) QW [75–79]
in proximity to s-wave superconductors in FFLO phase or
with a supercurrent. Specifically, the SE order parameter can
be induced in QW through the proximity effect. We show
that there exist unpairing regions in the momentum space,
where the proximity-induced SE order parameter vanishes.
It is further revealed that the unpairing regions arise from
the FFLO-phase-like blocking in QW. With this proximity-
induced SE order parameter, SO (TE) pairing is induced due
to the broken translational (spin-rotational) symmetry by the
c.m. momentum of Cooper pair (SOC). With the translational
and spin-rotational asymmetries, the TO pairing can also be
induced. Then, we show that from the self-energy due to the e-e
Coulomb interaction with the dynamical screening [80–82],
the corresponding order parameters can be induced and the
proximity-induced SE order parameter is also renormalized.
Particularly, we reveal that the odd-frequency order parameters
are induced due to the retardation effect of the Coulomb
interaction from the dynamic screening in 2DEG, where the
plasmon effect is important. In addition, the induced triplet
order parameters are shown to possess parallel spin projections
to the effective magnetic field due to the SOC, similar to the
previous works [52,54–58].

Differing from the vanishing proximity-induced SE order
parameter in the unpairing regions, it is found that through
the renormalization due to the e-e Coulomb interaction, the
SE, SO, TE, and TO ones in QW all have small strengths in
the unpairing regions. Moreover, in the pairing regions, rich
behaviors of the order parameters containing all four types of
symmetry are revealed. Specifically, the SE order parameter
�SE exhibits an s-wave behavior in the momentum space,
while the induced SO (TE) one �SO (�TE) shows a p-wave
character. Particularly, with the broken translational symmetry
by the c.m. momentum of Cooper pair, the p-wave character
of the induced SO order parameter shows anisotropy with
respect to the direction of the c.m. momentum. This is very
different from the TE one, which is determined by the SOC and
hence is independent on the direction of c.m. momentum. As
for the induced TO order parameter �TO, the unconventional
d-wave character in the momentum space is revealed and,
particularly, when the c.m. momentum is along the [11̄0]
and [001] directions, the dx2 - and dxy-wave characters can
be obtained, respectively. This anisotropy of the TO order
parameter is further proved to arise from the unique SOC
structure in InSb (110) QW. The specific behaviors of the
order parameters containing all four types of symmetry are
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TABLE I. Order parameters’ behaviors in the momentum space.
�T

SE stands for the proximity-induced SE order parameter. CSE(k,ω),
CSO(k,ω), CTE(k,ω), C0

TO(k,ω), and C1
TO(k,ω) are independent on the

orientation of the momentum.

Order parameter Behavior in the momentum space

�SE �T
SE + CSE(k,ω)

�SO CSO(k,ω)k·q
�TE CTE(k,ω)k·ex

�TO C0
TO(k,ω)q·ex − C1

TO(k,ω)(k·ex)(k·q)

summarized in Table I. Furthermore, we show that at proper
density, the SE order parameter can be efficiently suppressed
through the renormalization from the repulsive e-e Coulomb
interaction, as revealed in the previous work [58], and the
induced SO, TE, and TO order parameters can be detected and
distinguished experimentally.

This paper is organized as follows. In Sec. II, we introduce
our model and lay out Hamiltonian. In Sec. III, we present the
analytical results including the SE, SO, TE, and TO pairing
functions and the calculation of the self-energy due to the e-e
Coulomb interaction. The specific numerical results in InSb
(110) QW and analytic analysis are presented in Sec. IV. We
summarize in Sec. V.

II. MODEL AND HAMILTONIAN

In this section, we present the Hamiltonian of the
QW in proximity to s-wave superconductors in FFLO
phase or with a supercurrent in the Nambu ⊗ spin space,
including the QW ĤQW with the growth direction along
the ẑ axis, the superconductor ĤS in FFLO phase, or
with a supercurrent (the c.m. momentum of Cooper
pair q is chosen to be along the in-plane direction),
and the tunneling between the QW and superconductor
ĤT. By defining the Nambu spinors in QW �̂k(t) =
[ψ↑k+q(t),ψ↓k+q(t),ψ†

↑−k+q(t),ψ†
↓−k+q(t)]T and in supercon-

ductor �̂p(t) = [φ↑p+q(t),φ↓p+q(t),φ†
↑−p+q(t),φ†

↓−p+q(t)]T ,
with k = kxex + kyey and p = pxex + pyey + pzez being
the momenta of the electrons in QW and superconductor,
respectively, these Hamiltonians are given in the following.

The Hamiltonian of the spin-orbit-coupled QW is given
by [58]

ĤQW = Ĥ k
QW + Ĥ SOC

QW + Ĥ ee
QW, (1)

where Ĥ k
QW, Ĥ SOC

QW , and Ĥ ee
QW are the kinetic energy, the SOC,

and the e-e Coulomb interaction, respectively:

Ĥ k
QW = 1

2

∫
dk �̂

†
k(t)

(
ξ c

k+q 0

0 ξ c
−k+q

)
ρ3�̂k(t), (2)

Ĥ SOC
QW = 1

2

∫
dk �̂

†
k(t)

(
hk+q 0

0 h−k+q

)
ρ3�̂k(t), (3)

Ĥ ee
QW = 1

8

∫
dk dk′dq′Vq′ (t − t ′)[�̂†

k+q′(t)ρ3�̂k(t)]

× [�̂†
k′−q′(t ′)ρ3�̂k′(t ′)]. (4)

Here, ξ c
k = εc

k − μc and εc
k = k2/(2m∗

c ) with m∗
c and μc being

the effective mass and chemical potential of the electron
in QW, respectively; hk represents the SOC; ρ3 = σ0 ⊗ τ3;
σi and τi stand for the Pauli matrices in spin and particle-
hole spaces, respectively. The e-e Coulomb interaction with
the dynamic screening considered is given by Vk(t − t ′) =∫

dω e−iω(t−t ′)Vk(ω) with

Vk(ω) = V 0
k

ε(k,ω)
. (5)

Here, V 0
k = 2πe2/(ε0κ0q) stands for the unscreened Coulomb

potential in a two-dimensional (2D) system; ε0 and κ0 represent
the vacuum permittivity and relative dielectric constant,
respectively; ε(q,ω) is the dynamic dielectric function. In the
long-wavelength limit (ω > qvF ), based on the linear response
theory [80–82], the expression of Vk(ω) can be given by

Vk(ω) = V re
k + V at

k (ω), (6)

where V re
k = V 0

k ; V at
k = V 0

k |ωpl

k |2/(ω2 − |ωpl

k |2), which has
been revealed in the previous work [83] to act as a retarded
attractive potential; ω

pl

k = √
2πe2nk/(m∗

cε0κ0) is the plasma
frequency with n being the density of the electrons.

The Hamiltonian of the s-wave superconductor in FFLO
phase or with a supercurrent is expressed as [72,73]

ĤS =
∫

dp
2

�̂†
p(t)

(
ξ s

p+q + hBσz �0iσ2

�∗
0iσ2 ξ s

−p+q + hBσz

)
ρ3�̂p(t),

(7)

where ξ s
p = εs

p − μs and εs
p = p2/(2m∗

c ) with m∗
s and μs

representing the effective mass and chemical potential of
the electrons in superconductor, respectively; �0 denotes the
singlet gap and hB stands for the Zeeman energy in the
superconductor. In this work, we mainly consider the physics
of the translational asymmetry by the c.m. momentum of
Cooper pair, which can be induced by either the FFLO phase
or a supercurrent in superconductors, as mentioned in the
Introduction. The magnetic field in QWs, which can lead to TO
pairing in QWs as revealed in the previous works [43–51], is
not included here. Particularly, for the case of superconductors
in FFLO phase (or with a supercurrent), our proposal can be
realized in N/S/F (or N/S) structures, hence, the magnetic field
in QWs is not considered.

The tunneling Hamiltonian between the QW and supercon-
ductor reads as [58,84–86]

ĤT =
∫

dk dpz

[
�

†
k(t)t0ρ3�(k,pz)(t)

+�
†
(k,pz)(t)t

∗
0 ρ3�k(t)

]
, (8)

with t0 being the tunneling matrix element.

III. ANALYTICAL RESULTS

We first start our investigation from the effective
Bogoliubov–de Gennes (BdG) Hamiltonian in InSb (110) QW
following the approach in the previous work [58] by using
the equilibrium Green functions [80–82], and show that the
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singlet and triplet order parameters can be induced from the
self-energy due to the e-e Coulomb interaction. In InSb (110)
QW, the SOC hk = γDkx(k2

x − 2k2
y − 〈k2

z 〉)σz, with γD being
the Dresselhaus coefficient [87]. Particularly, since 〈k2

z 〉 
 k2
F

in QW [75–78], one approximately has

hk = −γD

〈
k2
z

〉
kxσz. (9)

Here, the in-plane coordinate axes are set as x ‖ [11̄0] and
y ‖ [001] with ex (ey) being the unit vector along the x̂ (ŷ)
direction. Furthermore, it has been shown in the previous work
[58] that in InSb QWs, the self-energy due to the electron-
phonon interaction is much smaller than that due to the e-e
Coulomb interaction at low temperature, and hence only the
Coulomb interaction needs to be considered in this work.

A. Effective BdG Hamiltonian in QW

In the Nambu ⊗ spin space, the equilibrium Green function
in the momentum space is given by

Gk(t) = −iρ3〈T �̂k(t)�̂†
k(0)〉, (10)

where T represents the time-ordering operator; 〈. . .〉 denotes
the ensemble average. By expressing

Gk(t) =
(

gk(t) fk(t)

f
†
−k(t) g†−k(t)

)
, (11)

one can obtain the normal Green function gk(t) and anomalous
Green function fk(t) [52,58,80–82].

In the frequency space Gk(ω) = ∫ ∞
−∞ eiωtGk(t), the

Gor’kov equation [88] in QW is given by(
ωρ3 − H k

QW − H SOC
QW

)
G0

k(ω) = 1, (12)

with G0
k(ω) being the free Green function. When the in-

teraction is considered, from the Dyson equation Gk(ω) =
G0

k(ω) + G0
k(ω)�̂(k,ω)Gk(ω) [80–82], one obtains[

ωρ3 − H k
QW − H SOC

QW − �̂(k,ω)
]
Gk(ω) = 1, (13)

where �̂(k,ω) are the self-energies due to HT and H ee
QW.

By comparing Eq. (13) with Eq. (12), the effective BdG
Hamiltonian in QW is obtained [58]:

Ĥ BdG
QW = Ĥ 0

QW + �̂(k,ω), (14)

from which one can obtain the singlet and triplet order
parameters and calculate the energy spectra of the elementary
excitation.

B. Self-energy due to the proximity effect

Following the previous work [58], by approximately con-
sidering that the e-e Coulomb interaction is weaker than the
proximity effect, we first calculate the self-energy due to
the proximity effect without the e-e Coulomb interaction to
determine the Green function, and then obtain the self-energy
due to the e-e Coulomb interaction.

The self-energy due to the tunneling is calculated based on
Hamiltonian (8), written as

�̂T (k,ω) = |t0|2
∫

dpzG
s
k+pzez

(ω). (15)

Here, Gs
p(ω) = ∫ ∞

−∞ eiωtGs
p(t) with Gs

p(t) being the Green
function in superconductor, written as

Gs
p(t) = −iρ3〈T �̂p(t)�̂†

p(0)〉 =
(

gs
p(t) f s

p (t)

f s†−p(t) gs†−p(t)

)
.

(16)

gs
p(t) and f s

p (t) are the normal and anomalous Green func-
tions, respectively. Specifically, in the frequency space, the
anomalous Green function is given by

f s
p (ω) =

⎛
⎜⎜⎝

0
�0

Dp,ω(hB)
−�0

Dp,ω(−hB)
0

⎞
⎟⎟⎠, (17)

where Dp,ω(±hB) = (ω − ξ s
p+q ∓ hB)(−ω − ξ s

p−q ± hB) +
|�0|2. By neglecting the diagonal terms in Eq. (15) which are
marginal at the weak coupling limit [84–86], the self-energy
in QW due to the proximity effect can be obtained:

�̂T (k,ω) =
(

0 �̂T (k,ω)

�̂T
∗
(k,ω) 0

)
, (18)

where

�̂T (k,ω) =
∫

dpz|t0|2f s
k+pzez

(ω). (19)

In the weak coupling limit, the order parameters induced in
QW are much smaller than �0 [84–86]. Moreover, we focus
on the low-frequency regime [ω��(k,ω)] where the main
physics happens. Consequently, the frequency is much smaller
than �0. In this case, the frequency dependence of �T (k,ω)
can be neglected [58,84–86]. Therefore, by considering the
small k in QW (εs

k � μs), one obtains (refer to Appendix A)

�̂T (k,0) = �T
SE(k)iσ2 = �0|t̃ |2

εs
k+qε

s
k−q + |�0|2 − h2

B

iσ2, (20)

acting as the SE order parameter [�T
SE(k)] in QW due to

the proximity effect. Here, t̃ is the effective tunneling matrix
element (given also in Appendix A).

Based on Eqs. (13) and (18), in the absence of the e-e
Coulomb interaction, one can derive the Green function
Gk(ω) in QW with the proximity-induced SE order parameter
included. Particularly, the anomalous Green function is

fk(ω)=

⎛
⎜⎜⎝

0 − �T
SE(k)

(ω − E+
+k)(ω + E+

−k)
�T

SE(k)

(ω − E−
+k)(ω + E−

−k)
0

⎞
⎟⎟⎠,

(21)

where E
μ

νk =
√

(
ξc

k+q+ξc
k−q

2 + μ
hk+q+hk−q

2 )2 + |�T
SE(k)|2 +

ν
ξc

k+q−ξc
k−q

2 + μν
hk+q−hk−q

2 are the quasiparticle energy spectra
(μ,ν = ±1) in QW. It is noted that there exist regions with
E

μ

νk < 0 in the momentum space, where the quasiparticle
energies are below the Fermi surface. Here, following the
FFLO idea [72,73], in such regions the Cooper pairs must be
broken since these quasiparticle states are perfectly blocked
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by the electrons. Hence, we consider the regions with E
μ

νk < 0
are the unpairing regions where the tunneling is blocked and
then the proximity-induced SE order parameter should vanish.

Consequently, the proximity-induced SE order parameter
is given by

�T
SE(k) = �0

t̃2

εs
k+qε

s
k−q + |�0|2 − h2

B

δ̂, (22)

with δk = �μ=±,ν=±θ (Eμ

νk) being the depairing operator [72].
Here, θ (x) is the step function.

From Eqs. (18) and (20), it is noted that only the SE order
parameter exists. However, it is shown in the following that
all four types of the order parameters can be realized in QW
when the e-e Coulomb interaction is considered.

C. Self-energy due to the e-e Coulomb interaction

The self-energy in the frequency space due to the e-e
Coulomb interaction reads as [80–82]

�̂ee(k,ω) = 1

4

∫
dk′

(2π )2

dω′

2π
Vk−k′ (ω − ω′)G(k′,ω′). (23)

From Eq. (23), one observes that from the self-energy due
to the e-e Coulomb interaction, the normal Green function
and anomalous Green function are both renormalized. Conse-
quently, the SOC strength, the effective mass, the zero-energy
point, and the SE order parameter are renormalized. Moreover,
the SO, TO, and TE order parameters can be induced due to the
existence of the corresponding pairing. In this work, we focus
on the renormalization-induced order parameters, and neglect
the renormalization of the SOC strength, effective mass, and
zero-energy point.

From Eqs. (21) and (23), the renormalization-induced
order parameters can be obtained. Specifically, after the
frequency integration, the renormalization-induced singlet
order parameter [�s(k,ω)] and triplet one with zero spin
projection [�t (k,ω)] are written as

�s(k,ω) =
∑
μ=±

∫
dk′

32π2
V 0

k−k′�
T
SE(k′)

×
[

1

E
μ

+k′ + E
μ

−k′

(∑
ν=±

ω
pl

k−k′

E
μ

νk′ + ω
pl

k−k′ − νω
− 1

)

+
∑
ν=±

∣∣Eμ

νk′ − νω
∣∣2∣∣Eμ

νk′ − νω
∣∣2 − ∣∣ωpl

k−k′
∣∣2

f (Eμ

νk′)

E
μ

+k′ + E
μ

−k′

+
∑
ν=±

E
μ

νk′ − νω∣∣Eμ

νk′ − νω
∣∣2 − ∣∣ωpl

k−k′
∣∣2

n
(
ω

pl

k−k′
)
ω

pl

k−k′

E
μ

+k′ + E
μ

−k′

]
,

(24)

�t (k,ω) =
∑
μ=±

μ

∫
dk′

32π2
V 0

k−k′�
T
SE(k′)

×
[

1

E
μ

+k′ + E
μ

−k′

(∑
ν=±

ω
pl

k−k′

E
μ

νk′ + ω
pl

k−k′ − νω
− 1

)

TABLE II. Parameters used in our calculation. Note that m0

stands for the free-electron mass and a is the well width.

m∗
c/m0 0.015a m∗

s /m0 3.2b

κ0 16.0a �0 (meV) 5b

γD (eV Å
3
) 79.4c hB/�0 0.6d

a (nm) 2 T (K) 0.5
|t̃ |2/�2

0 0.5 n0 (cm−2) 2.5 × 109

aRefs. [89,90].
bRef. [91].
cRef. [87].
dRefs. [72,73].

+
∑
ν=±

∣∣Eμ

νk′ − νω
∣∣2∣∣Eμ

νk′ − νω
∣∣2 − ∣∣ωpl

k−k′
∣∣2

f
(
E

μ

νk′
)

E
μ

+k′ + E
μ

−k′

+
∑
ν=±

E
μ

νk′ − νω∣∣Eμ

νk′ − νω
∣∣2 − ∣∣ωpl

k−k′
∣∣2

n
(
ω

pl

k−k′
)
ω

pl

k−k′

E
μ

+k′ + E
μ

−k′

]
,

(25)

where f (x) = [exp(βx) + 1]−1 is the Fermi-Dirac distribu-
tion function and n(x) = [exp(βx) − 1]−1 stands for the
Bose-Einstein distribution function; β = 1/(kBT ) with kB

representing the Boltzmann constant and T being the
temperature.

IV. NUMERICAL RESULTS

In this section, by calculating Eqs. (24) and (25) explicitly,
we investigate the order parameters in 2DEG of the spin-orbit-
coupled InSb (110) QW in proximity to s-wave superconductor
in FFLO phase or with a supercurrent. All the material
parameters used in our calculation are listed in Table II. As
mentioned above, the frequency ω in the calculation is chosen
to be smaller than �0.

A. SE order parameter

In this part, we investigate the SE order parameters in QW,
including the proximity-induced and renormalization-induced
ones. The proximity-induced SE order parameter �T

SE(k) is
obtained from Eq. (22) while the renormalization-induced
one �R

SE(k,ω) is obtained by calculating �s(k,ω) [Eq. (24)]
explicitly:

�R
SE(k,ω) = [�s(k,ω) + �s(k, − ω)]/2. (26)

1. Momentum dependence of the proximity-induced SE order
parameter: s-wave character

We first focus on the proximity-induced SE order pa-
rameters, whose momentum dependencies at different c.m.
momenta q are plotted in Fig. 1 at n = 5n0. We find that
when q < 0.75kF , the proximity-induced SE order parameters
�T

SE(k) show an s-wave character in the momentum space.
Moreover, from Eq. (22), with |�0| ≈ εs

16kF
, one finds that the

strengths of the proximity-induced SE order parameters are
marginally influenced when k � 15kF but decrease monoton-
ically when k > 15kF , as shown in Figs. 1(a) and 1(b). In
addition, when k > 15kF , one has q � k. Consequently, the
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FIG. 1. Momentum dependence of the proximity-induced SE
order parameter �T

SE(k) at (a) q = 0, (b) q = 0.6kF ex , (c) q =
0.8kF ex , and (d) q = 0.8kF ey . n = 5n0.

dependence of �T
SE(k) on q is indistinguishable, as shown by

the comparison between Figs. 1(a) and 1(b).
Furthermore, it is found that when q > 0.75kF , there

exist unpairing regions in the momentum space, where the
proximity-induced SE order parameters vanish, as shown by
the blue regions in Figs. 1(c) and 1(d) at q = 0.8kF . This is
justified by the fact that the positions of the unpairing regions in
the momentum space coincide with those of the regions where
the depairing operator is zero (shown in Appendix B). As for
the pairing region, the proximity-induced SE order parameter
shows the similar behaviors to that at q < 0.75kF .

Consequently, the proximity-induced SE order parameter
in the pairing region in QW can be considered as a constant
�T

SE when k � 15kF . It is further noted that this conclusion
is consistent with the constant approximation in the previous
works [58,84–86].

2. Momentum dependence of the renormalization-induced SE
order parameter: s-wave character

We next discuss the renormalization-induced SE order pa-
rameter. The momentum dependencies of the renormalization-
induced SE order parameter at different c.m. momenta are
plotted in Fig. 2 when n = 5n0. As shown in Figs. 2(a)
and 2(b), when q < 0.75kF , the renormalization-induced SE
order parameters in the momentum space exhibit an s-wave
character: �R

SE = CSE(k,ω) with CSE(k,ω) being independent
on the orientation of the momentum, similar to the proximity-
induced one. Moreover, �R

SE is always in the opposite
sign against the proximity-induced SE order parameter �T

SE
as the renormalization from the repulsive e-e Coulomb
interaction.

When q > 0.75kF , we find that there exist four regions
in the momentum space where the renormalization-induced
SE order parameters have smaller strengths than those in
the region nearby [shown by the four yellow regions in the

ω=0(a)

q=0

ΔR
SE/Δ0
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/k
F

k
y

/k
F

-0.5
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ω=0(c)

q=0.8kFex-5

-2.5

 0

 2.5

 5

-0.5

-0.4

-0.3

-0.2

ω=0(d)

q=0.8kFey

-5 -2.5  0  2.5  5
kx/kF
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-2.5

 0

 2.5

 5

-0.5

-0.4

-0.3

-0.2

FIG. 2. Momentum dependence of the renormalization-induced
SE order parameter �R

SE(k,ω = 0) at (a) q = 0, (b) q = 0.5kF ex,
(c) q = 0.8kF ex, and (d) q = 0.8kF ey. n = 5n0.

regime k < 2.1kF in Figs. 2(c) or 2(d)]. The positions of these
regions exactly correspond to the unpairing regions where the
proximity-induced SE order parameters vanish [shown by the
blue regions in Figs. 1(a) and 1(b) correspondingly]. This can
be understood from the fact that the renormalization of the e-e
Coulomb interaction to the SE order parameter leads to the
contribution from the pairing regions to the unpairing ones.

3. Momentum-magnitude dependence of the
renormalization-induced SE order parameter

The momentum-magnitude dependencies of the strength for
the renormalization-induced SE order parameter −�R

SE(k =
kex,ω) are shown in Fig. 3 at n = 5n0. It is first noted that at

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  2  4  6

-Δ
R S

E
/Δ

0

kx/kF

θq=0

-ΔR
SE:q=0       

0.2kF
0.4kF
0.6kF
0.8kF

-ΔR
SE,sim:q=0.6kF

FIG. 3. Momentum-magnitude dependence of the strength for
the renormalization-induced SE order parameter |�R

SE(k = kex,ω =
0)| = −�R

SE(k = kex,ω = 0) at different c.m. momenta qex. n = 5n0.
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q = 0.8kF ex (black chain curve), two valleys at k ≈ 0.8kF and
2kF are observed in the momentum-magnitude dependence,
which correspond to the unpairing regions mentioned above.
Whereas in the pairing regions, it is found that −�R

SE(k =
kex,ω) decreases with the increase of the momentum
monotonically.

The vanishing order parameter at large momentum can
be understood as follows. It has been pointed out in the
previous works [3,17,43,52,58] that the pairing function fk(ω)
vanishes in QW when ξ c

k 
 �T
SE. With the renormalization-

induced order parameter �(k,ω) = ∫
dω′dk′
4(2π)3

V 0
k−k′fk′ (ω′)
ε(ω−ω′) , one has

�(k,ω) ∝ ∫
dω′ fk(ω′)

ε(ω−ω′) since the Coulomb interaction V 0
k−k′ is

very strong at k′ = k and can be approximated by a delta
function: δ(k′ − k) in the analytic analysis. Therefore, the
order parameter vanishes at large momentum when ξc

k 
 �T
SE

due to the vanishing pairing function.
This vanishing of the SE order parameter can also be under-

stood from Eq. (24). Specifically, after some simplifications at
low temperature (refer to Appendix C), the renormalization-
induced SE order parameter can be approximately written as

−�R
SE(k,ω) ≈

∫
dk′

16π2

V 0
k−k′�

T
SE

Fk′

×
[

1 − ω
pl

k−k′

Fk′

(
1 + ω2

F 2
k′

)
− ξ c

k′ε
c
q

F 2
k′

]
, (27)

where Fk′ =
√

|ξ c
k′ |2 + |�T

SE|2.
Then, the momentum-magnitude dependence of the

renormalization-induced SE order parameter can be analyzed.
Specifically, by approximately taking the Coulomb interaction
V 0

k−k′ in Eq. (27) as a delta function δ(k − k′) for the analytic

analysis, one has −�R
SE(k,ω) ∝ 1/

√
|ξ c

k |2 + |�T
SE|2. Then,

at ξ c
k � �T

SE ≈ ξ c
3kF

(ξ c
k 
 �T

SE), −�R
SE(k,ω) is marginally

changed (decreases) with the increase of the momentum,
as shown in Fig. 3. This conclusion is in agreement with
the one from the analysis of the pairing function proposed
above.

Furthermore, from Eq. (27) the c.m. momentum depen-
dence of �R

SE can also be understood. In the integral of Eq. (27),
the third term makes the important contribution only when
|ξ c

k′ | ∼ Fk′ where ξ c
k′ > ξc

3kF
. Hence, the increase of q leads to

the decrease of −�R
SE, as shown in Fig. 3.

B. SO order parameter

In this part, we investigate the induced SO order parameter
in QW by calculating �s(k,ω) [Eq. (24)] explicitly. Then, the
induced SO order parameter is obtained:

�SO(k,ω) = [�s(k,ω) − �s(k, − ω)]/2. (28)

For the analytic analysis, similar to the study on the
renormalization-induced SE order parameters in Sec. IV A,
by taking some simplifications (refer to Appendix C), the SO
order parameter can be approximately written as

�SO(k,ω) = �K
SO(k,ω) + �S

SO(k,ω), (29)

with

�K
SO(k,ω) = −ω

∫
dk′

16π2
V 0

k−k′�
T
SE

ω
pl

k−k′

F 4
k′

k′ · q
m∗

c

, (30)

�S
SO(k,ω) = ω

∫
dk′

16π2
V 0

k−k′�
T
SE

ω
pl

k−k′

F 4
k′

2hqhk′ξ c
k′

F 2
k′

= ω

∫
dk′

16π2
V 0

k−k′�
T
SE

ω
pl

k−k′

F 4
k′

�k′
k′
xqx

m∗
c

. (31)

Here, �k′ = |γD〈k2
z 〉|2ξk′m∗

c/F
2
k′ . The first term �K

SO(k,ω) in
Eq. (29) comes from the broken translational symmetry by the
c.m. momentum of Cooper pair (q �= 0) in the system, whereas
the second one �S

SO(k,ω) is induced due to the coupling
between the c.m. momentum and SOC from the high-order
expansion. Hence, �K

SO(k,ω) makes the leading contribution
in Eq. (29). Additionally, it is noted that �SO(k,ω) arises from
the retardation effect in the effective attractive potential V at

k (ω),
in accord with the previous works [12–17]. In the following,
we show that from Eq. (29), the momentum and dependence
of the SO order parameter can be analyzed, in good agreement
with the full numerical results.

1. Momentum dependence of the SO order parameter:
p-wave character

In this section, we focus on the momentum dependencies
of the SO order parameter �SO(k,ω = EF ) at different c.m.
momenta q. The full numerical results are plotted in Fig. 4
at n = 5n0. As seen from the figure, it is found that the SO
order parameter in the momentum space exhibits a p-wave
character: �SO = CSO(k,ω)k·q with CSO(k,ω) being indepen-
dent on the orientation of the momentum (demonstrated in
Appendix D). This can be understood as follows. With the
Fermi-Dirac statistics for the SO order parameter, one finds
�SO(k,ω) = −�SO(−k,ω). In addition, the system in QW

ω=EF(a)

q=0.2kFex

ΔSO/Δ0

-5

-2.5

 0

 2.5

 5

k y
/k

F
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 0
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ω=EF(b)

q=0.6kFex

-5 -2.5  0  2.5  5
kx/kF
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 2.5

 5

k y
/k

F

-0.01

-0.005

 0

 0.005

 0.01

ω=EF(c)

q=0.6kFey-5

-2.5

 0

 2.5

 5

k y
/k

F

-0.02

-0.01

 0

 0.01

 0.02

ω=EF(d)

q=0.8kFey

-5 -2.5  0  2.5  5
kx/kF

-5

-2.5

 0

 2.5

 5

k y
/k

F

-0.02

-0.01

 0
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 0.02

FIG. 4. Momentum dependence of the SO order parameter
�SO(k,ω = EF ) at (a) q = 0.2kF ex, (b) q = 0.6kF ex, (c) q =
0.6kF ey, and (d) q = 0.8kF ey. n = 5n0.
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FIG. 5. Momentum-magnitude dependence of the strength for the
SO order parameter |�SO(k = kex,ω = EF )| = −�SO(k = kex,ω =
EF ) at different c.m. momenta qex. The inset (a) [(b)] shows the
calculated results for −�K

SO(k = kex,ω = EF ) [−�S
SO(k = kex,ω =

EF )] from Eq. (30) [Eq. (31)]. n = 5n0.

has the spatial-rotational symmetry around the q axis in the
momentum space, and then one has �SO(k,ω) = �SO(−k,ω)
when k ⊥ q. Hence, the vanishing �SO(k,ω) at k ⊥ q is
immediately obtained and the SO order parameter exhibits
as �SO(k,ω) ∝ k·q at small q.

From Eq. (29), one can obtain the same conclusion.
Specifically, by approximately taking the Coulomb interac-
tion V 0

k−k′ω
pl

k−k′ ∝ 1/
√|k − k′| as a delta function, one has

�SO(k,ω) ∝ k·q. Additionally, it is noted that small strengths
of the SO order parameter are observed in the unpairing regions
at q = 0.8kF [shown by the four green regions in Fig. 4(d)] due
to the renormalization of the e-e Coulomb interaction, similar
to the renormalization-induced SE order parameter.

2. Momentum-magnitude dependence of the SO order parameter

The momentum-magnitude dependencies of the SO order
parameter are shown in Fig. 5 at different c.m. momenta
qex. As seen from the figure, when q = 0, with the trans-
lational symmetry, the SO order parameter �SO = 0 (blue
dashed curve). When q = 0.8kF (black chain curve), two
valleys are observed at 0.8kF and 2kF , exactly correspond-
ing to the unpairing regions, similar to the results of the
renormalization-induced SE order parameter. When 0 < q <

0.8kF , it is shown that the strength of the SO order param-
eter exhibits double-peak behavior with the increase of the
momentum.

Specifically, one finds that �SO(k = 0,ω) = 0 due to the
odd parity and |�SO(k,ω)| ∝ k·q increases with increasing
momentum at small k. As for the large momentum, due to
the vanishing pairing function at ξc

k 
 �T
SE mentioned in

Sec. IV A, one has �SO(k,ω) = 0. Hence, peaks of the strength
for the SO order parameter in-between are expected. Similarly,
peaks for |�K

SO(k,ω)| and |�S
SO(k,ω)| are also expected, as

shown in the insets (a) and (b) in Fig. 5 where we plot
−�K

SO(k,ω) = |�K
SO(k,ω)| and −�S

SO(k,ω) = −|�S
SO(k,ω)|

at q = qex, respectively. Hence, with the peak of −�K
SO and the

valley of −�S
SO shown in the insets (a) and (b) of Fig. 5, respec-

tively, the strength of the SO order parameter −�SO(k,ω) =
−�K

SO(k,ω) − �S
SO(k,ω) exhibits the double-peak structure in

the momentum-magnitude dependence. Particularly, it is found
that at the case q = qey, with �S

SO ≈ 0, the strength of the SO
order parameter −�SO(k,ω) = −�K

SO(k,ω) shows one-peak
structure (not shown in the figure).

From Eq. (30) [Eq. (31)], the peak positions for
|�K

SO(k,ω)| and |�S
SO(k,ω)| at qex can be determined ex-

plicitly. Specifically, by considering the Coulomb inter-
action V 0

k−k′ω
pl

k−k′ as a delta function for the analytic
analysis, one has |�K

SO| ∝ k·q/(|ξc
k |2 + |�T

SE|2)2 [|�S
SO| ∝

k·qεc
k/(|ξc

k |2 + |�T
SE|2)3], exhibiting one-peak behavior in the

momentum-magnitude dependence. Then, by calculating the
maxima of k·q/(|ξc

k |2 + |�T
SE|2)2 and k·qεc

k/(|ξc
k |2 + |�T

SE|2)3,
the peak positions for |�K

SO| and |�S
SO| can be de-

termined at k
p

K ≈
√

3 +
√

9 + 7(1 + |�T
SE|2E−2

F )kF /
√

7 =

1.15kF and k
p

S ≈
√

1 +
√

1 + 3(1 + |�T
SE|2E−2

F )kF /
√

3 =
1.26kF , respectively, very close to those from the numerical
calculation shown in the insets (a) and (b) of Fig. 5. Then,
the valley position between the two peaks in the momentum-
magnitude dependence for −�SO(k,ω) can be determined at
k

p

S ≈ 1.26kF , close to the one from full numerical results
shown in Fig. 5.

Furthermore, due to the broken translational symmetry by
the c.m. momentum q, the strength of the induced SO order
parameter increases with the increase of q as shown in Fig. 5,
in accord with Eq. (29).

C. TE order parameter

In this section, we focus on the TE order parameters in QW
by numerically calculating �t (k,ω) [Eq. (25)]. The induced
TE order parameter is obtained:

�TE(k,ω) = [�t (k,ω) + �t (k, − ω)]/2. (32)

For the analytic analysis, similar to the study on the SE
order parameter, by taking some simplifications (refer to
Appendix C), the induced TE order parameter can be approx-
imately written as

�TE(k,ω) =
∫

dk′

16π2

V 0
k−k′�

T
SE

F 3
k′

hk′ξ c
k′

×
[

1 − 2ω
pl

k−k′

Fk′

(
1 + ω2

F 2
k′

)
− 3ξ c

k′ε
c
q

F 2
k′

]
. (33)

It is noted that the TE order parameter is induced due to
the broken spin-rotational symmetry by the SOC (hk �= 0).
In the following, we show that from Eq. (33), the momentum
dependence of the TE order parameter can be analyzed in
accord with the numerical results well.

1. Momentum dependence of the TE order parameter:
p-wave character

In this section, we show the momentum dependencies of the
TE order parameter �TE(k,ω = 0) at different c.m. momenta
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FIG. 6. Momentum dependence of the TE order parameter
�TE(k,ω = 0) at (a) q = 0, (b) q = 0.5kF ex, (c) q = 0.8kF ex, and
(d) q = 0.8kF ey. n = 5n0.

q. The full numerical results are plotted in Fig. 6 at n = 5n0.
As seen from the figure, the TE order parameter exhibits a p-
wave character in the momentum space: �TE = CTE(k,ω)k·ex
with CTE(k,ω) being independent on the orientation of the
momentum (demonstrated in Appendix D). Differing from the
p-wave character of the SO order parameter which shows
anisotropy with respect to the direction of q (as shown in
Fig. 4) [�SO(k,ω) = CSO(k,ω)k·q], the p-wave character
of the TE order parameter is independent on the direction
of q. This is because the TE order parameter is induced
due to the spin-rotational asymmetry by the SOC. This can
also be understood from Eq. (33) by approximately taking
the Coulomb interaction V 0

k−k′ as a delta function: one has
�TE(k,ω) ∝ hk ∝ kx .

Moreover, it is noted in Fig. 6(c) that small strengths
of the TE order parameter are observed in the unpairing
regions at q = 0.8kF (shown by the four green regions
with the smaller order parameters than the region nearby)
due to the renormalization of the e-e Coulomb interac-
tion, similar to the renormalization-induced SE and SO
ones.

2. Momentum-magnitude dependence of the TE order parameter

The momentum-magnitude dependencies of the TE or-
der parameter |�TE(k = kex,ω)| are shown in Fig. 7 at
different c.m. momenta qex when n = 5n0. As seen from
the figure, when q = 0.8kF , two valleys are observed at
0.8kF and 2kF in the momentum-magnitude dependence
(black chain curve), corresponding to the unpairing regions
mentioned above. When q < 0.8kF , with the increase of the
momentum, |�TE(k = kex,ω)| first increases when k < 2.3kF

then decreases after k > 2.3kF , leading to a peak around
k ≈ 2.3kF .

The peak behavior can be understood as follows. Since
the TE order parameter is induced by the SOC, with the

 0
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FIG. 7. Momentum-magnitude dependence of the strength for the
TE order parameter |�TE(k = kex,ω = 0)| = −�TE(k = kex,ω = 0)
at different c.m. momenta qex. n = 5n0.

increase of the momentum at small (large) momentum, the
TE order parameter is enhanced (suppressed) by the enhanced
SOC (suppressed pairing function mentioned in Sec. IV A),
leading to the peak in the momentum-magnitude dependence.
This conclusion is in good agreement with Eq. (33), from

which one finds that |�TE(k,ω)| ∝ |hkξ
c
k |/|

√
ξ 2
k + |�T

SE|2|3 by

approximately taking the Coulomb interaction V 0
k−k′ as a delta

function. Then, through the similar analysis of the momentum-
magnitude peak for the strength of the SO order parameter in
Sec. IV B, the equation of the momentum-magnitude peak
position k

p

TE for the strength of the TE order parameter can be
obtained:

3

(∣∣∣∣k
p

TE

kF

∣∣∣∣
2

− 1

)2(∣∣∣∣k
p

TE

kF

∣∣∣∣
2

+ 1

)
= 2

∣∣∣∣�T
SE

EF

∣∣∣∣
2(

3

∣∣∣∣k
p

TE

kF

∣∣∣∣
2

− 1

)
.

(34)

From Eq. (34), one has k
p

TE ≈ 2.1kF , very close to the position
from the full numerical calculation shown in Fig. 7.

Moreover, the c.m. momentum dependence of the TE order
parameter can also be analyzed. Specifically, from Eq. (33),
by approximately taking the Coulomb interaction V 0

k−k′ as a
delta function, one finds that with the increase of q, |�TE(k,ω)|
increases when k < kF and decreases when k > kF , in accord
with the numerical results in Fig. 7.

D. TO order parameter

In this section, we investigate the TO order parameters in
QW through the numerical calculation of �t (k,ω) [Eq. (25)].
The induced TO order parameter is obtained:

�TO(k,ω) = [�t (k,ω) − �t (k, − ω)]/2. (35)

As for the analytic analysis, similar to the study on the TE order
parameter in Sec. IV C, by taking some simplifications (refer
to Appendix C), the TO order parameter can approximately be
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FIG. 8. Momentum dependence of the TO order parameter
�TO(k,ω = EF ) at (a) q = 0.2kF ex, (b) q = 0.6kF ex, (c) q =
0.6kF ey, and (d) q = 0.8kF ey. n = 5n0.

written as

�TO(k,ω) = −ω

∫
dk′

16π2

ω
pl

k−k′V
0

k−k′�
T
SE

F 4
k′

×
(

hq − k′·q
m∗

c

hk′ξ c
k′

F 2
k′

)

≈ ωγD

〈
k2
z

〉 ∫ dk′

16π2

ω
pl

k−k′V
0

k−k′�
T
SE

F 4
k′

×
(

qx − k′·q
m∗

c

k′
xξ

c
k′

F 2
k′

)
. (36)

It is noted that the TO order parameter is induced due to
the spin-rotational asymmetry by the SOC (hk �= 0) and the
translational asymmetry (q �= 0). Additionally, the TO order
parameter comes from the retardation effect in the effective
attractive potential V at

k (ω), in accord with the previous works
[4–8,17]. In the following, we show that from Eq. (36),
the momentum dependence of the TO order parameter
can be analyzed, in good agreement with the numerical
results.

1. Momentum dependence of the TO order parameter:
dx2 - and dx y-wave characters

In this section, we focus on the momentum dependencies
of the TO order parameter at different c.m. momenta q,
which are plotted in Fig. 8 at n = 5n0. We find that the TO
order parameter shows a d-wave character in the momentum
space: �TO(k,ω) = C0

TO(k,ω)q·ex − C1
TO(k,ω)(k·ex)(k·q)

with C0
TO(k,ω) and C1

TO(k,ω) being independent on
the orientation of the momentum (demonstrated in
Appendix D). Particularly, at q = qex (q = qey), the
TO order parameters exhibit a dx2 -wave (dxy-wave) character:
�TO(k,ω) = (C0

TO − C1
TOk2

x)q [�TO(k,ω) = −C1
TOkxkyq],

as shown in Fig. 8(b) [8(c)]. This is due to the unique SOC

in InSb (110) QW. Specifically, by approximately taking
the Coulomb interaction V 0

k−k′ω
pl

k−k′ as a delta function in
Eq. (36), one has �TO(k,ω) ∝ [qx − kx(k·q)ξ c

k /(m∗
cF

2
k )],

in good agreement with the full numerical
results.

Additionally, it is noted that small strengths of the TO
order parameter are observed in the unpairing regions at
q = 0.8kF [four concave parts shown in Fig. 8(d)] due
to the renormalization of the e-e Coulomb interaction,
similar to the renormalization-induced SE, SO, and TE
ones.

2. Momentum-magnitude dependence of the TO order parameter

The momentum-magnitude dependencies of the TO order
parameter are shown in Fig. 9 at different c.m. momenta
q when n = 5n0. We first discuss the case at q = qex. It
is noted that at q = 0.8kF , a valley and a peak of the TO
order parameter in the momentum-magnitude dependence are
observed at 0.8kF and 2kF [black chain curve in Fig. 9(a)],
respectively, which exactly correspond to the unpairing regions
mentioned above, similar to the previous results of SE, SO, and
TE ones. In addition, as shown in Fig. 9(a) at q = qex, when
q < 0.8kF , with the increase of the momentum, the TO order

-0.01

 0

 0.01

 0.02

 0.03

Δ T
O

/Δ
0

θq=0

(a)

q=0       
0.2kF
0.4kF
0.6kF
0.8kF

-0.02

-0.01

 0

 0  1  2  3  4  5  6

Δ T
O

/Δ
0

k/kF

θq=π/2

(b)

FIG. 9. Momentum-magnitude dependence of the TO order
parameter for (a) �TO(k = kex,ω = EF ) at q = qex and (b) �TO(k =
kec,ω = EF ) at q = qey. n = 5n0. ec is the unit vector along the
ex + ey direction.
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parameter �TO(k = kex,ω), possessing the same sign with �0

at k = 0, first increases when k < 0.5kF then decreases when
0.5 < kF < 2kF , leading to a peak around 0.5kF . Moreover,
when 0.5 < kF < 2kF , it is noted that �TO(k = kex,ω) has
a sign change at 1.4kF , and shows opposite sign against �0

when k > 1.4kF . With further increasing the momentum when
k > 2kF , the TO order parameter tends to zero, leading to a
valley around 2kF .

This momentum-magnitude dependence of the TO order
parameter is more complex than the previous SE, SO, and TE
ones. Nevertheless, we show that from Eq. (36), this depen-
dence can be well understood. Specifically, by approximately
taking the Coulomb interaction V 0

k−k′ω
pl

k−k′ as a delta function,
at q = qex, one has

�TO(k = kex,ω = EF ) ∝ [
1 + εc

k

(
EF − εc

k

)/
F 2

k

]/
F 4

k ,

(37)

with same sign to �0 at k = 0. When k � 3kF with Fk ≈
�T

SE, from Eq. (37), it is found that the increase of the
momentum at k < 0.5kF (k > 0.5kF ) leads to the increase
(decrease) of �TO(k = kex,ω) and the peak around 0.5kF .
Moreover, when 0.5kF < k � 3kF , it is noted that the TO
order parameter �TO(k = kex,ω) has a sign change at k =
(1 + |�T

SE/EF |2)1/4kF ≈ 1.42kF where one has �TO(k =
kex,ω = EF ) = 0 in Eq. (37), and then �TO(k = kex,ω) is
in opposite sign against �0 at k > 1.42kF . With further
increasing the momentum, the suppression of the pair-
ing function, i.e., the increase of Fk , leads to the sup-
pression on the TO order parameter, and hence �TO(k =
kex,ω) tends to zero, leading to the valley observed.
The valley position can be determined by calculating the
minimum of �TO(k = kex,ω) at kv

TO ≈ (3 + |�T
SE/EF |2 +

|�T
SE/EF |

√
3 + |�T

SE/EF |2)kF /3 = 1.9kF , again very close
to the one from the full numerical results in Fig. 9(a).

For the case at q = qey, it is found that �TO(k = kec,ω) ∝
εc
k(EF − εc

k)/F 6
k (ec is defined as the unit vector along ex + ey

direction), similar to Eq. (37) at q = qex. Consequently, by
using the similar analysis, one may understand the behavior in
Fig. 9(b) well.

Furthermore, with the translational asymmetry broken by
the c.m. momentum q, it is found that the strengths of the
induced TO order parameters |�TO(k,ω)| increase with the
increase of the c.m. momentum from Eq. (36), as shown in
Fig. 9.

E. Separation of the order parameters containing all four types

Finally, we compare the four types of the order parameters
in QW and propose a tentative way to distinguish these order
parameters in the experiment. Specifically, through the study
of the density dependencies of the four types of the order
parameters in detail (refer to Appendix E), it is found that at
small density, due to the suppressed attractive potential V at

k ,
the renormalization-induced SE order parameter �R

SE, with its
sign being opposite against the proximity-induced one �T

SE,
is markedly enhanced. Then, the SE order parameter �SE =
�T

SE + �R
SE is efficiently suppressed at small density, similar

to the previous work [58]. In this case, the SO (induced by c.m.
momentum of Cooper pair), TE (induced by the SOC), and TO

 0

 0.025

 0.05

 0.075

 0.1

 0  4  8  12  16  20

|Δ
|/

Δ 0

k/kF

θq=π/2

|ΔSE(k,ω)|    
|ΔSO(key,ω)|
|ΔTE(kex,ω)|
|ΔTO(kec,ω)|
|ΔSO(kec,ω)|
|ΔTE(kec,ω)|

FIG. 10. Momentum-magnitude dependence of the order param-
eter of each symmetry containing all four types at q = 10kF ey. It
is also found that �SO(k = kex,ω) = �TE(k = key,ω) = �TO(k =
kex,ω) = �TO(k = key,ω) = 0 from the full numerical results at q =
10kF ey (not shown in the figure). n = 0.15n0 and ω = 15EF � �T

SE.

(induced by the SOC and c.m. momentum) order parameters
are dominant.

Furthermore, as summarized in Table I, the SO (TE)
order parameter in the momentum space exhibits a p-
wave character while the TO one exhibits a d-wave
character. Particularly, when q = qey, from Table I, one
has �SO(k,ω) = CSO(k,ω)qky , �TE(k,ω) = CTE(k,ω)kx , and
�TO(k,ω) = −C1

TO(k,ω)kxky . In this case, with the suppressed
SE order parameter at small density, along the ey (ex) direction
in the momentum space with �TE = �TO = 0 (�SO = �TO =
0), the SO (TE) order parameter can be detected solely and then
CSO(k,ω) [CTE(k,ω)] can be determined explicitly.

The full numerical results of the four types of the order
parameters at small density n = 0.15n0 are plotted against the
momentum k in Fig. 10 when q = 10kF ey. In this case, due
to the small density and hence small q, the unpairing regions
mentioned in Sec. IV A are absent here. Moreover, as seen
from the figure, the SE order parameter �SE (red solid curve)
is efficiently suppressed, and as expected above, along the
ex (ey) direction with �SO = �TO = 0 (�TE = �TO = 0) the
TE (SO) order parameter (blue long-dashed curve) [(green
short-dashed curve)] is dominant, providing the possibility
to distinguish this order parameter solely by detecting along
special direction.

Nevertheless, as for the dxy-wave TO order parameter
at q = qey, along the ec direction, the maximum of the
strength of the TO order parameter (black chain curve) is
comparable to that of the SO (gray double-dotted curve)
and TE (light blue dotted curve) ones. However, with the
experimentally obtained order parameter �e(k,ω), since the
SE order parameter is suppressed at small density and the SO
and TE ones can be obtained above, one obtains �TO(k,ω) =
�e(k,ω) − �SO(k,ω) − �TE(k,ω) or

�TO(k,ω) =
∫

dθk�
e(k,ω)sinθkcosθk/(4π ). (38)
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Then, the dxy-wave TO order parameter can also be detected.
Moreover, with the strength comparable to the SO one, the
TO order parameter has been shown to provide significant
protection to the zero-energy states including the Andreev
bound state and Majorana fermion state due to the even parity
[3], and promises to lead to rich physics [43,92,93] including
the long-range proximity effect [43] and anomalous features
of quasiparticle [92,93].

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated that the SE, SO, TE,
and TO pairings and the corresponding order parameters can be
realized in spin-orbit-coupled InSb (110) QW in proximity to
s-wave superconductor in FFLO phase or with a supercurrent.
Specifically, the SE order parameter can be induced in QW
through the proximity effect. Nevertheless, it is found that there
exist unpairing regions in the momentum space, in which the
proximity-induced SE order parameter vanishes. We further
reveal that the unpairing regions arise from the FFLO-phase-
like blocking in QW. In the presence of this proximity-induced
SE order parameter, the SO pairing is induced due to the
broken translational symmetry by the c.m. momentum of
Cooper pair whereas the TE one is induced due to the broken
spin-rotational symmetry by the SOC. Moreover, with the
translational and spin-rotational asymmetries, the TO pairing
is induced. Then, the corresponding order parameters can be
induced from the self-energy of the e-e Coulomb interaction
with the dynamic screening, and the proximity-induced SE
order parameter is also renormalized. Particularly, we reveal
that the odd-frequency order parameters are induced due to
the retardation effect of the Coulomb interaction from the
dynamic screening in 2DEG, where the plasmon effect is
important.

Differing from the vanishing proximity-induced SE order
parameter in the unpairing regions, we show that through the
renormalization, the SE, SO, TE, and TO order parameters
in QW all have small strengths in the unpairing regions.
In the pairing regions, the SE and TE order parameters are
revealed to show the conventional s- and p-wave characters,
respectively. As for the odd-frequency order parameters, which
are difficult to realize in bulk superconductors, the induced SO
and TO order parameters in InSb (110) QW exhibit the p- and
d-wave characters, respectively. Specifically, with the broken
translational symmetry by the c.m. momentum of Cooper
pair, the p-wave character of the SO order parameter shows
anisotropy with respect to the direction of the c.m. momentum.
This is very different from the TE one, which is determined
by the SOC and hence is independent on the direction of the
c.m. momentum. As for the unconventional d-wave TO order
parameter, it is interesting to find that dx2 - and dxy-wave TO
order parameters can be obtained when the c.m. momentum
is along the [11̄0] and [001] directions, respectively. It is
further demonstrated that this anisotropy of the TO order
parameter arises from the unique SOC structure in InSb (110)
QW.

Furthermore, we show that at proper density, the SE order
parameter can be efficiently suppressed. Then, the induced SO,
TE, and TO order parameters can be detected experimentally.
Our work provides an idea platform where rich physics, includ-

ing the enhanced Josephson current [94], dispersionless zero-
energy Andreev bound states [3,19,95–97], and anomalous
proximity effect [3,98,99] related to the SO order parameter,
the conventional triplet superconductivity [37–39,98–103]
associated with the TE one, and the long-range proximity
effect [43] and anomalous features of quasiparticle [92,93]
due to the TO one can be realized.
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APPENDIX A: DERIVATION OF EQ. (20)

We derive Eq. (20) in this appendix. By neglecting the
frequency dependence of the self-energy due to the proximity
effect as mentioned in Sec. III B, Eq. (19) can be expressed as

�̂T (k)

�0
=

∫
|εs

k±q+ξ s
pz

|<ωD

m∗
s dεs

pz

2πpz

⎛
⎜⎜⎝

0
|t0|2
�+

k,pz

|t0|2
−�−

k,pz

0

⎞
⎟⎟⎠, (A1)

where ωD represents the Debye frequency of superconductor
and �±

k (ξ s
pz

) = (εs
k+q + ξ s

pz
± hB)(εs

k−q + ξ s
pz

∓ hB) + |�0|2.
Moreover, with the small momentum k in QW, one has

εs
k � ωD � μs and hence the restriction |εs

k±q + ξ s
pz

| < ωD

in the integral of Eq. (A1) can be approximated as |ξ s
pz

| < ωD .
Then, by using the mean value theorem for the integral in
Eq. (A1), one gets

�̂T (k) = |t0|2�0ωD

√
m∗

s

π
√

2μs

⎛
⎜⎜⎝

0
1

L+
k

− 1
L−

k
0

⎞
⎟⎟⎠, (A2)

with L±
k = εs

k+qε
s
k−q − h2

B + |�0|2 ± (εs
k+q − εs

k−q)hB .
As mentioned in Sec. IV A, it is found that |�0| ≈ εs

15kF
,

and hence (εs
k+q − εs

k−q) in L±
k can be neglected due to the

small c.m. momentum q in this work. Then, Eq. (20) is
obtained with the effective tunneling matrix element |t̃ |2 =
|t0|2ωD

√
m∗

s /(2μs)/π .

APPENDIX B: MOMENTUM DEPENDENCE
OF THE DEPAIRING OPERATOR

In this Appendix, we show the momentum dependencies of
the depairing operator δk at different c.m. momenta, which are
plotted in Fig. 11. We find that at n = 5n0, when q > 0.74kF ,
there always exist zero-value regions of the depairing operator
in the momentum space (shown by the blue regions in Fig. 11 at
q = 0.8kF ), which exactly correspond to the unpairing regions
in Sec. IV A [blue regions in Figs. 1(c) and 1(d)].

Nevertheless, due to the existence of the SOC, there exist
four unpairing regions in the momentum space at fixed q when
q > 0.74kF . This is very different from the conventional FFLO
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FIG. 11. Momentum dependence of the depairing operator at (a)
q = 0.8kF ex and (b) q = 0.8kF ey. n = 5n0.

superconductor [72,73], where only two unpairing regions
exist. This can also be understood from the four nondegenerate
quasiparticle energy spectra addressed in Sec. III A, differing
from the two double-degenerate quasiparticle energy spectra
in the conventional FFLO superconductors [72,73].

APPENDIX C: DERIVATION OF EQS. (27), (29),
(33), and (36)

We derive Eqs. (27), (29), (33), and (36) in this appendix.
Specifically, at low temperature, one has f (Eμ

νk) ≈ 0 since
E

μ

νk > 0 and n(ωpl

k )ωpl

k ≈ 0, so the second and the third terms
in Eq. (24) can be neglected. Moreover, since the Coulomb
interaction V 0

k−k′ is very strong at k′ = k, the plasma frequency

ω
pl

k−k′ ∝ √|k − k′| in the denominator of the first term can also
be neglected (compared with E

μ

νk′). Then, the renormalization-
induced singlet order parameter [Eq. (24)] is simplified into

�s(k,ω) =
∑
μ=±

∫
dk′

32π2
V 0

k−k′�
T
SE

(
ω

pl

k−k′

A
μ+
k′

− 1

B
μ

+k′

)
, (C1)

where A
μν

k′ = E
μ

+k′E
μ

−k′ − ω2 + νωB
μ

−k′ and B
μ

±k′ =
E

μ

+k′±E
μ

−k′ .
Then, the renormalization-induced SE order parameter and

SO one can be obtained from Eqs. (26) and (28), respectively,

written as

�R
SE(k,ω) =

∑
ν,μ=±

∫
dk′

64π2
V 0

k−k′�
T
SE

(
ω

pl

k−k′

A
μν

k′
− 1

B
μ

+k′

)
,

(C2)

�SO(k,ω) =
∑

ν,μ=±
ν

∫
dk′

64π2

V 0
k−k′�

T
SEω

pl

k−k′

A
μν

k′
. (C3)

By approximately considering ω, εc
q, and hk′ as small quantities

(compared with ξc
k′ and �T

SE) for expansion, Eq. (C2) [Eq. (C3)]
can be further simplified, and then Eq. (27) [Eq. (29)] can be
obtained.

Similarly, by taking the same approximation n(ωpl

k )ωpl

k ≈
0 and f (Eμ

νk) ≈ 0 at low temperature and ω
pl

k−k′ < E
μ

νk′ in
Eq. (25), the induced TE order parameter and TO one can be
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FIG. 12. Momentum-orientation dependence of the order param-
eters at (a) q = 0.4kF ex and (b) q = 0.4kF ey. n = 5n0. ω = EF and
k = kF . Red solid, blue long-dashed, and black chain curves denote
the full numerical results of the SO, TE, and TO order parameters,
respectively. Green short-dashed curve (light blue dotted curve): fitted
results for the SO (TE) order parameter by using �SO = CSO(k,ω)k·q
[�TE = CTE(k,ω)k·ex]. Gray double-dotted curve: fitted results for
the TO one by using �TO = C0

TO(k,ω) − C1
TO(k,ω)(k·ex)(k·q).
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obtained from Eqs. (32) and (35), respectively, written as

�TE(k,ω) =
∑

ν,μ=±
μ

∫
dk′

64π2
V 0

k−k′�
T
SE

(
ω

pl

k−k′

A
μν

k′
− 1

B
μ

+k′

)
,

(C4)

�TO(k,ω)
∑

ν,μ=±
μν

∫
dk′

64π2

V 0
k−k′�

T
SEω

pl

k−k′

A
μν

k′
. (C5)

Then, by further approximately taking ω, εc
q, and hk′ as small

quantities, Eq. (C4) [Eq. (C4)] is simplified into Eq. (33)
[Eq. (36)].

APPENDIX D: MOMENTUM-ORIENTATION
DEPENDENCE OF ORDER PARAMETERS

In this Appendix, we show the momentum-orientation
dependencies of the four order parameters at different c.m.
momenta, which are plotted in Fig. 12 at n = 5n0. As seen from
the figure, the full numerical results of the SO (red solid curve),
TE (light blue dotted curve), and TO (gray double-dotted
curve) order parameters can be well fitted by using the analytic
analyses addressed in Table I: �SO = CSO(k,ω)k·q (green
short-dashed curve), �TE = CTE(k,ω)k·ex (blue long-dashed
curve), and �TO = C0

TO(k,ω) − C1
TO(k,ω)(k·ex)(k·q) (black

chain curve), respectively.

APPENDIX E: DENSITY DEPENDENCIES OF THE ORDER
PARAMETERS CONTAINING ALL FOUR TYPES

1. Density dependence of the renormalization-induced
SE order parameter

We first address the density dependence of the
renormalization-induced SE order parameter. The strengths of
the renormalization-induced SE order parameter −�R

SE(k =
0,ω) versus density n when q = 0.4kF ex are plotted in
Fig. 13 at different frequencies ω. As shown from the figure,
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3kF ex,ω)| = −�SO(k = 3kF ex,ω) versus density n at different fre-
quencies. q = 0.4kF ex.

−�R
SE(k = 0,ω) decreases monotonically with the increase

of the density. This behavior can also be understood from
Eq. (27). The vanishing renormalization-induced SE order
parameter at large density comes from the vanishing pairing
function at |ξc

k=0| 
 �T
SE as mentioned above, similar to the

case at large momentum. At small density, the attractive
potential V at

k is efficiently suppressed, leading to the enhanced
Coulomb interaction and hence the renormalization-induced
SE order parameter.

Furthermore, it is noted that with the decrease of the density,
the strength of the renormalization-induced SE order parame-
ter −�R

SE becomes close to that of the proximity-induced one
�T

SE (black chain line). Since �R
SE is always in the opposite

sign against �T
SE, the SE order parameter �SE = �T

SE + �R
SE

in QW can be efficiently suppressed, providing the possibility
for the experimental observation for SO, TE, and TO ones, as
mentioned in Sec. IV E.

Additionally, from Fig. 13, it is found that at fixed
density, the strength of the renormalization-induced SE order
parameter −�R

SE(k = 0,ω) decreases monotonically with the
increase of the frequency, in accord with the analytic results
in Eq. (27).

2. Density dependence of the SO order parameter

We next address the density dependence of the SO order
parameter. The strengths of the SO order parameter |�SO(k =
3kF ex,ω)| as function of the density n are plotted in Fig. 14
at different frequencies when q = 0.4kF ex. As seen from the
figure, with the increase of the density n, |�SO(k = 3kF ex,ω)|
first increases when n < 2.8n0 then decreases when n >

2.8n0, leading to a peak around 2.8n0.
The peak behavior can be understood as follows. At small

(large) density with ξ3kF
� �T

SE (ξ3kF

 �T

SE), the strength
for the SO order parameter is enhanced (suppressed) due to
the enhanced effective attractive potential V at

k ∝ |ωpl

k |2 ∝ n

(suppressed pairing potential as mentioned in Sec. IV A), and
then a density peak of the strength for the SO order parameter
is expected. This can also be understood from Eq. (29). By
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FIG. 15. Strength of the TE order parameter |�TE(k =
3kF ex,ω)| = −�TE(k = 3kF ex,ω) versus density n at different fre-
quencies. q = 0.4kF ex.

approximately taking the Coulomb interaction V 0
k−k′ω

pl

k−k′
as a delta function, it is found |�SO(k = 3kF ex,ω)| ∝√

nEF EF /(8E2
F + |�T

SE|2)2, showing peak behavior in the
density dependence.

Moreover, from Fig. 14, it is found that at fixed density,
the strength of the SO order parameter |�SO(k = 3kF ex,ω)|
increases with the frequency, in accord with the analytic results
in Eq. (29).

3. Density dependence of the TE order parameter

We next address the density dependence of the TE order
parameter. The strengths of TE order parameters |�TE(k =
3kF ex,ω)| versus the density n are plotted in Fig. 15 at different
frequencies. As shown from the figure, with the increase of the
density, |�TE(k = 3kF ex,ω)| first increases when n < 1.2n0

then decreases after n > 1.2n0, leading to a peak around 1.2n0,
similar to the results of the SO order parameter.

The density dependence of |�TE(k = 3kF ex,ω)| can be
understood from the momentum-magnitude dependence since
the increase of the density leads to the increase of 3kF .
Then, the density dependence shows similar behavior of
the momentum-magnitude dependence, and the density peak
(shown in Fig. 15) corresponds to the momentum-magnitude
peak above (shown in Fig. 7).
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FIG. 16. Strength of the TO order parameter |�TO(k =
3kF ex,ω)| = −�TO(k = 3kF ex,ω) versus density n at different fre-
quencies when q = 0.4kF ex.

In addition, we also find that at fixed density, the strength of
the TE order parameter −�TE(k = 3kF ex,ω) decreases with
the increases of the frequency, as shown in Fig. 15, in good
agreement with Eq. (33).

4. Density dependence of the TO order parameter

We then address the density dependence of the TO order
parameter. The strengths of TO order parameter are plotted
against the density n in Fig. 16 at different frequencies. As
shown from the figure, with the increase of the density, a peak
is observed in the density dependence of �TO(k = 3kF ex,ω),
similar to the previous results of the SO and TE order
parameters.

With the similar analysis for the density dependence of the
SO and TE order parameter, the strength for the TO one is
enhanced (suppressed) by the increase of the density at small
(large) density due to the enhanced effective attractive potential
V at

k and SOC h3kF ex (suppressed pairing potential as mentioned
in Sec. IV A), leading to a peak observed.

Moreover, from Fig. 16, it is found that at fixed density, the
strength of the TO order parameter |�TO| increases with the
frequency, in accord with the analytic results in Eq. (36).
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